Future Prospects of Gene Therapy for Friedreich’s Ataxia
Abstract
:1. Introduction
2. In Vivo Gene Therapy and AAV Vectors
3. Routes of Administration for Central Nervous System Delivery
4. Friedreich’s Ataxia Animal Models
5. Gene Therapy in Friedreich’s Ataxia
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations:
AAV | Adeno-Associated Virus |
Ad | Adenoviruses |
ALS | Amyotrophic Lateral Sclerosis |
BAC | Bacterial Artificial Chromosomes |
BBB | Blood–Brain Barrier |
BDNF | Brain-Derived Neurotrophic Factor |
CAG | Enhancer/Chicken β-Actin |
CMV | Cytomegalovirus |
CNS | Central Nervous System |
CSF | Cerebrospinal Fluid |
DRG | Dorsal Root Ganglion |
EF1α | Human Elongation Factor 1α |
EPO | Erythropoietin |
FA | Friedreich’s Ataxia |
FDA | U.S. Food and Drug Administration |
FXN | Frataxin |
GFAP | Glial Fibrillary Acidic Protein |
HSV | Herpes Simplex Virus |
ICM | Intra-Cisterna Magna |
ICV | Intracerebroventricular |
IT | Intrathecal |
LCA | Leber’s Congenital Amaurosis |
MCK | Muscle Creatine Kinase |
NSE | Neuron-Specific Enolase |
SMA | Spinal Muscular Atrophy |
SYN1 | Synapsin-1 |
YAC | Yeast Artificial Chromosomes |
References
- Bürk, K. Friedreich Ataxia: Current Status and Future Prospects. Cerebellum Ataxias 2017, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Koeppen, A.H.; Becker, A.B.; Qian, J.; Feustel, P.J. Friedreich Ataxia: Hypoplasia of Spinal Cord and Dorsal Root Ganglia. J. Neuropathol. Exp. Neurol. 2017, 76, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koeppen, A.H.; Ramirez, R.L.; Becker, A.B.; Feustel, P.J.; Mazurkiewicz, J.E. Friedreich Ataxia: Failure of GABA-Ergic and Glycinergic Synaptic Transmission in the Dentate Nucleus. J. Neuropathol. Exp. Neurol. 2015, 74, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Koutnikova, H.; Campuzano, V.; Foury, F.; Dollé, P.; Cazzalini, O.; Koenig, M. Studies of Human, Mouse and Yeast Homologues Indicate a Mitochondrial Function for Frataxin. Nat. Genet. 1997, 16, 345–351. [Google Scholar] [CrossRef]
- Pandey, A.; Gordon, D.M.; Pain, J.; Stemmler, T.L.; Dancis, A.; Pain, D. Frataxin Directly Stimulates Mitochondrial Cysteine Desulfurase by Exposing Substrate-Binding Sites, and a Mutant Fe-S Cluster Scaffold Protein with Frataxin-Bypassing Ability Acts Similarly. J. Biol. Chem. 2013, 288, 36773–36786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campuzano, V.; Montermini, L.; Moltò, M.D.; Pianese, L.; Cossée, M.; Cavalcanti, F.; Monros, E.; Rodius, F.; Duclos, F.; Monticelli, A.; et al. Friedreich’s Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion. Science 1996, 271, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Palomo, G.M.; Cerrato, T.; Gargini, R.; Diaz-Nido, J. Silencing of Frataxin Gene Expression Triggers P53-Dependent Apoptosis in Human Neuron-like Cells. Hum. Mol. Genet. 2011, 20, 2807–2822. [Google Scholar] [CrossRef] [PubMed]
- Cossée, M.; Puccio, H.; Gansmuller, A.; Koutnikova, H.; Dierich, A.; LeMeur, M.; Fischbeck, K.; Dollé, P.; Koenig, M. Inactivation of the Friedreich Ataxia Mouse Gene Leads to Early Embryonic Lethality without Iron Accumulation. Hum. Mol. Genet. 2000, 9, 1219–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mahdawi, S.; Pinto, R.M.; Varshney, D.; Lawrence, L.; Lowrie, M.B.; Hughes, S.; Webster, Z.; Blake, J.; Cooper, J.M.; King, R.; et al. GAA Repeat Expansion Mutation Mouse Models of Friedreich Ataxia Exhibit Oxidative Stress Leading to Progressive Neuronal and Cardiac Pathology. Genomics 2006, 88, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Anjomani Virmouni, S.; Ezzatizadeh, V.; Sandi, C.; Sandi, M.; Al-Mahdawi, S.; Chutake, Y.; Pook, M.A. A Novel GAA-Repeat-Expansion-Based Mouse Model of Friedreich’s Ataxia. Dis. Model. Mech. 2015, 8, 225–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Napierala, M.; Napierala, J.S. Therapeutic Prospects for Friedreich’s Ataxia. Trends Pharmacol. Sci. 2019, 40, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Schöls, L.; Zange, J.; Abele, M.; Schillings, M.; Skipka, G.; Kuntz-Hehner, S.; van Beekvelt, M.C.P.; Colier, W.N.J.M.; Müller, K.; Klockgether, T.; et al. L-Carnitine and Creatine in Friedreich’s Ataxia. A Randomized, Placebo-Controlled Crossover Trial. J. Neural Transm. (Vienna) 2005, 112, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.M.; Korlipara, L.V.P.; Hart, P.E.; Bradley, J.L.; Schapira, A.H.V. Coenzyme Q10 and Vitamin E Deficiency in Friedreich’s Ataxia: Predictor of Efficacy of Vitamin E and Coenzyme Q10 Therapy. Eur. J. Neurol. 2008, 15, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, C.; Nachbauer, W.; Panzeri, M.; Poewe, W.; Taroni, F.; Boesch, S. Erythropoietin in Friedreich Ataxia. J. Neurochem. 2013, 126 (Suppl. 1), 80–87. [Google Scholar] [CrossRef]
- Seyer, L.; Greeley, N.; Foerster, D.; Strawser, C.; Gelbard, S.; Dong, Y.; Schadt, K.; Cotticelli, M.G.; Brocht, A.; Farmer, J.; et al. Open-Label Pilot Study of Interferon Gamma-1b in Friedreich Ataxia. Acta Neurol. Scand. 2015, 132, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Soragni, E.; Jenssen, K.; Burnett, R.; Herman, D.; Coppola, G.; Geschwind, D.H.; Gottesfeld, J.M.; Pandolfo, M. HDAC Inhibitors Correct Frataxin Deficiency in a Friedreich Ataxia Mouse Model. PloS One 2008, 3, e1958. [Google Scholar] [CrossRef] [PubMed]
- Lim, F.; Palomo, G.M.; Mauritz, C.; Giménez-Cassina, A.; Illana, B.; Wandosell, F.; Díaz-Nido, J. Functional Recovery in a Friedreich’s Ataxia Mouse Model by Frataxin Gene Transfer Using an HSV-1 Amplicon Vector. Mol. Ther. 2007, 15, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Katsu-Jiménez, Y.; Loría, F.; Corona, J.C.; Díaz-Nido, J. Gene Transfer of Brain-Derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency. Mol. Ther. 2016, 24, 877–889. [Google Scholar] [CrossRef]
- Hudry, E.; Vandenberghe, L.H. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron 2019, 101, 839–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, C.; Xiao, X.; Filali, M.; Coulombe, Z.; Arsenault, M.; Couet, J.; Li, J.; Drolet, M.-C.; Chapdelaine, P.; Chikh, A.; et al. An AAV9 Coding for Frataxin Clearly Improved the Symptoms and Prolonged the Life of Friedreich Ataxia Mouse Models. Mol. Ther. Methods Clin. Dev. 2014, 1, 14044. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.L.; Leek, A.N.; Richman, E.H.; Tjalkens, R.B. Cellular Selectivity of AAV Serotypes for Gene Delivery in Neurons and Astrocytes by Neonatal Intracerebroventricular Injection. PLoS ONE 2017, 12, e0188830. [Google Scholar] [CrossRef] [Green Version]
- Tanguy, Y.; Biferi, M.G.; Besse, A.; Astord, S.; Cohen-Tannoudji, M.; Marais, T.; Barkats, M. Systemic AAVrh10 Provides Higher Transgene Expression than AAV9 in the Brain and the Spinal Cord of Neonatal Mice. Front. Mol. Neurosci. 2015, 8. [Google Scholar] [CrossRef]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and Safety of Voretigene Neparvovec (AAV2-HRPE65v2) in Patients with RPE65-Mediated Inherited Retinal Dystrophy: A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Lond. Engl. 2017, 390, 849–860. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Rafii, M.S.; Tuszynski, M.H.; Thomas, R.G.; Barba, D.; Brewer, J.B.; Rissman, R.A.; Siffert, J.; Aisen, P.S. For the AAV2-NGF Study Team Adeno-Associated Viral Vector (Serotype 2)–Nerve Growth Factor for Patients With Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 834. [Google Scholar] [CrossRef]
- Thomsen, G.; Likhite, S.B.; Corcoran, S.; Kaspar, A.; Foust, K.D.; Fugere, M.; Braun, L.; Solano, S.; Kaufmann, P.; Meyer, K.C.; et al. Intrathecal AAV9-SOD1-ShRNA Administration for Amyotrophic Lateral Sclerosis (S5.003). Neurology 2019, 92, S5003. [Google Scholar]
- Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease. N. Engl. J. Med. 2019, 380, 2307–2316. [Google Scholar] [CrossRef]
- Chen, W.; Hu, Y.; Ju, D. Gene Therapy for Neurodegenerative Disorders: Advances, Insights and Prospects. Acta Pharm. Sin. B 2020. [Google Scholar] [CrossRef]
- Ramamoorth, M.; Narvekar, A. Non Viral Vectors in Gene Therapy—An Overview. J. Clin. Diagn. Res. JCDR 2015, 9, GE01–GE06. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Lee, M.-J. Liposome-Mediated Cancer Gene Therapy: Clinical Trials and Their Lessons to Stem Cell Therapy. Bull. Korean Chem. Soc. 2012, 33, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Gao, Y.-G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W.-J.; Jiang, S.-F.; Qadir, A.; Qian, A.-R. The Development of Functional Non-Viral Vectors for Gene Delivery. Int. J. Mol. Sci. 2019, 20, 5491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rufino-Ramos, D.; Albuquerque, P.R.; Carmona, V.; Perfeito, R.; Nobre, R.J.; Pereira de Almeida, L. Extracellular Vesicles: Novel Promising Delivery Systems for Therapy of Brain Diseases. J. Control. Release Off. J. Control. Release Soc. 2017, 262, 247–258. [Google Scholar] [CrossRef]
- Lundstrom, K. Viral Vectors in Gene Therapy. Diseases 2018, 6, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deyle, D.R.; Russell, D.W. Adeno-Associated Virus Vector Integration. Curr. Opin. Mol. Ther. 2009, 11, 442–447. [Google Scholar] [PubMed]
- Wilkinson, A.C.; Dever, D.P.; Baik, R.; Camarena, J.; Hsu, I.; Charlesworth, C.T.; Morita, C.; Nakauchi, H.; Porteus, M.H. Cas9-AAV6 Gene Correction of Beta-Globin in Autologous HSCs Improves Sickle Cell Disease Erythropoiesis in Mice. Nat. Commun. 2021, 12, 686. [Google Scholar] [CrossRef]
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and Immunogenicity of ChAdOx1 NCoV-19 Vaccine Administered in a Prime-Boost Regimen in Young and Old Adults (COV002): A Single-Blind, Randomised, Controlled, Phase 2/3 Trial. Lancet 2020, 396, 1979–1993. [Google Scholar] [CrossRef]
- Oxford University/AstraZeneca COVID-19 Vaccine Approved—GOV. Available online: https://www.gov.uk/government/news/oxford-universityastrazeneca-covid-19-vaccine-approved (accessed on 3 February 2021).
- Zolgensma® Data Shows Rapid, Significant, Clinically Meaningful Benefit in SMA Including Prolonged Event-Free Survival, Motor Milestone Achievement and Durability Now up to 5 Years Post-Dosing. Available online: https://www.novartis.com/news/media-releases/zolgensma-data-shows-rapid-significant-clinically-meaningful-benefit-sma-including-prolonged-event-free-survival-motor-milestone-achievement-and-durability-now (accessed on 23 September 2020).
- Wolfe, D.; Mata, M.; Fink, D.J. A Human Trial of HSV-Mediated Gene Transfer for the Treatment of Chronic Pain. Gene Ther. 2009, 16, 455–460. [Google Scholar] [CrossRef]
- Rainov, N.G.; Ren, H. Clinical Trials with Retrovirus Mediated Gene Therapy – What Have We Learned? J. Neurooncol. 2003, 65, 227–236. [Google Scholar] [CrossRef]
- Weill Medical College of Cornell University. Gene Therapy for APOE4 Homozygote of Alzheimer’s Disease; Weill Medical College of Cornell University: New York, NY, USA, 2019. Available online: clinicaltrials.gov (accessed on 23 September 2020).
- National Institute of Neurological Disorders and Stroke (NINDS). A Phase I Study of Intrathecal Administration of ScAAV9/JeT-GAN for the Treatment of Giant Axonal Neuropathy; NINDS: Bethesda, MD, USA, 2020. Available online: clinicaltrials.gov (accessed on 23 September 2020).
- Home—ClinicalTrials. Available online: https://www.clinicaltrials.gov/ (accessed on 23 September 2020).
- Dangouloff, T.; Servais, L. Clinical Evidence Supporting Early Treatment Of Patients With Spinal Muscular Atrophy: Current Perspectives. Ther. Clin. Risk Manag. 2019, 15, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Weill Medical College of Cornell University. Gene Therapy for APOE4 Homozygote of Alzheimer’s Disease; 2019. Available online: clinicaltrials.gov (accessed on 23 September 2020).
- National Institute of Neurological Disorders and Stroke (NINDS). A Phase I Study of Intrathecal Administration of ScAAV9/JeT-GAN for the Treatment of Giant Axonal Neuropathy; 2020. Available online: clinicaltrials.gov (accessed on 23 September 2020).
- Cearley, C.N.; Wolfe, J.H. Transduction Characteristics of Adeno-Associated Virus Vectors Expressing Cap Serotypes 7, 8, 9, and Rh10 in the Mouse Brain. Mol. Ther. 2006, 13, 528–537. [Google Scholar] [CrossRef]
- Burger, C.; Gorbatyuk, O.S.; Velardo, M.J.; Peden, C.S.; Williams, P.; Zolotukhin, S.; Reier, P.J.; Mandel, R.J.; Muzyczka, N. Recombinant AAV Viral Vectors Pseudotyped with Viral Capsids from Serotypes 1, 2, and 5 Display Differential Efficiency and Cell Tropism after Delivery to Different Regions of the Central Nervous System. Mol. Ther. 2004, 10, 302–317. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.-P.; Alvira, M.R.; Wang, L.; Calcedo, R.; Johnston, J.; Wilson, J.M. Novel Adeno-Associated Viruses from Rhesus Monkeys as Vectors for Human Gene Therapy. Proc. Natl. Acad. Sci. USA 2002, 99, 11854–11859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, S.; Takahashi, M.; Mizukami, H.; Kobayashi, E.; Takeuchi, K.; Hakamata, Y.; Kaneko, T.; Yamamoto, H.; Ito, C.; Ozawa, K.; et al. Successful Gene Transfer Using Adeno-Associated Virus Vectors into the Kidney: Comparison among Adeno-Associated Virus Serotype 1–5 Vectors in Vitro and in Vivo. Nephron Exp. Nephrol. 2004, 96, e119–e126. [Google Scholar] [CrossRef] [PubMed]
- Day, T.P.; Byrne, L.C.; Schaffer, D.V.; Flannery, J.G. Advances in AAV Vector Development for Gene Therapy in the Retina. Adv. Exp. Med. Biol. 2014, 801, 687–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, A. In Vivo Tissue-Tropism of Adeno-Associated Viral Vectors. Curr. Opin. Virol. 2016, 21, 75–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zincarelli, C.; Soltys, S.; Rengo, G.; Rabinowitz, J.E. Analysis of AAV Serotypes 1–9 Mediated Gene Expression and Tropism in Mice After Systemic Injection. Mol. Ther. 2008, 16, 1073–1080. [Google Scholar] [CrossRef]
- Davidson, B.L.; Stein, C.S.; Heth, J.A.; Martins, I.; Kotin, R.M.; Derksen, T.A.; Zabner, J.; Ghodsi, A.; Chiorini, J.A. Recombinant Adeno-Associated Virus Type 2, 4, and 5 Vectors: Transduction of Variant Cell Types and Regions in the Mammalian Central Nervous System. Proc. Natl. Acad. Sci. USA 2000, 97, 3428–3432. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, T.; Rehman, K.K.; Bertera, S.; Zhang, J.; Chen, C.; Papworth, G.; Watkins, S.; Trucco, M.; Robbins, P.D.; et al. Widespread and Stable Pancreatic Gene Transfer by Adeno-Associated Virus Vectors via Different Routes. Diabetes 2006, 55, 875–884. [Google Scholar] [CrossRef] [Green Version]
- Blankinship, M.J.; Gregorevic, P.; Allen, J.M.; Harper, S.Q.; Harper, H.; Halbert, C.L.; Miller, D.A.; Chamberlain, J.S. Efficient Transduction of Skeletal Muscle Using Vectors Based on Adeno-Associated Virus Serotype 6. Mol. Ther. 2004, 10, 671–678. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, T.; Qiao, C.; Zhou, L.; Wang, B.; Zhang, J.; Chen, C.; Li, J.; Xiao, X. Adeno-Associated Virus Serotype 8 Efficiently Delivers Genes to Muscle and Heart. Nat. Biotechnol. 2005, 23, 321–328. [Google Scholar] [CrossRef]
- Hinderer, C.; Bell, P.; Vite, C.H.; Louboutin, J.-P.; Grant, R.; Bote, E.; Yu, H.; Pukenas, B.; Hurst, R.; Wilson, J.M. Widespread Gene Transfer in the Central Nervous System of Cynomolgus Macaques Following Delivery of AAV9 into the Cisterna Magna. Mol. Ther. Methods Clin. Dev. 2014, 1, 14051. [Google Scholar] [CrossRef]
- Katwal, A.B.; Konkalmatt, P.R.; Piras, B.A.; Hazarika, S.; Li, S.S.; Lye, R.J.; Sanders, J.M.; Ferrante, E.A.; Yan, Z.; Annex, B.H.; et al. Adeno-Associated Virus Serotype 9 Efficiently Targets Ischemic Skeletal Muscle Following Systemic Delivery. Gene Ther. 2013, 20, 930–938. [Google Scholar] [CrossRef]
- Limberis, M.P.; Wilson, J.M. Adeno-Associated Virus Serotype 9 Vectors Transduce Murine Alveolar and Nasal Epithelia and Can Be Readministered. Proc. Natl. Acad. Sci. USA 2006, 103, 12993–12998. [Google Scholar] [CrossRef] [Green Version]
- Rocca, C.J.; Ur, S.N.; Harrison, F.; Cherqui, S. RAAV9 Combined with Renal Vein Injection Is Optimal for Kidney-Targeted Gene Delivery: Conclusion of a Comparative Study. Gene Ther. 2014, 21, 618–628. [Google Scholar] [CrossRef] [Green Version]
- Mori, S.; Takeuchi, T.; Enomoto, Y.; Kondo, K.; Sato, K.; Ono, F.; Sata, T.; Kanda, T. Tissue Distribution of Cynomolgus Adeno-Associated Viruses AAV10, AAV11, and AAVcy.7 in Naturally Infected Monkeys. Arch. Virol. 2008, 153, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Biferi, M.G.; Cohen-Tannoudji, M.; Cappelletto, A.; Giroux, B.; Roda, M.; Astord, S.; Marais, T.; Bos, C.; Voit, T.; Ferry, A.; et al. A New AAV10-U7-Mediated Gene Therapy Prolongs Survival and Restores Function in an ALS Mouse Model. Mol. Ther. 2017, 25, 2038–2052. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, Y.; Nishide, K.; Nagoshi, N.; Shibata, S.; Moritoki, N.; Kojima, K.; Tsuji, O.; Matsumoto, M.; Kohyama, J.; Nakamura, M.; et al. The Adeno-Associated Virus Rh10 Vector Is an Effective Gene Transfer System for Chronic Spinal Cord Injury. Sci. Rep. 2019, 9, 9844. [Google Scholar] [CrossRef] [Green Version]
- Ai, J.; Li, J.; Gessler, D.J.; Su, Q.; Wei, Q.; Li, H.; Gao, G. Adeno-Associated Virus Serotype Rh.10 Displays Strong Muscle Tropism Following Intraperitoneal Delivery. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donsante, A.; Miller, D.G.; Li, Y.; Vogler, C.; Brunt, E.M.; Russell, D.W.; Sands, M.S. AAV Vector Integration Sites in Mouse Hepatocellular Carcinoma. Science 2007, 317, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, P.; Wang, L.; Lebherz, C.; Flieder, D.B.; Bove, M.S.; Wu, D.; Gao, G.P.; Wilson, J.M.; Wivel, N.A. No Evidence for Tumorigenesis of AAV Vectors in a Large-Scale Study in Mice. Mol. Ther. 2005, 12, 299–306. [Google Scholar] [CrossRef]
- Perez, B.A.; Shutterly, A.; Chan, Y.K.; Byrne, B.J.; Corti, M. Management of Neuroinflammatory Responses to AAV-Mediated Gene Therapies for Neurodegenerative Diseases. Brain Sci. 2020, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Hordeaux, J.; Buza, E.L.; Dyer, C.; Goode, T.; Mitchell, T.W.; Richman, L.; Denton, N.; Hinderer, C.; Katz, N.; Schmid, R.; et al. Adeno-Associated Virus-Induced Dorsal Root Ganglion Pathology. Hum. Gene Ther. 2020, 31, 808–818. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, B.; Mu, X.; Ahmed, S.S.; Su, Q.; He, R.; Wang, H.; Mueller, C.; Sena-Esteves, M.; Brown, R.; et al. Several RAAV Vectors Efficiently Cross the Blood–Brain Barrier and Transduce Neurons and Astrocytes in the Neonatal Mouse Central Nervous System. Mol. Ther. 2011, 19, 1440–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; He, T.; Chai, Z.; Samulski, R.J.; Li, C. Blood-Brain Barrier Shuttle Peptides Enhance AAV Transduction in the Brain after Systemic Administration. Biomaterials 2018, 176, 71–83. [Google Scholar] [CrossRef]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaddonfard, E.; Tamaddonfard, S.; Pourbaba, S. Effects of Intra-Fourth Ventricle Injection of Crocin on Capsaicin-Induced Orofacial Pain in Rats. Avicenna J. Phytomedicine 2015, 5, 450–457. [Google Scholar]
- Kaemmerer, W.F.; Reddy, R.G.; Warlick, C.A.; Hartung, S.D.; McIvor, R.S.; Low, W.C. In Vivo Transduction of Cerebellar Purkinje Cells Using Adeno-Associated Virus Vectors. Mol. Ther. J. Am. Soc. Gene Ther. 2000, 2, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Worgall, S.; Sondhi, D.; Hackett, N.R.; Kosofsky, B.; Kekatpure, M.V.; Neyzi, N.; Dyke, J.P.; Ballon, D.; Heier, L.; Greenwald, B.M.; et al. Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis by CNS Administration of a Serotype 2 Adeno-Associated Virus Expressing CLN2 CDNA. Hum. Gene Ther. 2008, 19, 463–474. [Google Scholar] [CrossRef]
- Kaplitt, M.G.; Feigin, A.; Tang, C.; Fitzsimons, H.L.; Mattis, P.; Lawlor, P.A.; Bland, R.J.; Young, D.; Strybing, K.; Eidelberg, D.; et al. Safety and Tolerability of Gene Therapy with an Adeno-Associated Virus (AAV) Borne GAD Gene for Parkinson’s Disease: An Open Label, Phase I Trial. Lancet Lond. Engl. 2007, 369, 2097–2105. [Google Scholar] [CrossRef]
- McPhee, S.W.J.; Janson, C.G.; Li, C.; Samulski, R.J.; Camp, A.S.; Francis, J.; Shera, D.; Lioutermann, L.; Feely, M.; Freese, A.; et al. Immune Responses to AAV in a Phase I Study for Canavan Disease. J. Gene Med. 2006, 8, 577–588. [Google Scholar] [CrossRef]
- Bailey, R.M.; Rozenberg, A.; Gray, S.J. Comparison of High-Dose Intracisterna Magna and Lumbar Puncture Intrathecal Delivery of AAV9 in Mice to Treat Neuropathies. Brain Res. 2020, 1739, 146832. [Google Scholar] [CrossRef]
- Bailey, R.M.; Armao, D.; Nagabhushan Kalburgi, S.; Gray, S.J. Development of Intrathecal AAV9 Gene Therapy for Giant Axonal Neuropathy. Mol. Ther. Methods Clin. Dev. 2018, 9, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Samaranch, L.; Bringas, J.; Pivirotto, P.; Sebastian, W.S.; Forsayeth, J.; Bankiewicz, K. Cerebellomedullary Cistern Delivery for AAV-Based Gene Therapy: A Technical Note for Nonhuman Primates. Hum. Gene Ther. Methods 2016, 27, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordeaux, J.; Hinderer, C.; Goode, T.; Katz, N.; Buza, E.L.; Bell, P.; Calcedo, R.; Richman, L.K.; Wilson, J.M. Toxicology Study of Intra-Cisterna Magna Adeno-Associated Virus 9 Expressing Human Alpha-L-Iduronidase in Rhesus Macaques. Mol. Ther. Methods Clin. Dev. 2018, 10, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Pfeffer, J.L.; Gururangan, S.; Lester, T.; Lim, D.A.; Shaywitz, A.J.; Westphal, M.; Slavc, I. Intracerebroventricular Delivery as a Safe, Long-Term Route of Drug Administration. Pediatr. Neurol. 2017, 67, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Meo, I.; Marchet, S.; Lamperti, C.; Zeviani, M.; Viscomi, C. AAV9-Based Gene Therapy Partially Ameliorates the Clinical Phenotype of a Mouse Model of Leigh Syndrome. Gene Ther. 2017, 24, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.P.; Smith, D.A.; Morris, L.; Fletcher, C.; Colaco, A.; Huebecker, M.; Tordo, J.; Palomar, N.; Massaro, G.; Henckaerts, E.; et al. AAV9 Intracerebroventricular Gene Therapy Improves Lifespan, Locomotor Function and Pathology in a Mouse Model of Niemann–Pick Type C1 Disease. Hum. Mol. Genet. 2018, 27, 3079–3098. [Google Scholar] [CrossRef]
- Puccio, H.; Simon, D.; Cossée, M.; Criqui-Filipe, P.; Tiziano, F.; Melki, J.; Hindelang, C.; Matyas, R.; Rustin, P.; Koenig, M. Mouse Models for Friedreich Ataxia Exhibit Cardiomyopathy, Sensory Nerve Defect and Fe-S Enzyme Deficiency Followed by Intramitochondrial Iron Deposits. Nat. Genet. 2001, 27, 181–186. [Google Scholar] [CrossRef]
- Piguet, F.; de Montigny, C.; Vaucamps, N.; Reutenauer, L.; Eisenmann, A.; Puccio, H. Rapid and Complete Reversal of Sensory Ataxia by Gene Therapy in a Novel Model of Friedreich Ataxia. Mol. Ther. 2018, 26, 1940–1952. [Google Scholar] [CrossRef] [Green Version]
- Miranda, C.J.; Santos, M.M.; Ohshima, K.; Smith, J.; Li, L.; Bunting, M.; Cossée, M.; Koenig, M.; Sequeiros, J.; Kaplan, J.; et al. Frataxin Knockin Mouse. FEBS Lett. 2002, 512, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Magrane, J.; Rattelle, A.; Stepanova, A.; Galkin, A.; Clark, E.M.; Dong, Y.N.; Halawani, S.M.; Lynch, D.R. Early Cerebellar Deficits in Mitochondrial Biogenesis and Respiratory Chain Complexes in the KIKO Mouse Model of Friedreich Ataxia. Dis. Model. Mech. 2017, 10, 1343–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Magrane, J.; Clark, E.M.; Halawani, S.M.; Warren, N.; Rattelle, A.; Lynch, D.R. Early VGLUT1-Specific Parallel Fiber Synaptic Deficits and Dysregulated Cerebellar Circuit in the KIKO Mouse Model of Friedreich Ataxia. Dis. Model. Mech. 2017, 10, 1529–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMackin, M.Z.; Henderson, C.K.; Cortopassi, G.A. Neurobehavioral Deficits in the KIKO Mouse Model of Friedreich’s Ataxia. Behav. Brain Res. 2017, 316, 183–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeti, R.; Baccaro, A.; Esteras, N.; Giunti, P. Novel Nrf2-Inducer Prevents Mitochondrial Defects and Oxidative Stress in Friedreich’s Ataxia Models. Front. Cell. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Long, A.; Napierala, J.S.; Polak, U.; Hauser, L.; Koeppen, A.H.; Lynch, D.R.; Napierala, M. Somatic Instability of the Expanded GAA Repeats in Friedreich’s Ataxia. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdomini, M.; Belbellaa, B.; Monassier, L.; Reutenauer, L.; Messaddeq, N.; Cartier, N.; Crystal, R.G.; Aubourg, P.; Puccio, H. Prevention and Reversal of Severe Mitochondrial Cardiomyopathy by Gene Therapy in a Mouse Model of Friedreich’s Ataxia. Nat. Med. 2014, 20, 542–547. [Google Scholar] [CrossRef]
- Salami, C.O.; Jackson, K.; Jose, C.; Alyass, L.; Cisse, G.-I.; De, B.P.; Stiles, K.M.; Chiuchiolo, M.J.; Sondhi, D.; Crystal, R.G.; et al. Stress-Induced Mouse Model of the Cardiac Manifestations of Friedreich’s Ataxia Corrected by AAV-Mediated Gene Therapy. Hum. Gene Ther. 2020, 31, 819–827. [Google Scholar] [CrossRef]
- Bartus, R.T.; Johnson, E.M. Clinical Tests of Neurotrophic Factors for Human Neurodegenerative Diseases, Part 2: Where Do We Stand and Where Must We Go Next? Neurobiol. Dis. 2017, 97, 169–178. [Google Scholar] [CrossRef]
- Kells, A.P.; Fong, D.M.; Dragunow, M.; During, M.J.; Young, D.; Connor, B. AAV-Mediated Gene Delivery of BDNF or GDNF Is Neuroprotective in a Model of Huntington Disease. Mol. Ther. J. Am. Soc. Gene Ther. 2004, 9, 682–688. [Google Scholar] [CrossRef]
- Chen, S.-D.; Wu, C.-L.; Hwang, W.-C.; Yang, D.-I. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy. Int. J. Mol. Sci. 2017, 18, 545. [Google Scholar] [CrossRef] [Green Version]
- Misiorek, J.O.; Schreiber, A.M.; Urbanek-Trzeciak, M.O.; Jazurek-Ciesiołka, M.; Hauser, L.A.; Lynch, D.R.; Napierala, J.S.; Napierala, M. A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of MiRNAs in Friedreich’s Ataxia Patients. Mol. Neurobiol. 2020, 1–15. [Google Scholar] [CrossRef]
- Jiao, S.-S.; Shen, L.-L.; Zhu, C.; Bu, X.-L.; Liu, Y.-H.; Liu, C.-H.; Yao, X.-Q.; Zhang, L.-L.; Zhou, H.-D.; Walker, D.G.; et al. Brain-Derived Neurotrophic Factor Protects against Tau-Related Neurodegeneration of Alzheimer’s Disease. Transl. Psychiatry 2016, 6, e907. [Google Scholar] [CrossRef]
- Meng, H.; Larson, S.K.; Gao, R.; Qiao, X. BDNF Transgene Improves Ataxic and Motor Behaviors in Stargazer Mice. Brain Res. 2007, 1160, 47–57. [Google Scholar] [CrossRef]
- Vannocci, T.; Notario Manzano, R.; Beccalli, O.; Bettegazzi, B.; Grohovaz, F.; Cinque, G.; de Riso, A.; Quaroni, L.; Codazzi, F.; Pastore, A. Adding a Temporal Dimension to the Study of Friedreich’s Ataxia: The Effect of Frataxin Overexpression in a Human Cell Model. Dis. Model. Mech. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Belbellaa, B.; Reutenauer, L.; Messaddeq, N.; Monassier, L.; Puccio, H. High Levels of Frataxin Overexpression Lead to Mitochondrial and Cardiac Toxicity in Mouse Models. Mol. Ther. Methods Clin. Dev. 2020, 19, 120–138. [Google Scholar] [CrossRef]
- Cunha, C.; Angelucci, A.; D’Antoni, A.; Dobrossy, M.D.; Dunnett, S.B.; Berardi, N.; Brambilla, R. Brain-Derived Neurotrophic Factor (BDNF) Overexpression in the Forebrain Results in Learning and Memory Impairments. Neurobiol. Dis. 2009, 33, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ingusci, S.; Verlengia, G.; Soukupova, M.; Zucchini, S.; Simonato, M. Gene Therapy Tools for Brain Diseases. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaidy, S.A.; Mendell, J.R. From Clinical Trials to Clinical Practice: Practical Considerations for Gene Replacement Therapy in SMA Type 1. Pediatr. Neurol. 2019, 100, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Massaro, G.; Hughes, M.P.; Whaler, S.M.; Wallom, K.-L.; Priestman, D.A.; Platt, F.M.; Waddington, S.N.; Rahim, A.A. Systemic AAV9 Gene Therapy Using the Synapsin I Promoter Rescues a Mouse Model of Neuronopathic Gaucher Disease but with Limited Cross-Correction Potential to Astrocytes. Hum. Mol. Genet. 2020, 29, 1933–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadalla, K.K.E.; Vudhironarit, T.; Hector, R.D.; Sinnett, S.; Bahey, N.G.; Bailey, M.E.S.; Gray, S.J.; Cobb, S.R. Development of a Novel AAV Gene Therapy Cassette with Improved Safety Features and Efficacy in a Mouse Model of Rett Syndrome. Mol. Ther. Methods Clin. Dev. 2017, 5, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Sebastian, S.; Gimenez-Cassina, A.; Diaz-Nido, J.; Lim, F.; Wade-Martins, R. Infectious Delivery and Expression of a 135 Kb Human FRDA Genomic DNA Locus Complements Friedreich’s Ataxia Deficiency in Human Cells. Mol. Ther. 2007, 15, 248–254. [Google Scholar] [CrossRef]
- Gimenez-Cassina, A.; Wade-Martins, R.; Gomez-Sebastian, S.; Corona, J.-C.; Lim, F.; Diaz-Nido, J. Infectious Delivery and Long-Term Persistence of Transgene Expression in the Brain by a 135-Kb IBAC-FXN Genomic DNA Expression Vector. Gene Ther. 2011, 18, 1015–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.J.; Li, D.Y.; Wang, D.J.; Gonzalez, D.T.J.; Asokan, D.A.; Napierala, D.J.; Napierala, D.M. Defining Transcription Regulatory Elements in the Human Frataxin Gene: Implications for Gene Therapy. Available online: https://www.liebertpub.com/doi/abs/10.1089/hum.2020.053 (accessed on 22 June 2020).
- Fernández-Frías, I.; Pérez-Luz, S.; Díaz-Nido, J. Analysis of Putative Epigenetic Regulatory Elements in the FXN Genomic Locus. Int. J. Mol. Sci. 2020, 21, 3410. [Google Scholar] [CrossRef]
- Xia, H.; Cao, Y.; Dai, X.; Marelja, Z.; Zhou, D.; Mo, R.; Al-Mahdawi, S.; Pook, M.A.; Leimkühler, S.; Rouault, T.A.; et al. Novel Frataxin Isoforms May Contribute to the Pathological Mechanism of Friedreich Ataxia. PLoS ONE 2012, 7, e47847. [Google Scholar] [CrossRef] [Green Version]
- Agrò, M.; Díaz-Nido, J. Effect of Mitochondrial and Cytosolic FXN Isoform Expression on Mitochondrial Dynamics and Metabolism. Int. J. Mol. Sci. 2020, 21, 8251. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Luz, S.; Gimenez-Cassina, A.; Fernández-Frías, I.; Wade-Martins, R.; Díaz-Nido, J. Delivery of the 135kb Human Frataxin Genomic DNA Locus Gives Rise to Different Frataxin Isoforms. Genomics 2015, 106, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirren, E.; Towne, C.L.; Setola, V.; Redmond, D.E.; Schneider, B.L.; Aebischer, P. Intracerebroventricular Injection of Adeno-Associated Virus 6 and 9 Vectors for Cell Type-Specific Transgene Expression in the Spinal Cord. Hum. Gene Ther. 2014, 25, 109–120. [Google Scholar] [CrossRef] [PubMed]
Vector | Genome | Insert Capacity | Expression | Immune Response | Features | Most Advanced Therapy Stage |
---|---|---|---|---|---|---|
Adenoviruses (Ad) | dsDNA | <7.5 kbp | Weeks/ Months Episomal | High | Infects both non- and dividing cells | Approved COVID19 [36,37] |
Adeno-associated virus (AAV) | ssDNA | <4.5 kb | Years Episomal | Low | Long-term only in non-dividing cells | Approved Zolgensma [24,38] |
Herpes simplex virus (HSV) | dsDNA | >30 kbp Up to 150 kbp | Months Episomal | High | Long-term only in non-dividing cells | Phase I Pain (DRG target) [39] |
Retroviruses | ssRNA | 8 kb | Years Integrative | Low | Infects only dividing cells | Phase III Glioma [40] |
Lentiviruses | ssRNA | 8 kb | Years Integrative | Low | Infects both non- and dividing cells | Phase I/II X-linked adreno-leukodystrophy [41] |
Poxviruses (e.g., vaccinia) | dsDNA | >30 kbp | Weeks Replicates cytoplasm | High | Infects both non- and dividing cells | Phase III Hepatocellular carcinoma [42] |
Serotype | Tropism | Reference |
---|---|---|
AAV1 | CNS, Skeletal muscle | [48,49] |
AAV2 | CNS, Kidney, Retina | [48,50,51] |
AAV3 | Liver | [52] |
AAV4 | CNS, Heart, Lung | [53,54] |
AAV5 | CNS, Retina | [48,51] |
AAV6 | Skeletal muscle, Heart, Pancreas | [53,55,56] |
AAV7 | Skeletal muscle, Heart, Liver, Retina | [49,51,53] |
AAV8 | Skeletal muscle, Heart, Liver, Pancreas, Retina | [49,51,55,57] |
AAV9 | CNS, Skeletal muscle, Heart, Lung, Liver, Kidney, Retina | [51,53,58,59,60,61] |
AAV10 | CNS, Ileum, Lymphatic tissue | [62,63] |
AAV11 | Ileum, Lymphatic tissue | [62] |
AAVrh10 | CNS, Skeletal muscle, Heart | [64,65] |
Delivery Route | Clinically Implemented | Procedural Risk | Efficiency Reaching | ||
---|---|---|---|---|---|
Spinal Cord | Cerebellum | Cerebrum | |||
Systemic | Yes | Very low | Low | Low | Low |
IT | Yes | Low | High | Medium | Low |
ICM | No | High | High | High | Medium |
ICV | Yes | Neonatal: Low Adult: High | Medium | Medium | High |
Animal Models | Specie | Tissue Frataxin or Homologue K.D./K.O. | Life Span | Genotype or Methodology | Frataxin | Example of Characteristic Phenotype Traits (Not all Could be Included for Practical Reasons) |
---|---|---|---|---|---|---|
Fxn K.D. (shRNA-37) | M.M. | Cerebellum | Normal | shRNA | 30% of WT in the cerebellum | Motor and coordination deficiencies. [18] |
MCK | M.M. | Heart | 65–105 d | Fxn L3/E4del l3 FA allele | None in the heart, reduced in the rest of tissues. | Cardiomyopathy (Cardiac hypertrophy, failure, defective aconitase, and mitochondrial iron accumulation). [85] |
NSE | M.M. | Neurons | 15–33 d | Fxn L3/E4del l3 FA allele | None in neurons, reduced in the rest of tissues. | Neurological phenotype with age, including ataxia. Cardiomyopathy earlier than MCK. Iron accumulation. [85] |
Pvalb cKO | M.M | Parvalbumin + | Normal (≈ 2 y) | Fxn L3/E4del l3 FA allele | None in Pvalb+ cells. Reduced in the rest. | Movement and coordination impairment. Sensory ataxic phenotype and neuropathy. [86] |
KIKI | M.M. | Ubiquitous | 2/13 < 12 m 11/13 ≈ 2 y | Fxn (GAA)230+/+ | 66–83% of WT levels | No pathological phenotype detected. [87] |
KIKO | M.M. | Ubiquitous | Normal (≈ 2 y) | Fxn(GAA) 230+/− | 25–36% of WT levels | Mild heart fibrosis [87] Deficits in mitochondrial biogenesis and respiratory chain complexes [88] and synaptic alterations [89] in the cerebellum. Neurobehavioral deficits [90]. |
YG22R | M.M. | Ubiquitous | Normal (≈ 2 y) | YAC hFXN (GAA)190 | None endogenous, ≈ 60% hFXN of WT levels (cerebellum) | Mild motor and coordination defects. Slight oxidative stress. GAA instability. [9] |
YG8R | M.M. | Ubiquitous | Normal (≈ 2 y) | YAC hFXN (GAA)90 (GAA)190 | None endogenous, ≈ 60% hFXN of WT levels (cerebellum) | Mild motor and coordination defects. Slight oxidative stress. Cardiac aconitase deficient. GAA instability [9] and mitochondrial alterations [91]. |
YG8sR | M.M. | Ubiquitous | Normal (≈ 2 y) | YAC hFXN (GAA)200 | None endogenous, ≈ 22% hFXN of Y47R levels (CNS) | Coordination, behavior, and motor deficits. Decreased aconitase activity. GAA instability. IFG. [10] |
YG8JR | M.M. | Ubiquitous | Data not published | YAC hFXN (GAA)800 | None endogenous, hFXN reduced | Coordination deficit (six months). Alopecia. Aconitase activity decreased (data not published). |
Treatment | Dose | Animal Model | Age | Delivery Route | Major Improvements | Ref. |
---|---|---|---|---|---|---|
HSV1-hFXN | 1.44 × 104 IU | FXN L3/L3 + HSV1-Cre | 4 w after K.O. | Stereotaxic injection brain stem (intraparenchymal) | Reversal of motor coordination deficit. | [17] |
AAVrh10-CAG-hFXN-HA | 5.4 × 1013 v.g./kg | MCK | 3 w | Intravenous | Prevents cardiac pathology at a cellular and molecular level. | [93] |
AAVrh10-CAG-hFXN-HA | 5.4 × 1013 v.g./kg | MCK | 7 w | Intravenous | Reverses cardiomyopathy. | [93] |
HSV-BDNF | 4200 IU | Mouse shRNA-37 | 8 w | Cerebellar Cortex | Prevention of cerebellar neuropathy and ataxic phenotype. | [18] |
AAV9-CAG-hFXN-HA | 5 × 1013 v.g./kg | Pvalb cKO | 3.5 w | Intravenous | Prevents progressive sensory defects. | [86] |
AAV9-CAG-hFXN-HA + AAVrh10-CAG-hFXN-HA | 5 × 1013 v.g./kg (AAV9) 1 × 1010 v.g./deposit (AAVrh10) | Pvalb cKO | 7.5 w | Intravenous (AAV9) Striatum and Cerebellum (AAVrh10) | Rescues sensory neuropathy. | [86] |
AAV9-hFXN | 6 × 109 and 6 × 1011 v.g. | MCK | 5–9 d | Intraperitoneal | Cardiac systolic function better preserved over time and prolonged life. | [20] |
AAV9-hFXN | Several (6 × 1011 v.g. highest) | NSE | 5–9 d | Intraperitoneal | Prolonged life, reduced heart hypertrophy, and reversal of behavioral deficit. | [20] |
AAVrh.10hFXN | 1011 v.g. | αMyhc | 6 w | Intravenous | Cardiac performance restored to control levels. | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocana-Santero, G.; Díaz-Nido, J.; Herranz-Martín, S. Future Prospects of Gene Therapy for Friedreich’s Ataxia. Int. J. Mol. Sci. 2021, 22, 1815. https://doi.org/10.3390/ijms22041815
Ocana-Santero G, Díaz-Nido J, Herranz-Martín S. Future Prospects of Gene Therapy for Friedreich’s Ataxia. International Journal of Molecular Sciences. 2021; 22(4):1815. https://doi.org/10.3390/ijms22041815
Chicago/Turabian StyleOcana-Santero, Gabriel, Javier Díaz-Nido, and Saúl Herranz-Martín. 2021. "Future Prospects of Gene Therapy for Friedreich’s Ataxia" International Journal of Molecular Sciences 22, no. 4: 1815. https://doi.org/10.3390/ijms22041815
APA StyleOcana-Santero, G., Díaz-Nido, J., & Herranz-Martín, S. (2021). Future Prospects of Gene Therapy for Friedreich’s Ataxia. International Journal of Molecular Sciences, 22(4), 1815. https://doi.org/10.3390/ijms22041815