Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview
Abstract
:1. Introduction
2. Synthetic Surfactants
3. Bio-Based Surfactants
3.1. Anionic
3.1.1. Methyl Ester Sulfonates (MES)
3.1.2. Alcohol Sulfates (AS) and Alcohol Ether Sulfates (AES)
3.1.3. Glycinate Amino Acid-Based Surfactants
3.2. Cationic
Glycine Betaine Esters and Amides
3.3. Non-Ionic
Sugar Bio-Based Surfactants
3.4. Amphoteric
Cocoamidopropyl Betaine
4. Microbial Biosurfactants
4.1. Glycolipids
4.2. Lipopeptides and Lipoproteins
4.3. Glycolipopeptides and Glycopeptides
4.4. Bioemulsifiers with Surfactant Capacity
4.4.1. Phospholipids
4.4.2. Polymeric Biosurfactants
4.4.3. Particulate Biosurfactants
5. Comparison of Microbial Biosurfactants with Synthetic and Bio-Based Surfactants in the Cosmetic Industry
6. Concluding Remarks and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desai, J.D.; Banat, I.M. Microbial Production of Surfactants and Their Commercial Potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Tadros, T.F. An Introduction to Surfactants; Walter de Gruyter GmbH: Berlin/Heidelberg, Germany, 2014; ISBN 9789896540821. [Google Scholar]
- Banat, I.M.; Cameotra, S.S.; Makkar, R. Potential Commercial Application of Biosurfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495–508. [Google Scholar] [CrossRef]
- Soberón-Chávez, G.; Maier, R.M. Biosurfactants: A General Overview. Microbiol. Monogr. 2011, 20, 1–11. [Google Scholar] [CrossRef]
- Singh, A.K.; Cameotra, S.S. Microbial surface active agents as agrochemicals. In Bioremediation: Biotechnology, Engineering and Environmental Management; Nova Science Pub Inc: Hauppauge, NY, USA, 2011; pp. 267–293. ISBN 9781611227307. [Google Scholar]
- Fukuoka, T.; Yoshida, S.; Nakamura, J.; Koitabashi, M.; Sakai, H.; Abe, M.; Kitamoto, D.; Kitamoto, H. Application of Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, as Agrospreaders. J. Oleo Sci. 2015, 64, 689–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Prieto, A.; Vecino, X.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. A Multifunctional Biosurfactant Extract Obtained from Corn Steep Water as Bactericide for Agrifood Industry. Foods 2019, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, D.P.; Cameotra, S.S. Biosurfactants in Agriculture. Appl. Microbiol. Biotechnol. 2013, 97, 1005–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, M.; Costa, S.G.V.A.O. Biosurfactants in Food Industry. Trends Food Sci. Technol. 2007, 18, 252–259. [Google Scholar] [CrossRef]
- Nitschke, M.; Sousa e Silva, S. Recent Food Applications of Microbial Surfactants. Crit. Rev. Food Sci. Nutr. 2018, 58, 631–638. [Google Scholar] [CrossRef] [PubMed]
- López-Prieto, A.; Rodríguez-López, L.; Rincón-Fontán, M.; Moldes, A.B.; Cruz, J.M. Effect of Biosurfactant Extract Obtained from the Corn-Milling Industry on Probiotic Bacteria in Drinkable Yogurt. J. Sci. Food Agric. 2019, 99, 824–830. [Google Scholar] [CrossRef]
- Gharaei-Fa, E. Biosurfactants in Pharmaceutical Industry (A Mini-Review). Am. J. Drug Discov. Dev. 2011, 1, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Varvaresou, A.; Iakovou, K. Biosurfactants in Cosmetics and Biopharmaceuticals. Lett. Appl. Microbiol. 2015, 61, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Vecino, X.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Biosurfactants in Cosmetic Formulations: Trends and Challenges. Crit. Rev. Biotechnol. 2017, 37, 911–923. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Rangarajan, V.; Sen, R.; Rodrigues, L.R. Potential Therapeutic Applications of Biosurfactants. Trends Pharmacol. Sci. 2013, 34, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.; Banat, I.M.; Teixeira, J.; Oliveira, R. Biosurfactants: Potential Applications in Medicine. J. Antimicrob. Chemother. 2006, 57, 609–618. [Google Scholar] [CrossRef]
- Elshikh, M.; Marchant, R.; Banat, I.M. Biosurfactants: Promising Bioactive Molecules for Oral-Related Health Applications. FEMS Microbiol. Lett. 2016, 363, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Moldes, A.B.; Vecino, X.; Rodríguez-López, L.; Rincón-Fontán, M.; Cruz, J.M. Microbial Glycoprotein and Lipopeptide Biosurfactants Production, Properties and Applications. In Microbial Biosurfactants and their Environmental and Industrial Applications; Banat, I.M., Thavasi, R., Eds.; Taylor & Francis Group: Milton Park, Abingdon, Oxfordshire, UK, 2019; pp. 106–128. [Google Scholar]
- Satpute, S.K.; Banpurkar, A.G.; Dhakephalkar, P.K.; Banat, I.M.; Chopade, B.A. Methods for Investigating Biosurfactants and Bioemulsifiers: A Review. Crit. Rev. Biotechnol. 2010, 30, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Satpute, S.K.; Płaza, G.A.; Banpurkar, A.G. Biosurfactants’ Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy. Manag. Syst. Prod. Eng. 2017, 25, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Adsorption of Natural Surface Active Compounds Obtained from Corn on Human Hair. RSC Adv. 2016, 6, 63064–63070. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, K.G.O.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Saponins and Microbial Biosurfactants: Potential Raw Materials for the Formulation of Cosmetics. Biotechnol. Prog. 2018, 34, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.G. Biobased Surfactants: Overview and Industrial State-of- the-Art. In Biobased surfactants and detergents Synthesis, Properties, and Applications; Hayes, D.G., Kitamoto, D., Solaiman, D.K., Ashby, R.D., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 3–25. ISBN 978-1-893997-67-7. [Google Scholar]
- Shekhar, S.; Sundaramanickam, A.; Balasubramanian, T. Biosurfactant Producing Microbes and Their Potential Applications: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1554. [Google Scholar] [CrossRef]
- Patowary, K.; Das, M.; Patowary, R.; Kalita, M.C.; Deka, S. Recycling of Bakery Waste as an Alternative Carbon Source for Rhamnolipid Biosurfactant Production. J. Surfactants Deterg. 2019, 22, 373–384. [Google Scholar] [CrossRef]
- Williams, B.H.; Hathout, Y.; Fenselau, C. Structural Characterization of Lipopeptide Biomarkers Isolated from Bacillus Globigii. J. Mass Spectrom. 2002, 37, 259–264. [Google Scholar] [CrossRef]
- Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin-A Novel Antifungal Lipopeptide Antibiotic Produced by Bacillus Subtilis F-29-3. J. Antibiot. (Tokyo) 1986, 39, 888–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morikawa, M.; Hirata, Y.; Imanaka, T. A Study on the Structure-Function Relationship of Lipopeptide Biosurfactants. Biochim. Biophys. Acta 2000, 1488, 211–218. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Glycolipid Biosurfactants: Main Properties and Potential Applications in Agriculture and Food Industry. J. Sci. Food Agric. 2016, 96, 4310–4320. [Google Scholar] [CrossRef]
- Paulino, B.N.; Pessôa, M.G.; Mano, M.C.R.; Molina, G.; Neri-Numa, I.A.; Pastore, G.M. Current Status in Biotechnological Production and Applications of Glycolipid Biosurfactants. Appl. Microbiol. Biotechnol. 2016, 100, 10265–10293. [Google Scholar] [CrossRef] [PubMed]
- Garcés, M.E.; Sequeiros, C.; Olivera, N.L. Marine Lactobacillus Pentosus H16 Protects Artemia Franciscana from Vibrio Alginolyticus Pathogenic Effects. Dis. Aquat. Organ. 2015, 113, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Moldes, A.B.; Paradelo, R.; Vecino, X.; Cruz, J.M.; Gudiña, E.; Rodrigues, L.; Teixeira, J.A.; Domínguez, J.M.; Barral, M.T. Partial Characterization of Biosurfactant from Lactobacillus Pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudiña, E.J.; Fernandes, E.C.; Teixeira, J.A.; Rodrigues, L.R. Antimicrobial and Anti-Adhesive Activities of Cell-Bound Biosurfactant from Lactobacillus Agilis CCUG31450. RSC Adv. 2015, 5, 90960–90968. [Google Scholar] [CrossRef] [Green Version]
- Vecino, X.; Barbosa-Pereira, L.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B. Optimization of Extraction Conditions and Fatty Acid Characterization of Lactobacillus Pentosus Cell-Bound Biosurfactant/Bioemulsifier. J. Sci. Food Agric. 2015, 95, 313–320. [Google Scholar] [CrossRef]
- Vecino, X.; Rodríguez-López, L.; Gudiña, E.J.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Vineyard Pruning Waste as an Alternative Carbon Source to Produce Novel Biosurfactants by Lactobacillus Paracasei. J. Ind. Eng. Chem. 2017, 55. [Google Scholar] [CrossRef] [Green Version]
- Weschayanwiwat, P.; Scamehorn, J.F.; Reilly, P.J. Surfactant Properties of Low Molecular Weight Phospholipids. J. Surfactants Deterg. 2005, 8, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.W. Surface tension. In Microfluidics: Modeling, Mechanics, and Mathematics; Rapp, B.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 421–444. ISBN 9781455731411. [Google Scholar]
- Bastian, E. Rapp Measuring surface tension and free surface energy. In Microfluidics: Modelling, Mechanics and Mathematics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 453–465. ISBN 9781455731411. [Google Scholar]
- Danov, K.D.; Kralchevska, S.D.; Kralchevsky, P.A.; Ananthapadmanabhan, K.P.; Lips, A. Mixed Solutions of Anionic and Zwitterionic Surfactant (Betaine): Surface Tension Isotherms, Adsorption and Relaxation Kinetics. Langmuir 2004, 20, 5445–5453. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Li, S.; Zhang, Z.; Luo, G.; Zhao, J. Synthesis of Oligomer Betaine Surfactant (DDTPA) and Rheological Properties of Wormlike Micellar Solution System. J. Taiwan Inst. Chem. Eng. 2016, 66, 1–11. [Google Scholar] [CrossRef]
- Tobori, N.; Kakui, T. Methyl Ester Sulfonate. In Biobased Surfactants Synthesis, Properties, and Applications; Hayes, D.G., Solaiman, D.K.Y., Ashby, R.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–324. ISBN 9780128127056. [Google Scholar]
- Hayes, D.G.; Smith, G.A. Biobased Surfactants: Overview and Industrial State of the Art. In Biobased surfactants synthesis, properties, and applications; Hayes, D.G., Solaiman, D.K.Y., Ashby, R.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–38. ISBN 9780128127056. [Google Scholar]
- Martínez, D.; Orozco, G.; Rincón, S.; Gil, I. Simulation and Pre-Feasibility Analysis of the Production Process of α-Methyl Ester Sulfonates (α-MES). Bioresour. Technol. 2010, 101, 8762–8771. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.S.; Baharudin, N.B.; Ung, Y.W. Methyl Ester Sulfonate: A High-Performance Surfactant Capable of Reducing Builders Dosage in Detergents. J. Surfactants Deterg. 2019, 22, 549–558. [Google Scholar] [CrossRef]
- Asselah, A.; Pinazo, A.; Mezei, A.; Pérez, L.; Tazerouti, A. Self-Aggregation and Emulsifying Properties of Methyl Ester Sulfonate Surfactants. J. Surfactants Deterg. 2017, 20, 1453–1465. [Google Scholar] [CrossRef]
- de Groot, W.H. Application of Sulphonates as Anionic Surfactants in Household Products. In Sulphonation Technology in the Detergent Industry; Springer: Berlin/Heidelberg, Germany, 1991; pp. 1–4. [Google Scholar]
- Bujak, T.; Nizioł-Łukaszewska, Z.; Wasilewsk, T. Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin. Tenside Surfactants Deterg. 2019, 56, 126–133. [Google Scholar] [CrossRef]
- Bujak, T.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules 2020, 25, 1433. [Google Scholar] [CrossRef] [Green Version]
- Kosswig, K. Surfactants. Ullman’s Encycl. Ind. Chem. 2012, A25, 431–505. [Google Scholar] [CrossRef]
- Yea, D.; Lee, S.; Jo, S.; Yu, H.; Lim, J. Preparation of Environmentally Friendly Amino Acid-Based Anionic Surfactants and Characterization of Their Interfacial Properties for Detergent Products Formulation. J. Surfactants Deterg. 2018, 21, 541–552. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, B.; Han, F.; Zhou, Y.; Liu, H.; Li, Y.; Cui, L.; Tan, T.; Wang, N. Green Synthesis, Composition Analysis and Surface Active Properties of Sodium Cocoyl Glycinate. Am. J. Anal. Chem. 2013, 4, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Goursaud, F.; Berchel, M.; Guilbot, J.; Legros, N.; Lemiègre, L.; Marcilloux, J.; Plusquellec, D.; Benvegnu, T. Glycine Betaine as a Renewable Raw Material to “Greener” New Cationic Surfactants. Green Chem. 2008, 10, 310. [Google Scholar] [CrossRef]
- Hill, K.; LeHen-Ferrenbach, C. Sugar-Based Surfactants for Consumer Products and Technical Applications. In Sugar-based Surfactants: Fundamentals and Applications; Carnero Ruiz, C., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–21. ISBN 978-1-4200-5166-7. [Google Scholar]
- Hill, K.; Rybinski, W.; Stoll, G. Alkyl Polyglycosides: Technology, Properties, and Applications; Wiley-VCH: Weinheim, Germany, 2008; ISBN 9783527614684. [Google Scholar]
- Joshi, V.Y.; Sawant, M.R. Novel Stereo Controlled Glycosylation of 1,2,3,4,6-Penta-o-Acetyl-β-d-Glucopyranoside Using MgO–ZrO2 as an Environmentally Benign Catalyst. Catal. Commun. 2007, 8, 1910–1916. [Google Scholar] [CrossRef]
- Gaudin, T.; Lu, H.; Fayet, G.; Berthauld-Drelich, A.; Rotureau, P.; Pourceau, G.; Wadouachi, A.; Van Hecke, E.; Nesterenko, A.; Pezron, I. Impact of the Chemical Structure on Amphiphilic Properties of Sugar-Based Surfactants: A Literature Overview. Adv. Colloid Interface Sci. 2019, 270, 87–100. [Google Scholar] [CrossRef]
- Rhein, L. Surfactant Action on Skin and Hair: Cleansing and Skin Reactivity Mechanisms. In Handbook for Cleaning/Decontamination of Surfaces; Johansson, I., Somasundaran, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 305–371, ISBN 9780444516640. [Google Scholar]
- Nilsson, E.J.; Lind, T.K.; Scherer, D.; Skansberger, T.; Mortensen, K.; Engblom, J.; Kocherbitov, V. Mechanisms of Crystallisation in Polysorbates and Sorbitan Esters. CrystEngComm 2020, 22, 3840–3853. [Google Scholar] [CrossRef]
- Zhu, Y.; Durand, M.; Molinier, V.; Aubry, J.-M. Isosorbide as a Novel Polar Head Derived from Renewable Resources. Application to the Design of Short-Chain Amphiphiles with Hydrotropic Properties. Green Chem. 2008, 10, 532. [Google Scholar] [CrossRef]
- Lavergne, A.; Zhu, Y.; Molinier, V.; Aubry, J.-M. Aqueous Phase Behavior of Isosorbide-Based Non-Ionic Surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2012, 404, 56–62. [Google Scholar] [CrossRef]
- Mouria-Bellabdelli, F.; Potier, J.; Bouterfas, M.; Cavrot, J.-P.; Sayede, A.; Menuel, S.; Monflier, E.; Machut-Binkowski, C. Characterization of β-Cyclodextrins and Isosorbide Diesters Self-Assemblies: Towards New Renewable Surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415, 380–387. [Google Scholar] [CrossRef]
- Machut, C.; Mouri-Belabdelli, F.; Cavrot, J.-P.; Sayede, A.; Monflier, E. New Supramolecular Amphiphiles Based on Renewable Resources. Green Chem. 2010, 12, 772. [Google Scholar] [CrossRef]
- Cho, J.-E.; Sim, D.-S.; Kim, Y.-W.; Lim, J.; Jeong, N.-H.; Kang, H.-C. Selective Syntheses and Properties of Anionic Surfactants Derived from Isosorbide. J. Surfactants Deterg. 2018, 21, 817–826. [Google Scholar] [CrossRef]
- Abdelkader, M.B.; Azizi, N.; Chemli, M.; Chevalier, Y.; Boyron, O.; Majdoub, M. Synthesis and Emulsifier Properties of a New Bio-Sourced Surfactant Based on Isosorbide. Colloids Surf. A Physicochem. Eng. Asp. 2016, 492, 1–11. [Google Scholar] [CrossRef]
- de Groot, A.C.; van der Walle, H.B.; Weyland, J.W. Contact Allergy to Cocamidopropyl Betaine. Contact Dermat. 1995, 33, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Brand, R.; Delaney, T.A. Allergic Contact Dermatitis to Cocamidopropylbetaine in Hair Shampoo. Australas. J. Dermatol. 1998, 39, 121–122. [Google Scholar] [CrossRef] [PubMed]
- Mowad, C. Cocamidopropyl Betaine Allergy. Am. J. Contact Dermat. 2001, 12, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Mnif, I.; Dhouha, G. Glycolipid Biosurfactants: Potential Related Biomedical and Biotechnological Applications. Carbohydr. Res. 2015, 416, 59–69. [Google Scholar] [CrossRef]
- Hasani zadeh, P.; Moghimi, H.; Hamedi, J. Biosurfactant Production by Mucor Circinelloides: Environmental Applications and Surface-Active Properties. Eng. Life Sci. 2018, 18, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Wang, H.; To, M.H.; Roelants, S.L.K.W.; Soetaert, W.; Lin, C.S.K. Efficient Sophorolipids Production Using Food Waste. J. Clean. Prod. 2019, 232, 1–11. [Google Scholar] [CrossRef]
- Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Mannosylerythritol Lipids: Production and Applications. J. Oleo Sci. 2015, 64, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Production of Mannosylerythritol Lipids and Their Application in Cosmetics. Appl. Microbiol. Biotechnol. 2013, 97, 4691–4700. [Google Scholar] [CrossRef] [PubMed]
- Mnif, I.; Dhouha, G. Lipopeptides Biosurfactants, Main Classes and New Insights for Industrial; Biomedical and Environmental Applications. Biopolymers 2015, 104, 129–147. [Google Scholar] [CrossRef]
- Alajlani, M.; Shiekh, A.; Hasnain, S.; Brantner, A. Purification of Bioactive Lipopeptides Produced by Bacillus Subtilis Strain BIA. Chromatographia 2016, 79, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Deng, M.; Wang, Y.; Chen, W. Production and Characteristics of Biosurfactant Produced by Bacillus Pseudomycoides BS6 Utilizing Soybean Oil Waste. Int. Biodeterior. Biodegrad. 2016, 112, 72–79. [Google Scholar] [CrossRef]
- De Faria, A.F.; Teodoro-Martinez, D.S.; De Oliveira Barbosa, G.N.; Gontijo Vaz, B.; Serrano Silva, Í.; Garcia, J.S.; Tótola, M.R.; Eberlin, M.N.; Grossman, M.; Alves, O.L.; et al. Production and Structural Characterization of Surfactin (C14/Leu7) Produced by Bacillus Subtilis Isolate LSFM-05 Grown on Raw Glycerol from the Biodiesel Industry. Process. Biochem. 2011, 46, 1951–1957. [Google Scholar] [CrossRef] [Green Version]
- Moro, G.V.; Almeida, R.T.R.; Napp, A.P.; Porto, C.; Pilau, E.J.; Lüdtke, D.S.; Moro, A.V.; Vainstein, M.H. Identification and Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry Characterization of Biosurfactants, Including a New Surfactin, Isolated from Oil-Contaminated Environments. Microb. Biotechnol. 2018, 11, 759–769. [Google Scholar] [CrossRef]
- Ishigami, Y.; Osman, M.; Nakahara, H.; Sano, Y.; Ishiguro, R.; Matsumoto, M. Significance of β-Sheet Formation for Micellization and Surface Adsorption of Surfactin. Colloids Surf. B Biointerfaces 1995, 4, 341–348. [Google Scholar] [CrossRef]
- Aranda, F.J.; Teruel, J.A.; Ortiz, A. Further Aspects on the Hemolytic Activity of the Antibiotic Lipopeptide Iturin A. Biochim. Biophys. Acta Biomembr. 2005, 1713, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Eeman, M.; Olofsson, G.; Sparr, E.; Nasir, M.N.; Nylander, T.; Deleu, M. Interaction of Fengycin with Stratum Corneum Mimicking Model Membranes: A Calorimetry Study. Colloids Surf. B Biointerfaces 2014, 121, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, S.N. Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity; Springer: New York, NY, USA, 2010; pp. 304–315. [Google Scholar]
- Saini, H.S.; Barragán-Huerta, B.E.; Lebrón-Paler, A.; Pemberton, J.E.; Vázquez, R.R.; Burns, A.M.; Marron, M.T.; Seliga, C.J.; Gunatilaka, A.A.L.; Maier, R.M.; et al. Efficient Purification of the Biosurfactant Viscosin from Pseudomonas Libanensis Strain M9-3 and Its Physicochemical and Biological Properties. J. Nat. Prod. 2008, 71, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.S.V.; Silveira, E.; Pereira, B.B. Toxicity and Applications of Surfactin for Health and Environmental Biotechnology. J. Toxicol. Environ. Health Part. B Crit. Rev. 2018, 21, 382–399. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mawgoud, A.M.; Aboulwafa, M.M.; Hassouna, N.A.-H. Characterization of Surfactin Produced by Bacillus Subtilis Isolate BS5. Appl. Biochem. Biotechnol. 2008, 150, 289–303. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Lipopeptides in Cosmetics. Int. J. Cosmet. Sci. 2010, 32, 1–8. [Google Scholar] [CrossRef]
- Satpute, S.K.; Kulkarni, G.R.; Banpurkar, A.G.; Banat, I.M.; Mone, N.S.; Patil, R.H.; Cameotra, S.S. Biosurfactant/s from Lactobacilli Species: Properties, Challenges and Potential Biomedical Applications. J. Basic Microbiol. 2016, 56, 1140–1158. [Google Scholar] [CrossRef]
- Hajfarajollah, H.; Eslami, P.; Mokhtarani, B.; Akbari Noghabi, K. Biosurfactants from Probiotic Bacteria: A Review. Biotechnol. Appl. Biochem. 2018, 65, 768–783. [Google Scholar] [CrossRef]
- Campos, C.A.; Lara, V.M.; Gliemmo, M.F. Lactic acid bacteria as source of biosurfactants. In The Many Benefits of Lactic Acid Bacteria; Nova Science Pub Inc: Hauppauge, NY, USA, 2019; pp. 91–110. ISBN 9781536153897. [Google Scholar]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties. Tenside Surfactants Deterg. 2018, 55, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Karlapudi, A.P.; Venkateswarulu, T.C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.; Kodali, V.P. Role of Biosurfactants in Bioremediation of Oil Pollution-a Review. Petroleum 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Ferreira, A.; Vecino, X.; Ferreira, D.; Cruz, J.M.M.; Moldes, A.B.B.; Rodrigues, L.R.R. Novel Cosmetic Formulations Containing a Biosurfactant from Lactobacillus Paracasei. Colloids Surf. B Biointerfaces 2017, 155, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Saharan, B.S.; Chauhan, N.; Bansal, A.; Procha, S. Production and Structural Characterization of Lactobacillus Helveticus Derived Biosurfactant. ScientificWorldJournal 2014, 2014, 493548. [Google Scholar] [CrossRef] [Green Version]
- Madhu, A.N.; Prapulla, S.G. Evaluation and Functional Characterization of a Biosurfactant Produced by Lactobacillus Plantarum CFR 2194. Appl. Biochem. Biotechnol. 2014, 172, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Velraeds, M.M.C.; van der Mei, H.C.; Reid, G.; Busscher, H.J.; Mei, H.C.; van der Reid, G.; Busscher, H.J.; van der Mei, H.C.; Reid, G.; Busscher, H.J. Physicochemical and Biochemical Characterization of Biosurfactants Released by Lactobacillus Strains. Colloids Surf. B Biointerfaces 1996, 8, 51–61. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Teixeira, J.A.; Rodrigues, L.R. Isolation and Functional Characterization of a Biosurfactant Produced by Lactobacillus Paracasei. Colloids Surf. B Biointerfaces 2010, 76, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecino, X.; Rodríguez-López, L.; Ferreira, D.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Bioactivity of Glycolipopeptide Cell-Bound Biosurfactants against Skin Pathogens. Int. J. Biol. Macromol. 2018, 109. [Google Scholar] [CrossRef]
- Vecino, X.; Bustos, G.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B. Salt-Free Aqueous Extraction of a Cell-Bound Biosurfactant: A Kinetic Study. J. Surfactants Deterg. 2015, 18, 267–274. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Preservative and Irritant Capacity of Biosurfactants From Different Sources: A Comparative Study. J. Pharm. Sci. 2019, 108, 2296–2304. [Google Scholar] [CrossRef] [PubMed]
- Mata-Sandoval, J.C.; Karns, J.; Torrents, A. Effect of Nutritional and Environmental Conditions on the Production and Composition of Rhamnolipids by P. Aeruginosa UG2. Microbiol. Res. 2001, 155, 249–256. [Google Scholar] [CrossRef]
- Singh, A.K.; Rautela, R.; Cameotra, S.S. Substrate Dependent in Vitro Antifungal Activity of Bacillus Sp Strain AR2. Microb. Cell Fact. 2014, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Vecino Bello, X.; Devesa-Rey, R.; Cruz, J.M.J.M.; Moldes, A.B.B. Study of the Synergistic Effects of Salinity, PH, and Temperature on the Surface-Active Properties of Biosurfactants Produced by Lactobacillus Pentosus. J. Agric. Food Chem. 2012, 60, 1258–1265. [Google Scholar] [CrossRef]
- Ali, A.H.; Zou, X.; Lu, J.; Abed, S.M.; Yao, Y.; Tao, G.; Jin, Q.; Wang, X. Identification of Phospholipids Classes and Molecular Species in Different Types of Egg Yolk by Using UPLC-Q-TOF-MS. Food Chem. 2017, 221, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar Lipids in Cosmetics: Recent Trends in Extraction, Separation, Analysis and Main Applications. Phytochem. Rev. 2018, 17, 1179–1210. [Google Scholar] [CrossRef]
- Ali, A.H.; Zou, X.; Abed, S.M.; Korma, S.A.; Jin, Q.; Wang, X. Natural Phospholipids: Occurrence, Biosynthesis, Separation, Identification, and Beneficial Health Aspects. Crit. Rev. Food Sci. Nutr. 2019, 59, 253–275. [Google Scholar] [CrossRef]
- van Hoogevest, P.; Fahr, A. Phospholipids in Cosmetic Carriers. In Nanocosmetics; Cornier, J., Keck, C., Van de Voorde, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 95–140. ISBN 9783030165734. [Google Scholar]
- Rodríguez Patino, J.M.; Carrera Sánchez, C.; Rodríguez Niño, M.R. Implications of Interfacial Characteristics of Food Foaming Agents in Foam Formulations. Adv. Colloid Interface Sci. 2008, 140, 95–113. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Selvarajan, R.; Chikere, C.B. Microbial Surfactants: The next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019, 7, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosaric, N.; Sukan, F.V. Biosurfactants: Production, Properties and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 1993; ISBN 9780585355702. [Google Scholar]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecino, X.; Barbosa-Pereira, L.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B. Optimization of Liquid–Liquid Extraction of Biosurfactants from Corn Steep Liquor. Bioprocess. Biosyst. Eng. 2015, 38, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Vecino, X.; Barbosa-Pereira, L.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B. Study of the Surfactant Properties of Aqueous Stream from the Corn Milling Industry. J. Agric. Food Chem. 2014, 62, 5451–5457. [Google Scholar] [CrossRef]
- Moldes, A.B.; Cruz, J.M.; Devesa, R.; Vecino, X. Method for Separating the Surfactants Present in the Washing Liquors of Corn, and Uses. WO2014044876A1, 27 March 2014. [Google Scholar]
- López-Prieto, A.; Martínez-Padrón, H.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. Isolation and Characterization of a Microorganism That Produces Biosurfactants in Corn Steep Water. CYTA J. Food 2019, 17, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Influence of Micelle Formation on the Adsorption Capacity of a Biosurfactant Extracted from Corn on Dyed Hair. RSC Adv. 2017, 7, 16444–16452. [Google Scholar] [CrossRef] [Green Version]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Novel Multifunctional Biosurfactant Obtained from Corn as a Stabilizing Agent for Antidandruff Formulations Based on Zn Pyrithione Powder. ACS Omega 2020, 5, 5704–5712. [Google Scholar] [CrossRef]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Design and Characterization of Greener Sunscreen Formulations Based on Mica Powder and a Biosurfactant Extract. Powder Technol. 2018, 327, 442–448. [Google Scholar] [CrossRef]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Study of the Synergic Effect between Mica and Biosurfactant to Stabilize Pickering Emulsions Containing Vitamin E Using a Triangular Design. J. Colloid Interface Sci. 2019, 537, 34–42. [Google Scholar] [CrossRef]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Potential Application of a Multifunctional Biosurfactant Extract Obtained from Corn as Stabilizing Agent of Vitamin C in Cosmetic Formulations. Sustain. Chem. Pharm. 2020, 16, 100248. [Google Scholar] [CrossRef]
- Lorena, R.-L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Study of Biosurfactant Extract from Corn Steep Water as a Potential Ingredient in Antiacne Formulations. J. Dermatolog. Treat. 2020, 1–8. [Google Scholar] [CrossRef]
- Piljac, T.; Piljac, G. Use of Rhamnolipids in Wound Healing, Treating Burn Shock, Atherosclerosis, Organ Transplants, Depression, Schizophrenia and Cosmetics. Patent EP 1,889,623A3, 8 April 2009. [Google Scholar]
- Desanto, K. Rhamnolipid-Based Formulations. Patent US 7,985,722B2, 26 July 2011. [Google Scholar]
- Nickzad, A.; Déziel, E. The Involvement of Rhamnolipids in Microbial Cell Adhesion and Biofilm Development—An Approach for Control? Lett. Appl. Microbiol. 2014, 58, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Allef, P.; Hartung, C.; Schilling, M. Aqueous Hair and Skin Cleaning Compositions Comprising Biosurfactants. Patent US 9,271,908B2, 1 March 2016. [Google Scholar]
- Cox, T.F.; Crawford, R.J.; Gregory, L.G.; Hosking, S.L.; Kotsakis, P. Mild to the Skin, Foaming Detergent Composition. Patent US 8,563,490B2, 22 October 2013. [Google Scholar]
- Kulkarni, S.; Choudhary, P. Production and Isolation of Biosurfactant-Sophorolipid and Its Application in Body Wash Formulation. Asian J. Microb. Biotechnol. Environ. Sci. 2011, 13, 217–221. [Google Scholar]
- Hagler, M.; Smith-Norowitz, T.A.; Chice, S.; Wallner, S.R.; Viterbo, D.; Mueller, C.M.; Gross, R.; Nowakowski, M.; Schulze, R.; Zenilman, M.E.; et al. Sophorolipids Decrease IgE Production in U266 Cells by Downregulation of BSAP (Pax5), TLR-2, STAT3 and IL-6. J. Allergy Clin. Immunol. 2007, 119, S263. [Google Scholar] [CrossRef]
- Parry, N.J.; Stevenson, P.S. Personal Care Compositions. Patent EP 2,931,237B1, 4 April 2018. [Google Scholar]
- Mimee, B.; Labbé, C.; Pelletier, R.; Bélanger, R.R. Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma Flocculosa. Antimicrob. Agents Chemother. 2005, 49, 1597–1599. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Peña, L.; Guzmán, E.; Leonforte, F.; Serrano-Pueyo, A.; Regulski, K.; Tournier-Couturier, L.; Ortega, F.; Rubio, R.G.; Luengo, G.S. Effect of Molecular Structure of Eco-Friendly Glycolipid Biosurfactants on the Adsorption of Hair-Care Conditioning Polymers. Colloids Surf. B Biointerfaces 2020, 185, 110578. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, J.; Lin, D.; Chen, L.; Xie, X.; Shen, X.; Yang, Q.; Wu, Q.; Yang, J.; He, J.; et al. Super Short Membrane-Active Lipopeptides Inhibiting the Entry of Influenza A Virus. Biochim. Biophys. Acta Biomembr. 2015, 1848, 2344–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Graña, S.; Perez-Ameneiro, M.; Vecino, X.; Pastoriza-Santos, I.; Perez-Juste, J.; Cruz, J.M.; Moldes, A.B. Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. Nanomaterials 2017, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Knoth, D.; Rincón-Fontán, M.; Stahr, P.L.; Pelikh, O.; Eckert, R.W.; Dietrich, H.; Cruz, J.M.; Moldes, A.B.; Keck, C.M. Evaluation of a Biosurfactant Extract Obtained from Corn for Dermal Application. Int. J. Pharm. 2019, 564, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, L.; Shokry, D.S.; Cruz, J.M.; Moldes, A.B.; Waters, L.J. The Effect of the Presence of Biosurfactant on the Permeation of Pharmaceutical Compounds through Silicone Membrane. Colloids Surf. B Biointerfaces 2019, 176, 456–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, P.; Mukherjee, S.; Sen, R. Antimicrobial Potential of a Lipopeptide Biosurfactant Derived from a Marine Bacillus Circulans. J. Appl. Microbiol. 2008, 104, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Glycolipid Biosurfactants, Mannosylerythritol Lipids, Show Antioxidant and Protective Effects against H(2)O(2)-Induced Oxidative Stress in Cultured Human Skin Fibroblasts. J. Oleo Sci. 2012, 61, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, M.; Suzuki, M.; Yamamoto, S.; Sogabe, A.; Kitamoto, D.; Imura, T.; Fukuoka, T.; Morita, T. Biosurfactant-Containing Skin Care Cosmetic and Skin Roughness-Improving Agent. Patent US 20,100,004,472, 7 January 2010. [Google Scholar]
- Kitagawa, M.; Nishimoto, K.; Tanaka, T. Cosmetic Pigments, Their Production Method, and Cosmetics Containing the Cosmetic Pigments. Patent US 9,181,436B2, 10 November 2015. [Google Scholar]
- Kitamoto, D.; Yanagishita, H.; Shinbo, T.; Nakane, T.; Kamisawa, C.; Nakahara, T. Surface Active Properties and Antimicrobial Activities of Mannosylerythritol Lipids as Biosurfactants Produced by Candida Antarctica. J. Biotechnol. 1993, 29, 91–96. [Google Scholar] [CrossRef]
- Owen, D.; Fan, L. Oligomeric Biosurfactants in Dermatocosmetic Compositions. U.S. Patent No. 8,431,523, 30 April 2013. [Google Scholar]
- Lourith, N.; Kanlayavattanakul, M. Natural Surfactants Used in Cosmetics: Glycolipids. Int. J. Cosmet. Sci. 2009, 31, 255–261. [Google Scholar] [CrossRef]
- Das, I.; Roy, S.; Chandni, S.; Karthik, L.; Kumar, G.; Bhaskara Rao, K.V. Biosurfactant from Marine Actinobacteria and Its Application in Cosmetic Formulation of Toothpaste. Der Pharm. Lett. 2013, 5, 1–6. [Google Scholar]
- Farias, J.M.; Stamford, T.C.M.; Resende, A.H.M.; Aguiar, J.S.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Mouthwash Containing a Biosurfactant and Chitosan: An Eco-Sustainable Option for the Control of Cariogenic Microorganisms. Int. J. Biol. Macromol. 2019, 129, 853–860. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Moldes, A.B.; Cruz, J.M. Biodegradability Study of the Biosurfactant Contained in a Crude Extract from Corn Steep Water. J. Surfactants Deterg. 2020, 23, 79–90. [Google Scholar] [CrossRef]
- Yuan, C.L.; Xu, Z.Z.; Fan, M.X.; Liu, H.Y.; Xie, Y.H.; Zhu, T. Study on Characteristics and Harm of Surfactants. J. Chem. Pharm. Res. 2014, 6, 2233–2237. [Google Scholar]
- Martínez-González, M.I.; González-Pérez, R.; García-Rio, I.; Heras-González, S. Allergic Contact Dermatitis Caused by Benzoic Acid and Lauryl Glucoside in a Sunscreen. Contact Dermat. 2017, 77, 186–187. [Google Scholar] [CrossRef]
- Kosumi, H.; Yanagi, T.; Izumi, K.; Ito, T.; Shimizu, H. Hair Colour Shampoo Dermatitis. Contact Dermat. 2017, 77, 419–421. [Google Scholar] [CrossRef]
- Mangodt, E.A.; Dendooven, E.; De Fré, C.; Lambert, J.; Aerts, O. Capryloyl Glycine: A Polyfunctional Cosmetic Ingredient and Potential Skin Sensitizer. Contact Dermat. 2019, 80, 400–402. [Google Scholar] [CrossRef]
- Rieger, M.M.; Rhein, L.D. Surfactants in Cosmetics, 2nd ed.; Rieger, M.M., Rhein, L.D., Eds.; Marcel Dekker: New York, NY, USA, 1997; ISBN 9781351412490. [Google Scholar]
- Swak, J.G.; Herbert, K.L. Optical Damage and Recovery of the in Vitro Bovine Ocular Lens for Alcohols, Surfactants, Acetates, Ketones, Aromatics, and Some Consumer Products: A Review. J. Toxicol. Cutan. Ocul. Toxicol. 1997, 16, 173–187. [Google Scholar] [CrossRef]
- Warshaw, E.M.; Goodier, M.C.; DeKoven, J.G.; Maibach, H.I.; Taylor, J.S.; Sasseville, D.; Belsito, D.V.; Fowler, J.F.; Fransway, A.F.; DeLeo, V.A.; et al. Contact Dermatitis Associated with Skin Cleansers: Retrospective Analysis of North American Contact Dermatitis Group Data 2000-2014. Dermatitis 2018, 29, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Förster, T.; Issberner, U.; Hensen, H. Lipid/Surfactant Compounds as a New Tool to Optimize Skin-Care Properties of Personal-Cleansing Products. J. Surfactants Deterg. 2000, 3, 345–352. [Google Scholar] [CrossRef]
- Lee, C.H.; Kawasaki, Y.; Maibach, H.I. Effect of Surfactant Mixtures on Irritant Contact Dermatitis Potential in Man: Sodium Lauroyl Glutamate and Sodium Lauryl Sulphate. Contact Dermat. 1994, 30, 205–209. [Google Scholar] [CrossRef]
- Burnett, C.L.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Amino Acid Alkyl Amides as Used in Cosmetics. Int. J. Toxicol. 2017, 36, 17S–56S. [Google Scholar] [CrossRef]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Alkyl Betaines as Used in Cosmetics. Int. J. Toxicol. 2018, 37, 28S–46S. [Google Scholar] [CrossRef]
- Cotovio, J.; Grandidier, M.-H.; Lelièvre, D.; Bremond, C.; Amsellem, C.; Maloug, S.; Ovigne, J.-M.; Loisel-Joubert, S.; Van Der Lee, A.; Minondo, A.-M.; et al. In Vitro Assessment of Eye Irritancy Using the Reconstructed Human Corneal Epithelial SkinEthicTM HCE Model: Application to 435 Substances from Consumer Products Industry. Toxicol. Vitr. 2010, 24, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Mellou, F.; Varvaresou, A.; Papageorgiou, S. Renewable Sources: Applications in Personal Care Formulations. Int. J. Cosmet. Sci. 2019, 41, 517–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, A.; Sarmento, B.; Rodrigues, F. Insights on in Vitro Models for Safety and Toxicity Assessment of Cosmetic Ingredients. Int. J. Pharm. 2017, 519, 178–185. [Google Scholar] [CrossRef]
- Espinosa-leal, C.A.; Garcia-lara, S. Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications Authors Cosmeceutical Development. Planta Med. 2019, 85, 535–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Jeon, J.W.; Kim, S.; Oh, H.M.; Kwon, T.J.; Yoon, B.D. Surface and Physico-Chemical Properties of a Glycolipid Biosurfactant, Mannosylerythritol Lipid, from Candida Antarctica. Biotechnol. Lett. 2002, 24, 1637–1641. [Google Scholar] [CrossRef]
- Morita, T.; Kitagawa, M.; Suzuki, M.; Yamamoto, S.; Sogabe, A.; Yanagidani, S.; Imura, T.; Fukuoka, T.; Kitamoto, D. A Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, Shows Potential Moisturizing Activity toward Cultured Human Skin Cells: The Recovery Effect of MEL-A on the SDS-Damaged Human Skin Cells. J. Oleo Sci. 2009, 58, 639–642. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Morita, T.; Fukuoka, T.; Imura, T.; Yanagidani, S.; Sogabe, A.; Kitamoto, D.; Kitagawa, M. The Moisturizing Effects of Glycolipid Biosurfactants, Mannosylerythritol Lipids, on Human Skin. J. Oleo Sci. 2012, 61, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos-Díaz, C.; Martín-Venegas, R.; Martínez, V.; Storniolo, C.E.; Teruel, J.A.; Aranda, F.J.; Ortiz, A.; Manresa, Á.; Ferrer, R.; Marqués, A.M. In Vitro Study of the Cytotoxicity and Antiproliferative Effects of Surfactants Produced by Sphingobacterium Detergens. Int. J. Pharm. 2013, 453, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Gadhiya, J.; Dhanawat, M. Textbook of Cosmetic Formulations; Kbuuk Publications: Houston, TX, USA, 2016; ISBN 978-1-365-35591-2. [Google Scholar]
- Cornwell, P.A. A Review of Shampoo Surfactant Technology: Consumer Benefits, Raw Materials and Recent Developments. Int. J. Cosmet. Sci. 2018, 40, 16–30. [Google Scholar] [CrossRef]
- PCC Rokita SA. Surfactants for Cosmetic and Personal Applications; PCC Rokita SA: Brzeg Dolny, Poland, 2015; pp. 1–48. [Google Scholar]
- TER Group. Shower & Care: Natural Surfactants and Care Ingredients; TER Group: Hamburg, Germany, 2014; pp. 1–16. [Google Scholar]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, Natural Alternatives to Synthetic Surfactants: Physicochemical Properties and Applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef]
- Mohan, P.K.; Nakhla, G.; Yanful, E.K. Biokinetics of Biodegradation of Surfactants under Aerobic, Anoxic and Anaerobic Conditions. Water Res. 2006, 40, 533–540. [Google Scholar] [CrossRef]
- Otzen, D.E. Biosurfactants and Surfactants Interacting with Membranes and Proteins: Same but Different? Biochim. Biophys. Acta Biomembr. 2017, 1859, 639–649. [Google Scholar] [CrossRef]
- Boozalis, E.; Patel, S. Allergen of the Year Alkyl Glucoside Is an Ingredient in Top-Selling Sunscreens and Facial Moisturizers. J. Am. Acad. Dermatol. 2018, 78, 809–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, R. Biosurfactants, 1st ed.; Sen, R., Ed.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2010; Volume 672, ISBN 9781441959799. [Google Scholar]
Microbial Biosurfactant | Producer Microorganism | Molecular Formula | Molecular Weight (Da) | CMC (mol/L) | Ref. |
---|---|---|---|---|---|
Surfactin | Bacillus subtilis | C53H93N7O13 | 1036.8 | 9.4 × 10−6 | [78] |
Iturin A | Bacillus subtilis | C48H74N12O14 | 1043.2 | 2.5 × 10−7 | [79] |
Fengycin | Bacillus subtilis | C72H110N12O20 | 1463.7 | 1.2 × 10−6 | [80] |
Lichenysin C | Bacillus licheniformis | C52H91N8O12 | 1020.7 | 1.5 × 10−5 | [81] |
Viscosin | Pseudomonas libaniensis | C54H95N9O16 | 1126.4 | 4.8 × 10−5 | [82] |
Type of Microbial Biosurfactant | Application | Ref. |
---|---|---|
Rhamnolipid | Anti-ageing product | [120] |
Cleanser in shampoos | [121] | |
Anti-adhesive activity | [122] | |
Rhamnolipid/Sophorolipid | Cleanser for antidandruff shampoo Moisturizing skin cleanser Body cleanser | [123] |
Sophorolipid | Cleanser in shower gel and shampoo | [124] |
Body washer | [125] | |
Anti-inflammatory agent | [126] | |
Glycolipid | Cleanser in shampoo formulation | [127] |
Antifungal activity | [128] | |
Hair-care conditioning polymers | [129] | |
Lipopeptide | Hair care formulation | [21] |
Rosemary oil/water emulsions | [89] | |
Dyed hair care formulation | [114] | |
Stabilizing agent for antidandruff formulations based on Zn pyrithione powder | [115] | |
Sunscreen formulations based on mica powder | [116] | |
Pickering emulsions containing Vitamin E | [117] | |
Stabilizing agent of vitamin C | [118] | |
Antiacne formulation | [119] | |
Antiviral agent | [130] | |
Antimicrobial agent in silver plasmonic nanoparticles | [131] | |
Nanoemulsions and nanocrystals for dermal application | [132] | |
Permeation of pharmaceutical compounds by silicone membranes | [133] | |
Antimicrobial agent | [134] | |
Glycolipopeptide | Rosemary oil/water emulsions | [34,35] |
Cosmetic formulation with antioxidants | [91] | |
Bioactivity against skin pathogens (antimicrobial and anti-adhesive agent) | [96] | |
Glycolipopeptide/Lipopeptide | Rosemary oil/water emulsions | [89] |
Preservative and irritant agent | [98] | |
MELs | Anti-ageing product | [135] |
Prevent skin roughness | [136] | |
Makeup product | [137] | |
Antimicrobial agent | [138] | |
Oligomeric biosurfactant | Conditioning agent for hair products | [139] |
Surfactant | CAS Number | Category | Toxicity | Formulation | Ref. |
---|---|---|---|---|---|
Lauryl glucoside | 110615-47-9 | Bio-based | Skin reaction | Sunscreens | [145] |
C12-14 hydroxyalkyl hydroxyethyl sarcosine | --- | Synthetic | Allergic contact dermatitis | Ampholytic surfactants in soaps and shampoos | [146] |
Capryloyl glycine | 14246-53-8 | Not defined | Skin reaction | Polyfunctional ingredient in cosmetic leave-on and rinse-off products | [147] |
Octoxynol-9 | 9002-93-1 | Synthetic | Scarification | Shampoo and body washes | [148] |
Benzalkonium chloride | 63449-41-2 | Synthetic | Eye irritancy | Cationic surfactant employed in rash crème, foot odour powder, facial lotion, cleanser, among others | [149] |
Quaternium-15 | 4080-31-3/51229-78-8 | Synthetic | Skin allergy and irritant contact dermatitis | Skin cleanser | [150] |
Cocamidopropyl betaine | 61789-40-0 | Bio-based | Skin allergy and irritant contact dermatitis | Skin cleanser | |
Sodium lauryl ether sulfate | 68585-34-2 | Synthetic | Erythema and skin scaling | Shampoos and shower gels | [151] |
Sodium lauroyl glutamate | 29923-31-7 | Bio-based | Transepidermal water loss | Lotions, creams, shampoos | [152] |
Acetyl tyrosinamide | 1948-71-6 | Not defined | Erythema and edema postapplication | Gel and skin plumping cream formulation | [153] |
Coco-betaine | 68424-94-2 | Synthetic | Eczematous lesions | Shampoos | [154] |
Laureth-11 carboxylic acid | 27306-90-7 | Not defined | Eye irritancy | Bath and shower products | [155] |
Palmitamidopropyltrimonium chloride | 51277-96-4 | Not defined | Eye irritancy | Hair conditioner | |
Linoleamidopropyl PG-dimonium chloride phosphate | 243662-49-9 | Not defined | Eye irritancy | Bar soap, baby shampoo, After shave |
Formulation Type | Surfactant | CAS Number | Content (%) | Ref. |
---|---|---|---|---|
Clear liquid shampoo | Triethanolamine lauryl sulfate | 139-96-8 | 50 | [163] |
Liquid cream shampoo | Triethanolamine lauryl sulfate | 139-96-8 | 35 | |
Cream shampoo | Sodium lauryl sulfate | 151-21-3 | 38 | |
Gel shampoo | Triethanolamine lauryl sulfate | 139-96-8 | 28 | |
Foaming-type cream | Monoethanolamine lauryl sulfate + ethylene glycol monostearate | 4722-98-9 + 111-60-4 | 11 | |
Hair colorant | Stearic acid + triethanolamine + glyceryl mono stearate | 57-11-4 + 102-71-6 + 31566-31-1 | 28 | |
Colour shampoos | Ammonium lauryl alcohol sulfate | 2235-54-3 | 30 | |
Powder shampoo | Sodium lauryl sulfate | 151-21-3 | 20 | [163,164] |
Liquid hand soap | Sodium laureth sulfate + coco-betaine + lanolin + cocamide diethanolamine | 3088-31-1 + 68424-94-2 + 8006-54-0 + 68603-42-9 | 24 | [165] |
Cleansing gel | Sodium laureth sulfate + cocamidopropyl betaine | 3088-31-1 + 61789-40-0 | 19 | |
Shower scrub | Sodium laureth sulfate + sodium cocoyl glutamate + cocamidopropyl betaine | 3088-31-1 + 68187-30-4 + 61789-40-0 | 41 | [166] |
Shower gel | Sodium coco-sulfate + coco glucoside + glycerol oleate | 97375-27-4 + 110615-47-9 + 25496-72-4 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. https://doi.org/10.3390/ijms22052371
Moldes AB, Rodríguez-López L, Rincón-Fontán M, López-Prieto A, Vecino X, Cruz JM. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. International Journal of Molecular Sciences. 2021; 22(5):2371. https://doi.org/10.3390/ijms22052371
Chicago/Turabian StyleMoldes, Ana B., Lorena Rodríguez-López, Myriam Rincón-Fontán, Alejandro López-Prieto, Xanel Vecino, and José M. Cruz. 2021. "Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview" International Journal of Molecular Sciences 22, no. 5: 2371. https://doi.org/10.3390/ijms22052371
APA StyleMoldes, A. B., Rodríguez-López, L., Rincón-Fontán, M., López-Prieto, A., Vecino, X., & Cruz, J. M. (2021). Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. International Journal of Molecular Sciences, 22(5), 2371. https://doi.org/10.3390/ijms22052371