IL-6 Reduces Mitochondrial Replication, and IL-6 Receptors Reduce Chronic Inflammation in NAFLD and Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biochemical Parameters
3.2. Inflammatory Mediators
Pro-Inflammatory Mediators
3.3. Investigation of the Inflammation Processes in Liver Biopsies
3.4. Studies of Liver Biopsies
3.5. Mitochondrial Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 17 December 2020).
- Statistics about Diabetes|ADA. Available online: https://www.diabetes.org/resources/statistics/statistics-about-diabetes (accessed on 17 September 2020).
- Sarbijani, H.M.; Khoshnia, M.; Marjani, A. The association between Metabolic Syndrome and serum levels of lipid peroxidation and interleukin-6 in Gorgan. Diabetes Metab. Syndr. 2016, 10, S86–S89. [Google Scholar] [CrossRef] [PubMed]
- Bastard, J.P.; Jardel, C.; Bruckert, E.; Blondy, P.; Capeau, J.; Laville, M.; Vidal, H.; Hainque, B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab. 2000, 85, 3338–3342. [Google Scholar] [CrossRef]
- Qu, D.; Liu, J.; Lau, C.W.; Huang, Y. IL-6 in diabetes and cardiovascular complications. Br. J. Pharmacol. 2014, 171, 3595–3603. [Google Scholar] [CrossRef] [Green Version]
- Rose-John, S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028415. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, J.-S.; Roh, Y.S. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch. Pharm. Res. 2019, 42, 935–946. [Google Scholar] [CrossRef]
- Thoudam, T.; Jeon, J.-H.; Ha, C.-M.; Lee, I.-K. Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases. Mediat. Inflamm. 2016, 2016, 1–18. [Google Scholar] [CrossRef]
- Xie, D.; Wu, X.; Lan, L.; Shangguan, F.; Lin, X.; Chen, F.; Xu, S.; Zhang, Y.; Chen, Z.; Huang, K.; et al. Downregulation of TFAM inhibits the tumorigenesis of non-small cell lung cancer by activating ROS-mediated JNK/p38MAPK signaling and reducing cellular bioenergetics. Oncotarget 2016, 7, 11609–11624. [Google Scholar] [CrossRef] [Green Version]
- Nassir, F.; Ibdah, J.A. Role of Mitochondria in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 8713–8742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pich, S.; Bach, D.; Briones, P.; Liesa, M.; Camps, M.; Testar, X.; Palacín, M.; Zorzano, A. The Charcot–Marie–Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet. 2005, 14, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Widjaja, A.A.; Singh, B.K.; Adami, E.; Viswanathan, S.; Dong, J.; D’Agostino, G.A.; Ng, B.; Lim, W.W.; Tan, J.; Paleja, B.S.; et al. Inhibiting Interleukin 11 Signaling Reduces Hepatocyte Death and Liver Fibrosis, Inflammation, and Steatosis in Mouse Models of Nonalcoholic Steatohepatitis. Gastroenterology 2019, 157, 777–792.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Kim, O.-K.; Jun, W.; Lee, J. Mechanism of ER Stress and Inflammation for Hepatic Insulin Resistance in Obesity. Ann. Nutr. Metab. 2015, 67, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Investig. 2000, 106, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Finelli, C. What about non-alcoholic fatty liver disease as a new criterion to define metabolic syndrome? World J. Gastroenterol. WJG 2013, 19, 3375–3384. [Google Scholar] [CrossRef] [PubMed]
- Oruc, N.; Ozutemiz, O.; Yuce, G.; Akarca, U.S.; Ersoz, G.; Gunsar, F.; Batur, Y. Serum procalcitonin and CRP levels in non-alcoholic fatty liver disease: A case control study. BMC Gastroenterol. 2009, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Tiniakos, D.G.; Vos, M.B.; Brunt, E.M. Nonalcoholic fatty liver disease: Pathology and pathogenesis. Annu. Rev. Pathol. 2010, 5, 145–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csak, T.; Ganz, M.; Pespisa, J.; Kodys, K.; Dolganiuc, A.; Szabo, G. Fatty Acid and Endotoxin Activate Inflammasomes in Mouse Hepatocytes that Release Danger Signals to Stimulate Immune Cells. Hepatology 2011, 54, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.J.; Brunt, E.M.; Kleiner, D.E.; Kowdley, K.V.; Chalasani, N.; Lavine, J.E.; Ratziu, V.; McCullough, A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 2011, 54, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Covarrubias, A.; Horng, T. IL-6 strikes a balance in metabolic inflammation. Cell Metab. 2014, 19, 898–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeh, H.; Rudolph, N.; Billing, U.; Christen, H.; Streif, S.; Bullinger, E.; Schliemann-Bullinger, M.; Findeisen, R.; Schaper, F.; Huber, H.J.; et al. Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: Fusing experimental insights and dynamic modelling. Cell Commun. Signal. 2019, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Pan, X.; Zhao, K.; Gao, W.; Liu, J.; Deng, T.; Qin, W. The Effect of Interleukin-6 (IL-6), Interleukin-11 (IL-11), Signal Transducer and Activator of Transcription 3 (STAT3), and AKT Signaling on Adipocyte Proliferation in a Rat Model of Polycystic Ovary Syndrome. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 7218–7227. [Google Scholar] [CrossRef] [PubMed]
- Didion, S.P. Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature. Int. J. Mol. Sci. 2017, 18, 2563. [Google Scholar] [CrossRef] [Green Version]
- Schafer, S.; Viswanathan, S.; Widjaja, A.A.; Lim, W.-W.; Moreno-Moral, A.; DeLaughter, D.M.; Ng, B.; Patone, G.; Chow, K.; Khin, E.; et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 2017, 552, 110–115. [Google Scholar] [CrossRef]
- Ng, B.; Dong, J.; D’Agostino, G.; Viswanathan, S.; Widjaja, A.A.; Lim, W.-W.; Ko, N.S.J.; Tan, J.; Chothani, S.P.; Huang, B.; et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci. Transl. Med. 2019, 11, eaaw1237. [Google Scholar] [CrossRef] [PubMed]
- Widjaja, A.A.; Chothani, S.P.; Cook, S.A. Different roles of interleukin 6 and interleukin 11 in the liver: Implications for therapy. Hum. Vaccines Immunother. 2020, 16, 2357–2362. [Google Scholar] [CrossRef]
- Metcalfe, R.D.; Putoczki, T.L.; Griffin, M.D.W. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front. Immunol. 2020, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Pohjoismäki, J.L.O.; Wanrooij, S.; Hyvärinen, A.K.; Goffart, S.; Holt, I.J.; Spelbrink, J.N.; Jacobs, H.T. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res. 2006, 34, 5815–5828. [Google Scholar] [CrossRef] [PubMed]
- Makino, A.; Scott, B.T.; Dillmann, W.H. Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 2010, 53, 1783–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hattab, A.W.; Craigen, W.J.; Scaglia, F. Mitochondrial DNA maintenance defects. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1539–1555. [Google Scholar] [CrossRef]
- Sivitz, W.I.; Yorek, M.A. Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal. 2010, 12, 537–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups | Control Group | Obese Patients without T2DM | Obese Patients with T2DM |
---|---|---|---|
1 | 2 | 3 | |
Cholesterol (<5.2) mmol/L | 4.23 ± 0.99 | 4.83 ± 1.26 p1-2 < 0.05 * | 5.20 ± 1.02 p1-3 < 0.05 * p2-3 < 0.05 * |
Triglycerides (<2.53) mmol/L | 1.44 ± 0.81 | 1.59 ± 0.81 p1-2 < 0.05 * | 2.00 ± 0.87 p1-3 < 0.05 * p2-3 < 0.05 * |
HDL (0.78–1.81) mmol/L | 1.38 ± 0.86 | 1.18 ± 0.32 | 1.16 ± 0.53 |
LDL (0.00–3.4) mmol/L | 2.18 ± 0.80 | 2.87 ± 0.88 p1-2 < 0.05 * | 2.98 ± 0.75 p1-3 < 0.05 * |
Groups | Control Group | Obese Patients without T2DM | Obese Patients with T2DM |
---|---|---|---|
1 | 2 | 3 | |
ALT (<41) U/L | 23.46 ± 15.98 | 19.54 ± 10.14 | 31.42 ± 16.50 |
AST (<35) U/L | 17.57 ± 4.15 | 20.87 ± 5.31 | 23.20 ± 9.09 |
Alkaline phosphatase (<258) U/L | 167.21 ± 77.21 | 178.68 ± 48.52 | 194.86 ± 52.84 p1-3 < 0.05 * |
Gamma-glutamyl transpeptidase (<49) U/L | 21.75 ± 9.24 | 24.81 ± 14.26 | 39.27 ± 15.61 p1-3 < 0.05 * p2-3 < 0.05 * |
Total bilirubin (1.7–21) mmol/L | 10.26 ± 3.84 | 13.13 ± 9.45 p1-2 < 0.05 * | 11.5 ± 4.81 |
Direct bilirubin (0.00–3.4) mmol/L | 1.61 ± 1.07 | 2.86 ± 2.01 p1-2 < 0.05 * | 2.88 ± 1.52 p1-3 < 0.05 * |
Glucose (3.9-6.4) mmol/L | 4.98 ± 1.19 | 5.28 ± 1.60 | 8.43 ± 2.75 p1-3 < 0.001 ** p2-3 < 0.001 ** |
Groups | Control Group | Obese Patients without T2DM | Obese Patients with T2DM |
---|---|---|---|
1 | 2 | 3 | |
IL-6 (pg/mL) | 1.45 (0.55–3.39) | 3.71 (2.68–4.41) p1-2 = 0.04 * | 5.91 (4.45–7.16) p1-3 < 0.01 * p2-3 < 0.01 * |
sIL-6Ra (pg/mL) | 2899.16 (2192.10–5856.15) | 10222.24 (4919.39–15021.40) p1-2 < 0.01 * | 2235.62 (1077.12–3156.69) p1-3 = 0.01 * p2-3 < 0.01 * |
gp130/sIL-6Rb (pg/mL) | 13,899.75 (10917.07–29468.43) | 38852.52 (24600.59–53741.86) p1-2 < 0.01 * | 4479.41 (2338.51–5646.27) p1-3 < 0.01 * p2-3 < 0.01 * |
IL-10 (pg/mL) | 0.64 (0.32–1.53) | 2.18 (1.11–3.44) p1-2 < 0.01 * | 0.75 (0.26–0.99) p2-3 < 0.01 * |
IL-11 (pg/mL) | 0.18 (0.12–0.48) | 0.94 (0.52–1.47) p1-2 < 0.01 * | 0.50 (0.40–0.69) p1-3 < 0.01 * p2-3 < 0.01 * |
CRP (mmol/l) | 3.96 (1.56–8.83) | 10.20 (8.25–16.10) p1-2 < 0.01 * | 8.70 (4.20–13.90) p1-3 = 0.01 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skuratovskaia, D.; Komar, A.; Vulf, M.; Quang, H.V.; Shunkin, E.; Volkova, L.; Gazatova, N.; Zatolokin, P.; Litvinova, L. IL-6 Reduces Mitochondrial Replication, and IL-6 Receptors Reduce Chronic Inflammation in NAFLD and Type 2 Diabetes. Int. J. Mol. Sci. 2021, 22, 1774. https://doi.org/10.3390/ijms22041774
Skuratovskaia D, Komar A, Vulf M, Quang HV, Shunkin E, Volkova L, Gazatova N, Zatolokin P, Litvinova L. IL-6 Reduces Mitochondrial Replication, and IL-6 Receptors Reduce Chronic Inflammation in NAFLD and Type 2 Diabetes. International Journal of Molecular Sciences. 2021; 22(4):1774. https://doi.org/10.3390/ijms22041774
Chicago/Turabian StyleSkuratovskaia, Daria, Aleksandra Komar, Maria Vulf, Hung Vu Quang, Egor Shunkin, Larisa Volkova, Natalia Gazatova, Pavel Zatolokin, and Larisa Litvinova. 2021. "IL-6 Reduces Mitochondrial Replication, and IL-6 Receptors Reduce Chronic Inflammation in NAFLD and Type 2 Diabetes" International Journal of Molecular Sciences 22, no. 4: 1774. https://doi.org/10.3390/ijms22041774
APA StyleSkuratovskaia, D., Komar, A., Vulf, M., Quang, H. V., Shunkin, E., Volkova, L., Gazatova, N., Zatolokin, P., & Litvinova, L. (2021). IL-6 Reduces Mitochondrial Replication, and IL-6 Receptors Reduce Chronic Inflammation in NAFLD and Type 2 Diabetes. International Journal of Molecular Sciences, 22(4), 1774. https://doi.org/10.3390/ijms22041774