Microbial Production of Melanin Pigments from Caffeic Acid and L-Tyrosine Using Streptomyces glaucescens and FCS-ECH-Expressing Escherichia coli
Abstract
:1. Introduction
2. Results
2.1. S. glaucescens Culture and Caffeic Acid-Based Melanin Production
2.2. ABTS Radical Scavenging Capacity of Caffeic Acid-Based Melanin
2.3. Dyeing Performance and Fastness of Synthetic Melanin on Cotton
2.4. Caffeic Acid Melanin Complex Production
2.5. Construction of a Synthetic Pathway for the Formation of the Melanin-Diamine Complex from L-Tyrosine and L-Lysine
2.6. Effect of TAL/C3H, FCS/ECH, and CadA Enzymes on the Production of the Melanin-Diamine Complex
2.7. Structural Analysis of Melanin Pigments
3. Discussion
4. Materials and Methods
4.1. Strains and Chemicals
4.2. Construction of Expression Plasmids of TAL-C3H, FCS-ECH, and MelC-CadA Coding Genes
4.3. Cell Culture, Protein Expression, and SDS-PAGE Analysis
4.4. Bioproduction of Melanin through the Whole Cell Biotransformation of Substrates
4.5. Extraction and Quantification of Melanin
4.6. Determination of the ABTS Radical Scavenging Capacity of Melanin
4.7. Fabric Dyeing Using Melanin
4.8. Color Difference Test and Determination of Dyeing Fastness to Evaluate Dyeing Performance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nosanchuk, J.D.; Stark, R.E.; Casadevall, A. Fungal Melanin: What do We Know About Structure? Front. Microbiol. 2015, 6, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.D.; Rozanowska, M. Perspectives on the structure and function of melanin. Pigment. Cell Melanoma Res. 2008, 21, 346–347. [Google Scholar] [CrossRef]
- Powell, B.J.; Baruah, T.; Bernstein, N.; Brake, K.; McKenzie, R.H.; Meredith, P.; Pederson, M.R. A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers. J. Chem. Phys. 2004, 120, 8608–8615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Martínez, S.; Wakamatsu, K.; Galván, I. Increase of the benzothiazole moiety content of pheomelanin pigment after endogenous free radical inducement. Dyes Pigment. 2020, 180, 108516. [Google Scholar] [CrossRef]
- Varga, M.; Berkesi, O.; Darula, Z.; May, N.V.; Palagyi, A. Structural characterization of allomelanin from black oat. Phytochemistry 2016, 130, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzumaki, T.; Matsuda, A.; Wakamatsu, K.; Ito, S.; Ishikawa, K. Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp. Cell Res. 1993, 207, 33–40. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.; El-Ewasy, S.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci. Rep. 2017, 7, 42129. [Google Scholar] [CrossRef]
- Gessler, N.N.; Egorova, A.S.; Belozerskaia, T.A. Melanin pigments of fungi under extreme environmental conditions (review). Prikl. Biokhimiia Mikrobiol. 2014, 50, 125–134. [Google Scholar]
- Prateeksha; Bajpai, R.; Yusuf, M.A.; Upreti, D.K.; Gupta, V.K.; Singh, B.N. Endolichenic fungus, Aspergillus quandricinctus of Usnea longissima inhibits quorum sensing and biofilm formation of Pseudomonas aeruginosa PAO1. Microb. Pathog. 2020, 140, 103933. [Google Scholar] [CrossRef]
- Perez-Cuesta, U.; Aparicio-Fernandez, L.; Guruceaga, X.; Martin-Souto, L.; Abad-Diaz-de-Cerio, A.; Antoran, A.; Buldain, I.; Hernando, F.L.; Ramirez-Garcia, A.; Rementeria, A. Melanin and pyomelanin in Aspergillus fumigatus: From its genetics to host interaction. Int. Microbiol. 2020, 23, 55–63. [Google Scholar] [CrossRef]
- Ribera, J.; Panzarasa, G.; Stobbe, A.; Osypova, A.; Rupper, P.; Klose, D.; Schwarze, F. Scalable Biosynthesis of Melanin by the Basidiomycete Armillaria cepistipes. J. Agric. food Chem. 2019, 67, 132–139. [Google Scholar] [CrossRef]
- Pearce, M.H. In vitro interactions between Armillaria luteobubalina and other wood decay fungi. Mycol. Res. 1990, 94, 753–761. [Google Scholar] [CrossRef]
- Ganesh Kumar, C.; Sahu, N.; Narender Reddy, G.; Prasad, R.B.; Nagesh, N.; Kamal, A. Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis. Lett. Appl. Microbiol. 2013, 57, 295–302. [Google Scholar] [CrossRef]
- Fairhead, M.; Thöny-Meyer, L. Bacterial tyrosinases: Old enzymes with new relevance to biotechnology. New Biotechnol. 2012, 29, 183–191. [Google Scholar] [CrossRef]
- Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Bacterial tyrosinases and their applications. Process. Biochem. 2012, 47, 1749–1760. [Google Scholar] [CrossRef]
- Min, K.; Park, G.W.; Yoo, Y.J.; Lee, J.-S. A perspective on the biotechnological applications of the versatile tyrosinase. Bioresour. Technol. 2019, 289, 121730. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.-Y.; Choi, M.; Jeong, D.-w.; Park, S.; Park, H.; Jang, K.-S.; Choi, K.-Y. Synthesis and chemical composition analysis of protocatechualdehyde-based novel melanin dye by 15T FT-ICR: High dyeing performance on soft contact lens. Dyes Pigment. 2019, 160, 546–554. [Google Scholar] [CrossRef]
- Jang, S.; Gang, H.; Kim, B.-G.; Choi, K.-Y. FCS and ECH dependent production of phenolic aldehyde and melanin pigment from l-tyrosine in Escherichia coli. Enzym. Microb. Tech. 2018, 112, 59–64. [Google Scholar] [CrossRef]
- Seo, D.; Choi, K.-Y. Heterologous production of pyomelanin biopolymer using 4-hydroxyphenylpyruvate dioxygenase isolated from Ralstonia pickettii in Escherichia coli. Biochem. Eng. J. 2020, 157, 107548. [Google Scholar] [CrossRef]
- Namgung, S.; Park, H.A.; Kim, J.; Lee, P.-G.; Kim, B.-G.; Yang, Y.-H.; Choi, K.-Y. Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase. Dyes Pigment. 2019, 162, 80–88. [Google Scholar] [CrossRef]
- Serpentini, C.-L.; Gauchet, C.; de Montauzon, D.; Comtat, M.; Ginestar, J.; Paillous, N. First electrochemical investigation of the redox properties of DOPA–melanins by means of a carbon paste electrode. Electrochim. Acta 2000, 45, 1663–1668. [Google Scholar] [CrossRef]
- Madkhali, N.; Alqahtani, H.R.; Alterary, S.; Albrithen, H.A.; Laref, A.; Hassib, A. Characterization and electrochemical deposition of natural melanin thin films. Arab. J. Chem. 2020, 13, 4987–4993. [Google Scholar] [CrossRef]
- Robinson, G.M.; Iwuoha, E.I.; Smyth, M.R. Characterisation of electrosynthetic l-dopa-melanin films by electrochemical and spectroelectrochemical techniques. Electrochim. Acta 1998, 43, 3489–3496. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Zhang, Y.; Qi, C.; Tang, R.; Zhao, B.; Wang, H.; Han, Y. Microbial dyeing—Infection behavior and influence of Lasiodiplodia theobromae in poplar veneer. Dyes Pigment. 2020, 173, 107988. [Google Scholar] [CrossRef]
- Caldas, M.; Santos, A.C.; Veiga, F.; Rebelo, R.; Reis, R.L.; Correlo, V.M. Melanin nanoparticles as a promising tool for biomedical applications—A review. Acta Biomater. 2020, 105, 26–43. [Google Scholar] [CrossRef]
- Hong, Z.-Y.; Feng, H.-Y.; Bu, L.-H. Melanin-based nanomaterials: The promising nanoplatforms for cancer diagnosis and therapy. Nanomed. Nanotechnol. Biol. Med. 2020, 28, 102211. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Kim, Y.H.; Kim, H.J.; Seo, H.M.; Kim, J.H.; Song, H.S.; Sathiyanarayanan, G.; Park, S.H.; Park, K.; Yang, Y.H. Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA. Bioprocess. Biosyst. Eng. 2015, 38, 2315–2322. [Google Scholar] [CrossRef]
- Hua, Y.; Ma, C.; Wei, T.; Zhang, L.; Shen, J. Collagen/Chitosan Complexes: Preparation, Antioxidant Activity, Tyrosinase Inhibition Activity, and Melanin Synthesis. Int. J. Mol. Sci. 2020, 21, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.Y.; Qi, J.H. Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell. Molecules 2016, 21, 487. [Google Scholar] [CrossRef] [Green Version]
- Liberti, D.; Alfieri, M.L.; Monti, D.M.; Panzella, L.; Napolitano, A. A Melanin-Related Phenolic Polymer with Potent Photoprotective and Antioxidant Activities for Dermo-Cosmetic Applications. Antioxidants 2020, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.P.; Bao, Y.H.; Kong, X.H.; Tian, J.J.; Han, B.; Zhang, J.C.; Chen, X.J.; Zhang, P.Q.; Wang, H.; Dai, X.D.; et al. Optimization of Melanin Extraction from the Wood Ear Medicinal Mushroom, Auricularia auricula-judae (Agaricomycetes), by Response Surface Methodology and Its Antioxidant Activities In Vitro. Int. J. Med. Mushrooms 2018, 20, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Wang, Q.; Fan, X.; Dong, A.; Yu, Y.; Wang, P. Laccase-mediated in situ oxidation of dopa for bio-inspired coloration of silk fabric. RSC Adv. 2017, 7, 12977–12983. [Google Scholar] [CrossRef] [Green Version]
- Eisenman, H.C.; Mues, M.; Weber, S.E.; Frases, S.; Chaskes, S.; Gerfen, G.; Casadevall, A. Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiology 2007, 153, 3954–3962. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Espinoza, M.C.; Rouau, X. Effect of cysteinyl caffeic acid, caffeic acid, and L-dopa on the oxidative cross-linking of feruloylated arabinoxylans by a fungal laccase. J. Agric. Food Chem. 1999, 47, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, M.; Paez, J.I.; Avolio, R.; Carpentieri, A.; Panzella, L.; Falco, G.; Pizzo, E.; Errico, M.E.; Napolitano, A.; del Campo, A.; et al. Multifunctional Thin Films and Coatings from Caffeic Acid and a Cross-Linking Diamine. Langmuir ACS J. Surf. Colloids 2017, 33, 2096–2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Z.G.; Xia, X.X.; Lee, S.Y. Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnol. Bioeng. 2011, 108, 93–103. [Google Scholar] [CrossRef]
- Kim, J.; Seo, H.-M.; Bhatia, S.K.; Song, H.-S.; Kim, J.-H.; Jeon, J.-M.; Choi, K.-Y.; Kim, W.; Yoon, J.-J.; Kim, Y.-G.; et al. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Cotton Samples | L1 | a2 | b3 | ∆E | Washing Robustness (%) | |
---|---|---|---|---|---|---|
1 | 38.45 ± 6.64 | 0.97 ± 0.43 | 6.96 ± 0.93 | 39.08 ± 6.69 | ND4 | |
2 | 28.12 ± 3.37 | 0.31 ± 0.23 | 6.93 ± 0.53 | 28.96 ± 3.39 | ND | |
Before | 3 | 61.77 ± 2.73 | −0.75 ± 0.28 | 14.67 ± 0.25 | 63.50 ± 2.60 | ND |
washing | 4 | 46.13 ± 5.37 | −0.83 ± 0.63 | 10.19 ± 0.44 | 47.26 ± 5.16 | ND |
5 | 30.15 ± 2.45 | −1.02 ±0.05 | 8.06 ± 0.02 | 31.23 ± 2.36 | ND | |
6 | 37.71 ±3.15 | 0.54 ± 0.02 | 11.59 ± 0.06 | 39.46 ± 2.99 | ND | |
1 | 63.71 ±1.74 | 0.72 ± 0.81 | 3.34 ± 0.19 | 63.80 ± 1.74 | 34.3 | |
2 | 67.05 ± 0.26 | −1.12 ± 0.04 | 4.05 ± 0.11 | 67.18 ± 0.25 | 0 | |
After | 3 | 69.81 ± 2.79 | −0.94 ± 0.23 | 8.19 ± 0.22 | 70.29 ± 2.75 | 87.0 |
washing | 4 | 50.44 ± 9.87 | −0.96 ± 0.04 | 8.71 ± 0.18 | 51.21 ± 9.69 | 90.7 |
5 | 47.90 ±4.06 | 0.17 ± 0.35 | 6.67 ± 0.03 | 48.36 ± 4.02 | 41.1 | |
6 | 58.64 ±2.57 | −0.02 ± 0.36 | 7.00 ±0.04 | 59.05 ± 2.55 | 44.5 |
# | Overexpressed Enzymes | Melanin Unit | Substrate | Production (mg/L) |
---|---|---|---|---|
1 | TAL/C3H, MelC | Caffeic acid | L-tyrosine | <370 |
2 | TAL/C3H, MelC, FCS, ECH | Protocatechualdehyde | L-tyrosine | <140 |
3 | TAL/C3H, MelC, CadA | Caffeic acid | L-tyrosine, L-lysine | <20 |
4 | TAL/C3H, MelC, CadA, FCS/ECH | Protocatechualdehyde | L-tyrosine, L-lysine | <20 |
5 | MelC | L-DOPA | L-tyrosine | <120 |
6 | MelC, FCS, ECH | L-DOPA | L-tyrosine | <60 |
7 | MelC, CadA, FCS, ECH | L-DOPA | L-tyrosine, L-lysine | <20 |
8 | MelC, CadA | L-DOPA | L-tyrosine, L-lysine | <20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-Y.; Jang, S.; Sudheer, P.D.V.N.; Choi, K.-Y. Microbial Production of Melanin Pigments from Caffeic Acid and L-Tyrosine Using Streptomyces glaucescens and FCS-ECH-Expressing Escherichia coli. Int. J. Mol. Sci. 2021, 22, 2413. https://doi.org/10.3390/ijms22052413
Ahn S-Y, Jang S, Sudheer PDVN, Choi K-Y. Microbial Production of Melanin Pigments from Caffeic Acid and L-Tyrosine Using Streptomyces glaucescens and FCS-ECH-Expressing Escherichia coli. International Journal of Molecular Sciences. 2021; 22(5):2413. https://doi.org/10.3390/ijms22052413
Chicago/Turabian StyleAhn, Soo-Yeon, Seyoung Jang, Pamidimarri D. V. N. Sudheer, and Kwon-Young Choi. 2021. "Microbial Production of Melanin Pigments from Caffeic Acid and L-Tyrosine Using Streptomyces glaucescens and FCS-ECH-Expressing Escherichia coli" International Journal of Molecular Sciences 22, no. 5: 2413. https://doi.org/10.3390/ijms22052413
APA StyleAhn, S. -Y., Jang, S., Sudheer, P. D. V. N., & Choi, K. -Y. (2021). Microbial Production of Melanin Pigments from Caffeic Acid and L-Tyrosine Using Streptomyces glaucescens and FCS-ECH-Expressing Escherichia coli. International Journal of Molecular Sciences, 22(5), 2413. https://doi.org/10.3390/ijms22052413