The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions
Abstract
:1. Introduction
2. Classification
3. Biosynthesis of Polyphenols
4. Plant Defense Induction Mediated by Polyphenols
5. Mode of Action of Polyphenol Mediated Defenses
6. Buffer-Storage of Polyphenols for Future Responses
7. Defence Fitness Trade-Offs in Response to Insect Herbivory
8. Recent Developments in Secondary Metabolite Research
9. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Karban, R. The ecology and evolution of induced resistance against herbivores. Funct. Ecol. 2010, 25, 339–347. [Google Scholar] [CrossRef]
- Erb, M.; Reymond, P. Molecular Interactions Between Plants and Insect Herbivores. Annu. Rev. Plant Biol. 2019, 70, 527–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zunjarrao, S.S.; Tellis, M.B.; Joshi, S.N.; Joshi, R.S. Plant-Insect Interaction: The Saga of Molecular Coevolution. Ref. Ser. Phytochem. Co-Evol. Second. Metab. 2020, 19–45. [Google Scholar] [CrossRef]
- Howe, G.A.; Jander, G. Plant Immunity to Insect Herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.; Brennan, R.M.; Graham, J.; Karley, A.J. Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection. Front. Plant Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Kariyat, R.R.; Smith, J.D.; Stephenson, A.G.; Moraes, C.M.D.; Mescher, M.C. Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162323. [Google Scholar] [CrossRef] [Green Version]
- Kariyat, R.R.; Hardison, S.B.; Moraes, C.M.D.; Mescher, M.C. Plant spines deter herbivory by restricting caterpillar movement. Biol. Lett. 2017, 13, 20170176. [Google Scholar] [CrossRef]
- Tayal, M.; Somavat, P.; Rodriguez, I.; Thomas, T.; Christoffersen, B.; Kariyat, R. Polyphenol-Rich Purple Corn Pericarp Extract Adversely Impacts Herbivore Growth and Development. Insects 2020, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kariyat, R.R. Exposure to polyphenol-rich purple corn pericarp extract restricts fall armyworm (Spodoptera frugiperda) growth. Plant Signal. Behav. 2020, 15, 1784545. [Google Scholar] [CrossRef]
- Moraes, C.M.D.; Lewis, W.J.; Paré, P.W.; Alborn, H.T.; Tumlinson, J.H. Herbivore-infested plants selectively attract parasitoids. Nature 1998, 393, 570–573. [Google Scholar] [CrossRef]
- War, A.R.; Sharma, H.C.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Herbivore induced plant volatiles: Their role in plant defense for pest management. Plant Signal. Behav. 2011, 6, 1973–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fürstenberg-Hägg, J.; Zagrobelny, M.; Bak, S. Plant Defense against Insect Herbivores. Int. J. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance. Plant Signal. Mol. 2019, 157–168. [Google Scholar]
- Chen, S.; Lin, R.; Lu, H.; Wang, Q.; Yang, J.; Liu, J.; Yan, C. Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress. Chemosphere 2020, 249, 126341. [Google Scholar] [CrossRef]
- Rani, P.U.; Jyothsna, Y. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol. Plant. 2010, 32, 695–701. [Google Scholar] [CrossRef]
- Chamarthi, S.K.; Sharma, H.C.; Sahrawat, K.L.; Narasu, L.M.; Dhillon, M.K. Physico-chemical mechanisms of resistance to shoot fly, Atherigona soccata in sorghum, Sorghum bicolor. J. Appl. Entomol. 2010, 135, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Jiani, L.; Yuan, S.; Wei, W.; Yu, Z.; Zebin, C.; Lei, Y. Effects of Nicotine, a Plant Secondary Metabolite, on Protective Enzyme and Detoxification Enzyme of Frank linie lla occ ide ntalis. Plant Dis. Pests 2019, 10, 7–10. [Google Scholar]
- Marciniak, P.; Kolińska, A.; Spochacz, M.; Chowański, S.; Adamski, Z.; Scrano, L.; Falabella, P.; Bufo, S.A.; Rosiński, G. Differentiated Effects of Secondary Metabolites from Solanaceae and Brassicaceae Plant Families on the Heartbeat of Tenebrio molitor Pupae. Toxins 2019, 11, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayal, M.; Somavat, P.; Rodriguez, I.; Martinez, L.; Kariyat, R. Cascading effects of polyphenol-rich purple corn pericarp extract on pupal, adult, and offspring of tobacco hornworm (Manduca sexta L.). Commun. Integr. Biol. 2020, 13, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kariyat, R.R.; Gaffoor, I.; Sattar, S.; Dixon, C.W.; Frock, N.; Moen, J.; Moraes, C.M.D.; Mescher, M.C.; Thompson, G.A.; Chopra, S. Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid. J. Chem. Ecol. 2019, 45, 502–514. [Google Scholar] [CrossRef]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Mol. Plant 2014, 7, 1267–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, M.L.; Yoshida, Y.; Major, I.T.; Ferreira, D.D.O.; Weraduwage, S.M.; Froehlich, J.E.; Johnson, B.F.; Kramer, D.M.; Jander, G.; Sharkey, T.D.; et al. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Swain, T.; Bate-Smith, E. Flavonoid Compounds. Comp. Biochem. 1962, 755–809. [Google Scholar]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Lattanzio, V. Phenolic Compounds: Introduction. Nat. Prod. 2013, 50, 1543–1580. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Fraenkel, G.S. The Raison d’Etre of Secondary Plant Substances: These odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 1959, 129, 1466–1470. [Google Scholar] [CrossRef]
- Chrzanowski, G.; Leszczyński, B. Induced accumulation of phenolic acids in winter triticale (Triticosecale Wittm.) under insects feeding. Herba Polonica 2008, 54, 33–40. [Google Scholar]
- Leiss, K.A.; Maltese, F.; Choi, Y.H.; Verpoorte, R.; Klinkhamer, P.G. Identification of Chlorogenic Acid as a Resistance Factor for Thrips in Chrysanthemum. Plant Physiol. 2009, 150, 1567–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morkunas, I.; Woźniak, A.; Formela, M.; Mai, V.C.; Marczak, Ł.; Narożna, D.; Borowiak-Sobkowiak, B.; Kühn, C.; Grimm, B. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma 2015, 253, 1063–1079. [Google Scholar] [CrossRef]
- Yang, J.; Sun, X.-Q.; Yan, S.-Y.; Pan, W.-J.; Zhang, M.-X.; Cai, Q.-N. Interaction of Ferulic Acid with Glutathione S-Transferase and Carboxylesterase Genes in the Brown Planthopper, Nilaparvata lugens. J. Chem. Ecol. 2017, 43, 693–702. [Google Scholar] [CrossRef]
- Kovalikova, Z.; Kubes, J.; Skalicky, M.; Kuchtickova, N.; Maskova, L.; Tuma, J.; Vachova, P.; Hejnak, V. Changes in Content of Polyphenols and Ascorbic Acid in Leaves of White Cabbage after Pest Infestation. Molecules 2019, 24, 2622. [Google Scholar] [CrossRef] [Green Version]
- Bentivenha, J.P.F.; Canassa, V.F.; Baldin, E.L.L.; Borguini, M.G.; Lima, G.P.P.; Lourenção, A.L. Role of the Rutin and Genistein Flavonoids in Soybean Resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod Plant Interact. 2017, 12, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Santiago, R.; Malvar, R.A.; Baamonde, M.D.; Revilla, P.; Souto, X.C. Free Phenols in Maize Pith and Their Relationship with Resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) Attack. J. Econ. Entomol. 2005, 98, 1349–1356. [Google Scholar] [CrossRef]
- Mao, J.; Burt, A.J.; Ramputh, A.-I.; Simmonds, J.; Cass, L.; Hubbard, K.; Miller, S.; Altosaar, I.; Arnason, J.T. Diverted Secondary Metabolism and Improved Resistance to European Corn Borer (Ostrinia nubilalis) in Maize (Zea mays L.) Transformed with Wheat Oxalate Oxidase. J. Agric. Food Chem. 2007, 55, 2582–2589. [Google Scholar] [CrossRef]
- Cipollini, D.; Stevenson, R.; Enright, S.; Eyles, A.; Bonello, P. Phenolic Metabolites in Leaves of the Invasive Shrub, Lonicera maackii, and Their Potential Phytotoxic and Anti-Herbivore Effects. J. Chem. Ecol. 2008, 34, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Gantner, M.; Najda, A.; Piesik, D. Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Prot. Sci. 2019, 55, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Lane, G.A.; Sutherland, O.R.W.; Skipp, R.A. Isoflavonoids as insect feeding deterrents and antifungal components from root ofLupinus angustifolius. J. Chem. Ecol. 1987, 13, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Shibutani, S.; Samejima, M.; Doi, S. Effects of stilbenes from bark of Picea glehnii (Sieb. et Zucc) and their related compounds against feeding behaviour of Reticulitermes speratus (Kolbe). J. Wood Sci. 2004, 50, 439–444. [Google Scholar] [CrossRef]
- Rani, P.U.; Pratyusha, S. Role of castor plant phenolics on performance of its two herbivores and their impact on egg parasitoid behaviour. BioControl 2014, 59, 513–524. [Google Scholar] [CrossRef]
- Saguez, J.; Attoumbré, J.; Giordanengo, P.; Baltora-Rosset, S. Biological activities of lignans and neolignans on the aphid Myzus persicae (Sulzer). Arthropod Plant Interact. 2012, 7, 225–233. [Google Scholar] [CrossRef]
- Ateyyat, M.; Abu-Romman, S.; Abu-Darwish, M.; Ghabeish, I. Impact of Flavonoids against Woolly Apple Aphid, Eriosoma lanigerum (Hausmann) and Its Sole Parasitoid, Aphelinus mali (Hald.). J. Agric. Sci. 2012, 4. [Google Scholar] [CrossRef]
- Pavela, R.; Waffo-Teguo, P.; Biais, B.; Richard, T.; Me´rillon, J.-M. Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J. Pest Sci. 2017, 90, 961–970. [Google Scholar] [CrossRef]
- Garcia, E.S.; Cabral, M.M.O.; Schaubb, G.A.; Gottlieb, O.R. Azambuja Patrícia Effects of lignoids on a hematophagous bug, Rhodnius prolixus: Feeding, ecdysis and diuresis. Phytochemistry 2000, 55, 611–616. [Google Scholar] [CrossRef]
- Cabral, M.; Kelecom, A.; Garcia, E. Effects of the lignan, pinoresinol on the moulting cycle of the bloodsucking bug Rhodnius prolixus and of the milkweed bug Oncopeltus fasciatus. Fitoterapia 1999, 70, 561–567. [Google Scholar] [CrossRef]
- Torres, P.; Avila, J.G.; Vivar, A.R.D.; García Ana, M.; Marín Juan, C.; Aranda, E.; Céspedes, C.L. Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 2003, 64, 463–473. [Google Scholar] [CrossRef]
- Bi, J.L.; Murphy, J.B.; Felton, G.W. Antinutritive and Oxidative Components as Mechanisms of Induced Resistance in Cotton to Helicoverpa zea. J. Chem. Ecol. 1997, 23, 97–117. [Google Scholar] [CrossRef]
- Gabaston, J.; Khawand, T.E.; Waffo-Teguo, P.; Decendit, A.; Richard, T.; Mérillon, J.-M.; Pavela, R. Stilbenes from grapevine root: A promising natural insecticide against Leptinotarsa decemlineata. J. Pest Sci. 2018, 91, 897–906. [Google Scholar] [CrossRef]
- Niemi, L.; Wennström, A.; Ericson, L. Insect feeding preferences and plant phenolic glucosides in the system Gonioctena—Salix triandra. Entomol. Exp. Et Appl. 2005, 115, 61–66. [Google Scholar] [CrossRef]
- Roininen, H.; Price, P.W.; Julkunen-Tiitto, R.; Tahvanainen, J.; Ikonen, A. Oviposition Stimulant for a Gall-Inducing Sawfly, Euura lasiolepis, on Willow is a Phenolic Glucoside. J. Chem. Ecol. 1999, 25, 943–953. [Google Scholar] [CrossRef]
- Green, P.W.C.; Stevenson, P.C.; Simmonds, M.S.J.; Sharma, H.C. Phenolic Compounds on the Pod-Surface of Pigeonpea, Cajanus cajan, Mediate Feeding Behavior of Helicoverpa armigera Larvae. J. Chem. Ecol. 2003, 29, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Baur, R.; Haribal, M.; Renwick, J.A.A.; Stadler, E. Contact chemoreception related to host selection and oviposition behaviour in the monarch butterfly, Danaus plexippus. Physiol. Entomol. 1998, 23, 7–19. [Google Scholar] [CrossRef]
- Bernays, E.A.; Howard, J.J.; Champagne, D.; Estesen, B.J. Rutin: A phagostimulant for the polyphagous acridid Schistocerca americana. Entomol. Exp. Appl. 1991, 60, 19–28. [Google Scholar] [CrossRef]
- Shaver, T.N.; Lukefahr, M.J. Effect of Flavonoid Pigments and Gossypol on Growth and Development of the Bollworm, Tobacco Budworm, and Pink Bollworm123. J. Econ. Entomol. 1969, 62, 643–646. [Google Scholar] [CrossRef]
- Takemura, M.; Nishida, R.; Mori, N.; Kuwahara, Y. Acylated flavonol glycosides as probing stimulants of a bean aphid, Megoura crassicauda, from Vicia angustifolia. Phytochemistry 2002, 61, 135–140. [Google Scholar] [CrossRef]
- Schittko, U.; Burghardt, F.; Fiedler, K.; Wray, V.; Proksch, P. Sequestration and distribution of flavonoids in the common blue butterfly Polyommatus icarus reared on Trifolium repens. Phytochemistry 1999, 51, 609–614. [Google Scholar] [CrossRef]
- Fujimoto, N.; Hayashiya, K.; Nakajima, K. Studies on the pigments of cocoon. (IV) The formation and translocation of the pigments of green cocoon in the silkworm larvae. J. Seric. Sci. Jpn. 1959, 28, 30–32. [Google Scholar]
- Geuder, M.; Wray, V.; Fiedler, K.; Proksch, P. Sequestration and Metabolism of Host-Plant Flavonoids by the Lycaenid Butterfly Polyommatus bellargus. J. Chem. Ecol. 1997, 23, 1361–1372. [Google Scholar] [CrossRef]
- Feeny, P.; Sachdev, K.; Rosenberry, L.; Carter, M. Luteolin 7-O-(6”-O-malonyl)-β-d-glucoside and trans-chlorogenic acid: Oviposition stimulants for the black swallowtail butterfly. Phytochemistry 1988, 27, 3439–3448. [Google Scholar] [CrossRef]
- Haribal, M.; Renwick, J.A. Oviposition stimulants for the monarch butterfly: Flavonol glycosides from Asclepias curassavica. Phytochemistry 1996, 41, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Crockett, S.L.; Boevé, J.-L. Flavonoid Glycosides and Naphthodianthrones in the Sawfly Tenthredo zonula and its Host-Plants, Hypericum perforatum and H. hirsutum. J. Chem. Ecol. 2011, 37, 943–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreresa, F.; Fernandesb, F.; Oliveirac, J.M.A.; Valentãob, P.; Pereirad, J.A.; Andradeb, P.B. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala). Food Chem. Toxicol. 2009, 47, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.; Sachdev-Gupta, K.; Feeny, P. Tyramine from the leaves of wild parsnip: A stimulant and synergist for oviposition by the black swallowtail butterfly. Physiol. Entomol. 1998, 23, 303–312. [Google Scholar] [CrossRef]
- Hu, Q.; Min, L.; Yang, X.; Jin, S.; Zhang, L.; Li, Y.; Ma, Y.; Qi, X.; Li, D.; Liu, H.; et al. Laccase GhLac1 Modulates Broad-Spectrum Biotic Stress Tolerance via Manipulating Phenylpropanoid Pathway and Jasmonic Acid Synthesis. Plant Physiol. 2017, 176, 1808–1823. [Google Scholar] [CrossRef] [Green Version]
- Shadle, G.L.; Wesley, S.; Korth, K.L.; Chen, F.; Lamb, C.; Dixon, R.A. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l -phenylalanine ammonia-lyase. Phytochemistry 2003, 64, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.-Y.; Sattler, S.A.; Cortez, G.S.; Vermerris, W.; Sattler, S.E.; Kang, C. Biochemical and Structural Analysis of Substrate Specificity of a Phenylalanine Ammonia-Lyase. Plant Physiol. 2017, 176, 1452–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Basyouni, S.Z.; Chen, D.; Ibrahim, R.K.; Neish, A.C.; Towers, G.H.N. Biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 1964, 3, 485–492. [Google Scholar] [CrossRef]
- Neelam; Khatkar, A.; Sharma, K.K. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr. 2019, 60, 2655–2675. [Google Scholar] [CrossRef] [PubMed]
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.; Kumar, C.S. Syringic acid (SA)—A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed. Pharmacother. 2018, 108, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohge, T.; Perez de Souza, L.; Fernie, A.R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot. 2017, 68, 4013–4028. [Google Scholar] [CrossRef]
- Harborne, J.B. The Flavonoids: Advances in Research Since 1980; Chapman & Hall: London, UK, 1988. [Google Scholar]
- Suprun, A.R.; Ogneva, Z.V.; Dubrovina, A.S.; Kiselev, K.V. Effect of spruce PjSTS1a, PjSTS2, or PjSTS3 gene overexpression on stilbene biosynthesis in callus cultures of Vitis amurensis Rupr. Biotechnol. Appl. Biochem. 2019, 67, 234–239. [Google Scholar] [CrossRef]
- Austin, M.B.; Noel, J.P. The Chalcone Synthase Superfamily of Type III Polyketide Synthases. ChemInform 2003, 34. [Google Scholar]
- Lambert, C.; Richard, T.; Renouf, E.; Bisson, J.; Waffo-Téguo, P.; Bordenave, L.; Ollat, N.; Mérillon, J.-M.; Cluzet, S. Comparative Analyses of Stilbenoids in Canes of Major Vitis vinifera L. Cultivars. J. Agric. Food Chem. 2013, 61, 11392–11399. [Google Scholar] [CrossRef]
- Underwood, C.D.T.; Pearce, R.B. Astringin and isorhapontin distribution in Sitka spruce trees. Phytochemistry 1991, 30, 2183–2189. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Grigorchuka, V.P.; Ognevaab, Z.V.; Suprunab, A.R.; Dubrovinaa, A.S. The effect of ultraviolet-C and precursor feeding on stilbene biosynthesis in spruce Picea jezoensis. J. Plant Physiol. 2019, 234–235, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-S.; Lin, M.; Liu, X.; Wang, Y.-H. Stilbene derivatives from Gnetum cleistostachyum. J. Asian Nat. Prod. Res. 2003, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Tewtrakul, S.; Morikawa, T.; Yoshikawa, M. Anti-allergic activity of stilbenes from Korean rhubarb (Rheum undulatum L.): Structure requirements for inhibition of antigen-induced degranulation and their effects on the release of TNF-α and IL-4 in RBL-2H3 cells. Bioorg. Med. Chem. 2004, 12, 4871–4876. [Google Scholar] [CrossRef] [PubMed]
- Luteyn, J.L.; Harborne, J.B.; Williams, C.A. A Survey of the flavonoids and simple phenols in leaves of Cavendishia (Ericaceae). Brittonia 1980, 32, 1–16. [Google Scholar] [CrossRef]
- Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev. 2003, 2, 371–390. [Google Scholar] [CrossRef]
- Zanella, I.; Biasiotto, G.; Holm, F.; Lorenzo, D. di Cereal lignans, natural compounds of interest for human health? Nat. Prod. Commun. 2017, 12, 139–146. [Google Scholar]
- Moazzami, A.A.; Haese, S.L.; Kamal-Eldin, A. Lignan contents in sesame seeds and products. Eur. J. Lipid Sci. Technol. 2007, 109, 1022–1027. [Google Scholar] [CrossRef]
- Kuwatsuka, S.; Shindo, H. Behavior of phenolic substances in the decaying process of plants: I. Identification and Quantitative Determination of Phenolic Acids in Rice Straw and Its Decayed Product by Gas Chromatography. Soil Sci. Plant Nutr. 1973, 19, 219–227. [Google Scholar] [CrossRef]
- Maga, J.A.; Lorenz, K. Gas-liquid chromatography separation of the free phenolic acid fractions in various oilseed protein sources. J. Sci. Food Agric. 1974, 25, 797–802. [Google Scholar] [CrossRef]
- Rani, P.U.; Pratyusha, S. Defensive role of Gossypium hirsutum L. anti-oxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. J. Asia-Pac. Entomol. 2013, 16, 131–136. [Google Scholar] [CrossRef]
- Mikolajczak, K.L.; Smith, C.R. Phenolic and sugar components of Armavireo variety sunflower (Helianthus annuus) seed meal. J. Agric. Food Chem. 1970, 18, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A.; Kasum, C.M. Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annu. Rev. 2002, 22, 19–34. [Google Scholar]
- Basli, A.; Soulet, S.; Chaher, N.; Mérillon, J.-M.; Chibane, M.; Monti, J.-P.; Richard, T. Wine Polyphenols: Potential Agents in Neuroprotection. Oxidative Med. Cell. Longev. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Cai, H. The rice bran constituent tricin potently inhibits cyclooxygenase enzymes and interferes with intestinal carcinogenesis in ApcMin mice. Mol. Cancer Ther. 2005, 4, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J.Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.-Y. Theaflavins in Black Tea and Catechins in Green Tea Are Equally Effective Antioxidants. J. Nutr. 2001, 131, 2248–2251. [Google Scholar] [CrossRef]
- Mazur, W.M.; Wähälä, K.; Rasku, S.; Salakka, A.; Hase, T.; Adlercreutz, H. Lignan and isoflavonoid concentrations in tea and coffee. Br. J. Nutr. 1998, 79, 37–45. [Google Scholar] [CrossRef]
- Voelckel, C.; Weisser, W.W.; Baldwin, I.T. An analysis of plant-aphid interactions by different microarray hybridization strategies. Mol. Ecol. 2004, 13, 3187–3195. [Google Scholar] [CrossRef]
- Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; Loon, J.J.V.; Poelman, E.H.; Dicke, M. Plant Interactions with Multiple Insect Herbivores: From Community to Genes. Annu. Rev. Plant Biol. 2014, 65, 689–713. [Google Scholar] [CrossRef]
- Freeman, B.C.; Beattie, G.A. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008, 94, 1–12. [Google Scholar]
- Kaur, J.; Kariyat, R. Role of trichomes in plant-stress biology. In Evolutionary Ecology of Plant-Herbivore Interactions; Valverde, P., Nunez-Farfan, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Kaur, I.; Kariyat, R. Eating barbed wire: Direct and indirect defensive roles of non-glandular trichomes. Plant Cell Environ. 2020, 43, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Kariyat, R.R.; Chappa, C.; Tayal, M.; Sahoo, N. Tobacco Hornworm (Manduca sexta) Oral Secretion Elicits Reactive Oxygen Species in Isolated Tomato Protoplasts. Int. J. Mol. Sci. 2020, 21, 8297. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Agpawa, E.; Sarath, G.; Sattler, S.E.; Louis, J. Interplay of phytohormones facilitate sorghum tolerance to aphids. Plant Mol. Biol. 2020. [Google Scholar] [CrossRef]
- Spiteller, D. Plant Defense Strategies. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 2798–2811. [Google Scholar]
- Yeats, T.H. Setting and Diffusing the Cyanide Bomb in Plant Defense. Plant Physiol. 2018, 178, 956–957. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Veyrat, N.; Gordon-Weeks, R.; Zhang, Y.; Martin, J.; Smart, L.; Glauser, G.; Erb, M.; Flors, V.; Frey, M.; et al. Benzoxazinoid Metabolites Regulate Innate Immunity against Aphids and Fungi in Maize. Plant Physiol. 2011, 157, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Wouters, F.C.; Blanchette, B.; Gershenzon, J.; Vassão, D.G. Plant defense and herbivore counter-defense: Benzoxazinoids and insect herbivores. Phytochem. Rev. 2016, 15, 1127–1151. [Google Scholar] [CrossRef] [Green Version]
- Aljbory, Z.; Chen, M.-S. Indirect plant defense against insect herbivores: A review. Insect Sci. 2017, 25, 2–23. [Google Scholar] [CrossRef]
- Walling, L.L. The Myriad Plant Responses to Herbivores. J. Plant Growth Regul. 2000, 19, 195–221. [Google Scholar] [CrossRef]
- Tian, D.; Peiffer, M.; Moraes, C.M.D.; Felton, G.W. Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Planta 2013, 239, 577–589. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Plantresponses Toinsectherbivory: The Emerging Molecular Analysis. Annu. Rev. Plant Biol. 2002, 53, 299–328. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, A.D.; Muñoz-Amatriaín, M.; Chaparro, A.F.; Aguilar-Venegas, J.M.; Lo, S.; Okuda, S.; Glauser, G.; Dongiovanni, J.; Shi, D.; Hall, M. A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proc. Natl. Acad. Sci. USA 2020, 117, 31510–31518. [Google Scholar] [CrossRef] [PubMed]
- Farmer, E.E.; Ryan, C.A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell 1992, 4, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Kariyat, R.R.; Mauck, K.E.; Moraes, C.M.D.; Stephenson, A.G.; Mescher, M.C. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L.). Ecol. Lett. 2012, 15, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Louis, J.; Singh, V.; Shah, J. Arabidopsis thaliana—Aphid Interaction. Arab. Book 2012, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Reymond, P.; Bodenhausen, N.; Poecke, R.M.V.; Krishnamurthy, V.; Dicke, M.; Farmer, E.E. A Conserved Transcript Pattern in Response to a Specialist and a Generalist Herbivore. Plant Cell 2004, 16, 3132–3147. [Google Scholar] [CrossRef] [Green Version]
- Thaler, J.S.; Stout, M.J.; Karban, R.; Duffey, S.S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 1996, 22, 1767–1781. [Google Scholar] [CrossRef]
- Macdonald, M.J.; D’Cunha, G.B. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 2007, 85, 273–282. [Google Scholar] [CrossRef]
- Koornneef, A.; Pieterse, C.M. Cross Talk in Defense Signaling: Figure 1. Plant Physiol. 2008, 146, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Spoel, S.H.; Johnson, J.S.; Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 2007, 104, 18842–18847. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.-J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int. J. Mol. Sci. 2019, 20, 671. [Google Scholar] [CrossRef] [Green Version]
- Preston, C.A.; Lewandowski, C.; Enyedi, A.J.; Baldwin, I.T. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 1999, 209, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Reymond, P.; Farmer, E.E. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1998, 1, 404–411. [Google Scholar] [CrossRef]
- Ono, E.; Hatayama, M.; Isono, Y.; Sato, T.; Watanabe, R.; Yonekura-Sakakibara, K.; Fukuchi-Mizutani, M.; Tanaka, Y.; Kusumi, T.; Nishino, T.; et al. Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J. 2006, 45, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.A. The systemin signaling pathway: Differential activation of plant defensive genes. Biochim. Et Biophys. Acta Protein Struct. Mol. Enzymol. 2000, 1477, 112–121. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Trumble, J.T. Antibiosis to Beet Armyworm (Spodoptera exigua) in Lycopersicon Accessions. HortScience 1993, 28, 932–934. [Google Scholar] [CrossRef] [Green Version]
- Seram, D. Polyphenol Oxidase in Plants Vis-À-Vis Insect And Pathogen Attack. Think India J. 2019, 22, 306–317. [Google Scholar]
- Thipyapong, P.; Stout, M.; Attajarusit, J. Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology. Molecules 2007, 12, 1569–1595. [Google Scholar] [CrossRef]
- Mahanil, S.; Attajarusit, J.; Stout, M.J.; Thipyapong, P. Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Sci. 2008, 174, 456–466. [Google Scholar] [CrossRef]
- Meriño-Cabrera, Y.; Zanuncio, J.C.; da Silva, R.S.; Solis-Vargas, M.; Cordeiro, G.; Rainha, F.R.; Campos, W.G.; Picanço, M.C.; de Almeida Oliveira, M.G. Biochemical response between insects and plants: An investigation of enzyme activity in the digestive system of Leucoptera coffeella (Lepidoptera: Lyonetiidae) and leaves of Coffea arabica (Rubiaceae) after herbivory. Ann. Appl. Biol. 2018, 172, 236–243. [Google Scholar] [CrossRef]
- Bi, J.L.; Felton, G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995, 21, 1511–1530. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.; Khan, F.; Badruddin, S. Role of Phenolics in Plant Defense against Insect Herbivory. In Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives; Khemani, L., Srivastava, M., Srivastava, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 309–313. [Google Scholar]
- Oberdörstera, E.; Clay, M.A.; Cottamb, D.M.; Wilmotb, F.A.; McLachlanac, J.A.; Milnerb, M.J. Common phytochemicals are ecdysteroid agonists and antagonists: A possible evolutionary link between vertebrate and invertebrate steroid hormones. J. Steroid Biochem. Mol. Biol. 2001, 77, 229–238. [Google Scholar] [CrossRef]
- Maazoun, A.M.; Hlel, T.B.; Hamdi, S.H.; Belhadj, F.; Jemâa, J.M.B.; Marzouki, M.N. Screening for insecticidal potential and acetylcholinesterase activity inhibition of Urginea maritima bulbs extract for the control of Sitophilus oryzae (L.). J. Asia-Pac. Entomol. 2017, 20, 752–760. [Google Scholar] [CrossRef]
- Felton, G.W.; Duffey, S.S. Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses. J. Chem. Ecol. 1991, 17, 1715–1732. [Google Scholar] [CrossRef] [PubMed]
- Duffey, S.S.; Felton, G.W. Plant Enzymes in Resistance to Insects. ACS Symp. Ser. 1989, 389, 289–313. [Google Scholar]
- Wang, Z.; Zhao, Z.; Abou-Zaid, M.M.; Arnason, J.T.; Liu, R.; Walshe-Roussel, B.; Waye, A.; Liu, S.; Saleem, A.; Cáceres, L.; et al. Inhibition of Insect Glutathione S-Transferase (Gst) By Conifer Extracts. Arch. Insect Biochem. Physiol. 2014, 87, 234–249. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Cheng, X.; Liu, S.; Wei, Q.; Scott, I.M. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pestic. Biochem. Physiol. 2016, 127, 1–7. [Google Scholar] [CrossRef]
- Hoffmann-Campo, C.; Harborne, J.; Mccaffery, A. Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Et Appl. 2001, 98, 181–194. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Simmonds, M.S.J. Flavonoid–insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef]
- Dinan, L.; Savchenko, T.; Whiting, P.; Sarker, S.D. Plant natural products as insect steroid receptor agonists and antagonists. Pestic. Sci. 1999, 55, 331–335. [Google Scholar] [CrossRef]
- Sarker, S.D.; Whiting, P.; Dinan, L.; Šik, V.; Rees, H.H. Identification and ecdysteroid antagonist activity of three resveratrol trimers (suffruticosols A, B and C) from Paeonia suffruticosa. Tetrahedron 1999, 55, 513–524. [Google Scholar] [CrossRef]
- Lv, X.-Q.; Feng, G.; Liu, Y.-Q.; Nan, X.; Yang, L. CA-4, a natural cis-stilbene compound with potential insecticidal activity. Med. Chem. Res. 2014, 23, 3347–3352. [Google Scholar] [CrossRef]
- Frost, C.J.; Mescher, M.C.; Carlson, J.E.; Moraes, C.M.D. Plant Defense Priming against Herbivores: Getting Ready for a Different Battle: Figure 1. Plant Physiol. 2008, 146, 818–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kariyat, R.R.; Mena-Alí, J.; Forry, B.; Mescher, M.C.; Moraes, C.M.; Stephenson, A.G. Inbreeding, herbivory, and the transcriptome of Solanum carolinense. Entomol. Exp. Et Appl. 2012, 144, 134–144. [Google Scholar] [CrossRef]
- Lagrimini, L.M.; Vaughn, J.; Erb, W.A.; Miller, S.A. Peroxidase Overproduction in Tomato: Wound-induced Polyphenol Deposition and Disease Resistance. Hort. Sci. 1993, 28, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.C.; Hunter, M.D.; Appel, H.M. Antimicrobial Activity of Polyphenols Mediates Plant-Herbivore Interactions. Plant Polyphen. 1992, 621–637. [Google Scholar]
- Green, T.R.; Ryan, C.A. Wound-Induced Proteinase Inhibitor in Plant Leaves: A Possible Defense Mechanism against Insects. Science 1972, 175, 776–777. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, D.L.; Jones, K.C. Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: Aphid feeding deterrents in wheat. Phytochemistry 1981, 20, 2489–2493. [Google Scholar] [CrossRef]
- Kariyat, R.R.; Scanlon, S.R.; Moraski, R.P.; Stephenson, A.G.; Mescher, M.C.; Moraes, C.M.D. Plant inbreeding and prior herbivory influence the attraction of caterpillars (Manduca sexta) to odors of the host plant Solanum carolinense (Solanaceae). Am. J. Bot. 2014, 101, 376–380. [Google Scholar] [CrossRef]
- Xing, G.; Liu, K.; Gai, J. A high-throughput phenotyping procedure for evaluation of antixenosis against common cutworm at early seedling stage in soybean. Plant Methods 2017, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shoorooei, M.; Lotfi, M.; Nabipour, A.; Mansouri, A.I.; Kheradmand, K.; Zalom, F.G.; Madadkhah, E.; Parsafar, A. Antixenosis and antibiosis of some melon (Cucumis melo) genotypes to the two-spotted spider mite (Tetranychus urticae) and a possible mechanism for resistance. J. Hortic. Sci. Biotechnol. 2013, 88, 73–78. [Google Scholar] [CrossRef]
- Kundu, A.; Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. 2019, 21, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Walenciak, O.; Zwisler, W.; Gross, E.M. Influence of Myriophyllum spicatum-Derived Tannins on Gut Microbiota of Its Herbivore Acentria ephemerella. J. Chem. Ecol. 2002, 28, 2045–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wink, M. Compartmentation of Secondary Metabolites and Xenobiotics in Plant Vacuoles. Adv. Bot. Res. 1997, 25, 141–169. [Google Scholar] [CrossRef]
- Beckman, C.H. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant Pathol. 2000, 57, 101–110. [Google Scholar] [CrossRef]
- Brillouet, J.-M.; Verdeil, J.-L.; Odoux, E.; Lartaud, M.; Grisoni, M.; Conéjéro, G. Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast. J. Exp. Bot. 2014, 65, 2427–2435. [Google Scholar] [CrossRef] [Green Version]
- Gachon, C.M.; Langlois-Meurinne, M.; Saindrenan, P. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 2005, 10, 542–549. [Google Scholar] [CrossRef]
- Neilson, E.H.; Goodger, J.Q.; Woodrow, I.E.; Møller, B.L. Plant chemical defense: At what cost? Trends Plant Sci. 2013, 18, 250–258. [Google Scholar] [CrossRef]
- Simms, E.L.; Rausher, M.D. Costs and Benefits of Plant Resistance to Herbivory. Am. Nat. 1987, 130, 570–581. [Google Scholar] [CrossRef]
- Zangerl, A.R.; Hamilton, J.G.; Miller, T.J.; Crofts, A.R.; Oxborough, K.; Berenbaum, M.R.; Lucia, E.H.D. Impact of folivory on photosynthesis is greater than the sum of its holes. Proc. Natl. Acad. Sci. USA 2002, 99, 1088–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagers, C.L.; Coley, P.D. Benefits and Costs of Defense in a Neotropical Shrub. Ecology 1995, 76, 1835–1843. [Google Scholar] [CrossRef]
- Zhou, S.; Lou, Y.; Tzin, V.; Jander, G. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, O.P.; Karkute, S.G.; Banerjee, S.; Meena, N.L.; Dahuja, A. Contemporary Understanding of miRNA-Based Regulation of Secondary Metabolites Biosynthesis in Plants. Front. Plant Sci. 2017, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Hazra, S.; Chattopadhyay, S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene 2016, 6, 82–89. [Google Scholar] [CrossRef] [Green Version]
a. Polyphenols Mediated Defense Interactions with Insect Herbivores | ||||
---|---|---|---|---|
Compound | Plant | Insect Herbivore | Mode of Action | Reference |
Anthocyanin and tannins (flavonoids) | Purple corn (Z. mays) | Fall armyworm (Spodoptera frugiperda) | Feeding deterrent | [9] |
Genistein and rutin (flavonoids) | Soybean (Glycine max) | Stink bug (Piezodorus guildinni) | Antibiosis | [38] |
Anthocyanin and tannins (flavonoids) | Purple corn (Z. mays) | Tobacco hornworm (M. sexta) | Ovipositional and feeding deterrent | [8,22] |
Chlorogenic acid (phenolic acids) | Chrysanthemum (Dendranthema grandiflora) | Thrips | Pro-oxidant effect | [34] |
p-Coumaric acid (phenolic acids) | Yellow maize (Zea mays) | Pink stalk borer (Sesamia nanogriodes) | Antibiosis | [39] |
Chlorogenic acid (phenolic acids) | Yellow maize (Z. mays) | European corn borer (Ostrinia nubilalis) | Anti-feedant | [40] |
Chlorogenic acid (phenolic acids) | Honeysuckle (Lonicera maackii) | Beet armyworm (Spodoptera exigua) | Feeding deterrent | [41] |
Phenolic acids | European filbert (Corylus L). | Hazel aphid (Myzocallis coryl)i | Anti-feedant | [42] |
Isoflavonoids (flavonoids) | Lupinus (Lupin spp.) | Grass grub (Costelytra zealandica) and African black beetle (Heteronychus arator) | Feeding deterrent | [43] |
Piceid, isorhapontin, astringin. | Sakhalin spruce (Picea glehnii) | Japanese termite (Reticulitermes speratus) | Feeding deterrent | [44] |
Syringic, coumaric, vanillic acid (phenolic acids) | Castor bean (Ricinus communis L.) | Castor semi-looper (Achaea janata L.) | Anti-feedant | [45] |
Secoisolariciresinol, secoisolariciresinol diglucoside and (lignans) | Linseed (Linum usitatissimum) | Green peach aphid (Myzus persicae) | Toxic causing mortality | [46] |
3-Deoxyanthocyanidin (flavonoid) | Sorgum (Sorghum bicolor) | Corn leaf aphid (Rhopalosiphum maidis) | Toxic causing mortality | [23] |
Pisatin (flavonoid) | Pea (Pisum sativum) | Peaaphid (Acyrthosiphon pisum) | Feeding-deterrent | [35] |
Quercetin dehydrate and rutin hydrate (flavonoid) | Apple (Malus domestica) | Wooly apple aphid (Eriosoma lanigerum) | Aphicidal | [47] |
Vitisin B (stilbene) | Grape vine (Vitis vinifera) | African cotton leafworm (Spodoptera littoralis) | Chronic toxicity, anti-feedant. | [48] |
Vanillic acid, syringic acid, cinnamic acid, and p-coumaric acids (phenolic acid) | Rice (Oryza sativa) | Yellow stem borer (Scirpophaga incertulas), leaf roller (Cnaphalocrosis medinalis), and brown plant hopper (Nilaparvata lugens) | Toxin | [18] |
Ferulic acid | Rice (O. sativa) | Resistance against brown planthopper (Nilaparvata lugens) | [36] | |
Burchellin, podophyllotoxin, pinoresinol, sesamin, licarin A, or nordihydroguaiaretic acid (lignans) | Sesame (Sesamum indicum), Aniba burchelli, chinaberry (Melia azedarach), Chaparral (Larrea divaricate) and Mayapple (Podophyllum peltatum) | Triatomid bug (Rhodnius prolixus) | Anti-molting | [49] |
Pinoresinol + podophyllotoxin derivatives (lignans) | Chinaberry (M. azedarach) | Milkweed bug (Oncopeltus fasciatus) | Anti-molting | [50] |
Combretastatin A-4, 4,4′-dihydroxystilbene, resveratrol and 3,3′,5,5′-tetrahydroxy-4-methoxystilbene | Zote (Yucca persicola) | Fall armyworm (S. frugiperda) | Toxin | [51] |
Caffeic acid and chlorogenic acid | Cotton (Gossypium hirsutum) | Corn earworm (Helicoverpa zea) | Arrest the larval growth and development | [52] |
Vitisin A and vitisin B (stilbene) | Grapes (Vitis vinifera) | Colorado potato beetle (Leptinotarsa decemlineata) | Inhibit larval growth, chronic toxicity and anti-feedant | [53] |
b. Polyphenols Mediated Interactions with Insect Herbivores that Enhance Herbivore Traits | ||||
Phenolic glucosides and tannins | Almond willow (Salix triandra L.) | Shrank leaf beetle (Gonioctena linnaeana) | Feeding stimulant | [54] |
Phenolic glucoside (tremulacin 1.5%) | Willow (Salix rosmarinifolia) | Shoot gallow sawfly (Euura lasiolepis) | Oviposition stimulant | [55] |
Isoquercitrin, quercetin and quercetin-3-methyl ether | Chickpea (Cajanus cajan) | Cotton bollworm (Helicoverpa armigera) | Feeding stimulant | [56] |
Flavonoids | Milkweed (Ascelpias curassavica L.) | Monarch butterfly (Danaus plexippus) | Oviposition stimulant | [57] |
Flavonoid glycoside, rutin (pentahydroxyflavone-3-rutinoside | Lettuce (Lactuca sativa) | American grasshopper (Schistocerca americana) | Feeding stimulant | [58] |
Quercitrin, iso- quercitrin and rutin (flavonoid) | Cotton (G. hirsutum) | Corn earworm (Heliothis zea) | Feeding stimulant | [59] |
Flavanol glycosides and quercetin | Narrow leaf wedge (Vicia angustfolia L.) | Bean aphid (Megoura crassicauda) | Stimulate probing | [60] |
Flavonoids (aglycones, quercetin and myricetin | Crown vetch (Coronilla varia) and Alfalfa (Medicago sativa) | Blue butterfly (Polyommatus icarus) | Sequestration in wings (mate recognition) | [61] |
Flavonoids | Mulberry (Morus alba) | Silk moth (Bombyx mori) | Sequestration in pupae | [62] |
Flavone C-glycosides | Crown vetch (Coronilla varia) | Larvae of lycaenid butterfly (Polyommatus bellargus) | Sequestration in wings | [63] |
Flavone glycoside, luteolin glycoside | Carrot (Daucas carota) | Black swallowtail butterfly (Papilio polyxenes) | Oviposition stimulant | [64] |
Quercetin and rutin | Milkweeds (Asclepias curassavica) | Female monarch butterfly (Danaus plexippus) | Oviposition stimulant | [65] |
Flavonoid glycosides | St John’s Wort (Hypericum Spp.) | Saw fly (Tenthredo zonula) | Sequester compounds in larval body. | [66] |
Flavonoids | Kale (Brassica oleracea var. acephala) | Cabbage butterfly (Pieris brassica) | Sequestration | [67] |
trans-Chlorogenic acid | Wild parsnip, (Pastinaca sativa), | Black swallowtail butterfly(P. polyxenes) | Oviposition stimulant | [68] |
Plant | Plant Part | Types of Compounds | Reference |
---|---|---|---|
Rice (Oryza sativa) | Rice straw | Phenolic acids (p-hydroxybenzoic, vanillic, coumaric, syringic, ferulic acid) | [89] |
Soybean (Glycine max) | Seed | Phenolic acids (syringic, ferulic and vanillic acids) | [90] |
Cotton (Gossypium hirsutum) L. | Leaves | Phenolic acid (gallic acid, catechin and caffeic acid) | [91] |
Sunflower (Helianthus annus) | Seed | Phenolic acid (chlorogenic acid) | [92] |
Citrus fruits, apple, berries, peaches, fruits, nuts, berries, tea, red wine | Fruit | Flavonoids (flavanols) | [93,94] |
Red rose (Rosa indica), China rose (Hibiscus rosachinensis), | Flowers | Flavonoids (anthocyanins) | [95] |
Rice bran | Flowers | Flavonoids (flavone) | [96] |
Soybean, alfalfa, red clover, chickpeas, peanut | Seeds and vegetables | Flavonoids (isoflavones) | [97] |
Tea leaves (black tea and oolong tea) | Leaves | Flavonoids (catechins) | [98] |
Sesame (Sesamum indicum) | Seed | Lignan (furofuran lignan) | [88] |
Tea (Thea sp.) | Leaves | Lignans (matairesinol and secoisolariciresinol) | [99] |
Conifers | Roots, bark and needles | Stilbene (trans-astringin and trans-isorhapontin) | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Kaur, I.; Kariyat, R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int. J. Mol. Sci. 2021, 22, 1442. https://doi.org/10.3390/ijms22031442
Singh S, Kaur I, Kariyat R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. International Journal of Molecular Sciences. 2021; 22(3):1442. https://doi.org/10.3390/ijms22031442
Chicago/Turabian StyleSingh, Sukhman, Ishveen Kaur, and Rupesh Kariyat. 2021. "The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions" International Journal of Molecular Sciences 22, no. 3: 1442. https://doi.org/10.3390/ijms22031442
APA StyleSingh, S., Kaur, I., & Kariyat, R. (2021). The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. International Journal of Molecular Sciences, 22(3), 1442. https://doi.org/10.3390/ijms22031442