Impact of BMI on Survival Outcomes of Immunotherapy in Solid Tumors: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Melanoma
2.2. NSCLC
2.3. RCC
2.4. Other Solid Tumors
2.5. Correlation of BMI with irAEs Incidence
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowki, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Migden, M.R.; Khushalani, N.I.; Chang, A.L.S.; Lewis, K.D.; Schmults, C.D.; Hernandez-Aya, L.; Meier, F.; Schadendorf, D.; Guminski, A.; Haushild, A.; et al. Cemiplimab in locally advanced cutaneous squamous cell carcinoma: Results from an open-label, phase 2, single-arm trial. Lancet Oncol. 2020, 21, 294–305. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; Necchi, A.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupan, P.; Bratland, A.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Liu, L.; Shan, B. Future of immune checkpoint inhibitors: Focus on tumor immune microenvironment. Ann. Transl. Med. 2020, 8, 1095. [Google Scholar] [CrossRef]
- Wang, Z.; Aguilar, E.G.; Luna, J.I.; Dunai, C.; Khuat, L.C.; Le, C.T.; Mirsoian, A.; Minnar, C.M.; Stoffel, K.M.; Sturgill, I.R.; et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 2018, 372, 2521. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight; World Health Organisation: Geneva, Switzerland, 2020; Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 December 2020).
- Ades, P.A.; Savage, P.D. The obesity paradox: Perception vs knowledge. Mayo Clin. Proc. 2010, 85, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyengar, N.M.; Gucalp, A.; Dannenberg, A.J.; Hudis, C.A. Obesity and cancer mechanisms: Tumor microenvironment and inflammation. J. Clin. Oncol. 2016, 34, 4270–4276. [Google Scholar] [CrossRef] [PubMed]
- McQuade, J.L.; Daniel, C.R.; Hess, K.R.; Mak, C.; Wandg, D.Y.; Rai, R.R.; Park, J.J.; Haydu, L.E.; Spencer, C.; Wongchenko, M.; et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncol. 2018, 19, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Francisco, V.; Pino, J.; Campos-Cabaleiro, V.; Ruiz-Fernàndez, C.; Mera, A.; Gonzalez-Gay, M.A.; Gòmez, R.; Gualillo, O. Obesity, Fat Mass and Immune System: Role for Leptin. Front. Physiol. 2018, 9, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slawinski, C.G.V.; Barriuso, J.; Guo, H.; Renehan, A.G. Obesity and Cancer Treatment Outcomes: Interpreting the Complex Evidence. Clin. Oncol. (R. Coll. Radiol.) 2020, 32, 591–608. [Google Scholar] [CrossRef]
- Rutkowski, P.; Indini, A.; De Luca, M.; Merelli, B.; Mariuk-Jarema, A.; Teterycz, P.; Rogala, P.; Lugowska, I.; Cybulska-Stopa, B.; Labianca, A.; et al. Body mass index (BMI) and outcome of metastatic melanoma patients receiving targeted therapy and immunotherapy: A multicenter international retrospective study. J. Immunother. Cancer 2020, 8, e001117. [Google Scholar] [CrossRef]
- Richtig, G.; Hoeller, C.; Wolf, M.; Wolf, I.; Rainer, B.M.; Schulter, G.; Richtig, M.; Grübler, M.R.; Gappmayer, A.; Haidn, T.; et al. Body mass index may predict the response to ipilimumab in metastatic melanoma: An observational multi-centre study. PLoS ONE 2018, 13, e0204729. [Google Scholar] [CrossRef]
- Kondo, T.; Nomura, M.; Otsuka, A.; Nonomura, Y.; Kaku, Y.; Matsumoto, S.; Muto, M. Predicting marker for early progression in unresectable melanoma treated with nivolumab. Int. J. Clin. Oncol. 2019, 24, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Young, A.C.; Quach, H.T.; Song, H.; Davis, E.J.; Moslehi, J.J.; Ye, F.; Williams, G.R.; Johnson, D.B. Impact of body composition on outcomes from anti-PD1 +/− anti-CTLA-4 treatment in melanoma. J. Immunother. Cancer 2020, 8, e000821. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, A.; Ricciuti, B.; Tiseo, M.; Bria, E.; Banna, G.L.; Aerts, J.G.; Barbieri, F.; Giusti, R.; Cortinovis, D.L.; Migliorino, M.R.; et al. Baseline BMI and BMI variation during first line pembrolizumab in NSCLC patients with a PD-L1 expression ≥ 50%: A multicenter study with external validation. J. Immunother. Cancer 2020, 8, e001403. [Google Scholar] [CrossRef]
- Popinat, G.; Cousse, S.; Goldfarb, L.; Becker, S.; Gardin, I.; Salaün, M.; Thureau, S.; Vera, P.; Guisier, F.; Decazes, P. Sub-cutaneous Fat Mass measured on multislice computed tomography of pretreatment PET/CT is a prognostic factor of stage IV non-small cell lung cancer treated by nivolumab. Oncoimmunology 2019, 8, e1580128. [Google Scholar] [CrossRef] [Green Version]
- Magri, V.; Gottfried, T.; Di Segni, M.; Urban, D.; Peled, M.; Daher, S.; Stoff, R.; Bar, J.; Onn, A. Correlation of body composition by computerized tomography and metabolic parameters with survival of nivolumab-treated lung cancer patients. Cancer Manag. Res. 2019, 11, 8201–8207. [Google Scholar] [CrossRef] [Green Version]
- Takada, K.; Takamori, S.; Yoneshima, Y.; Tanaka, K.; Okamoto, I.; Shimokawa, M.; Oba, T.; Osoegawa, A.; Tagawa, T.; Takenoyama, M.; et al. Serum markers associated with treatment response and survival in non-small cell lung cancer patients treated with anti-PD-1 therapy. Lung Cancer 2020, 145, 18–26. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, U.; Procopio, G.; Giannarelli, D.; Sabbatini, R.; Bearz, A.; Buti, A.; Basso, U.; Mitterer, M.; Ortega, C.; Bidoli, P.; et al. Association of Systemic Inflammation Index and Body Mass Index with Survival in Patients with Renal Cell Cancer Treated with Nivolumab. Clin. Cancer Res. 2019, 25, 3839–3846. [Google Scholar] [CrossRef] [Green Version]
- Martini, D.J.; Liu, Y.; Shabto, J.M.; Carthon, B.C.; Hitron, E.E.; Russle, G.A.; Caulfield, S.; Kissick, H.T.; Harris, W.B.; Kucuk, O.; et al. Novel Risk Scoring System for Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist 2020, 25, e484–e491. [Google Scholar] [CrossRef] [Green Version]
- Labadie, B.W.; Liu, P.; Bao, R.; Crist, M.; Fernandes, R.; Ferreira, L.; Graupner, S.; Poklepovic, A.S.; Duran, I.; Maleki Vareki, S.; et al. BMI, irAE, and gene expression signatures associate with resistance to immune-checkpoint inhibition and outcomes in renal cell carcinoma. J. Transl. Med. 2019, 17, 386. [Google Scholar] [CrossRef] [Green Version]
- Johannet, P.; Sawyers, A.; Qian, Y.; Kozloff, S.; Gulati, N.; Donnelly, D.; Zhong, J.; Osman, I. Baseline prognostic nutritional index and changes in pretreatment body mass index associate with immunotherapy response in patients with advanced cancer. J. Immunother. Cancer 2020, 8, e001674. [Google Scholar] [CrossRef]
- Martini, D.J.; Kline, M.R.; Liu, Y.; Shabto, J.M.; Williams, M.A.; Khan, A.I.; Lewis, C.; Collins, H.; Akce, M.; Kissick, H.T.; et al. Adiposity may predict survival in patients with advanced stage cancer treated with immunotherapy in phase 1 clinical trials. Cancer 2020, 126, 575–582. [Google Scholar] [CrossRef]
- Cortellini, A.; Bersanelli, M.; Buti, S.; Cannita, S.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Michiara, M.; Di Marino, P.; et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: When overweight becomes favorable. J. Immunother. Cancer 2019, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, A.; Bersanelli, M.; Santini, D.; Buti, S.; Tiseo, M.; Cannita, K.; Perrone, F.; Giusti, R.; De Tursi, M.; Zoratto, F.; et al. Another side of the association between body mass index (BMI) and clinical outcomes of cancer patients receiving programmed cell death protein-1 (PD-1)/Programmed cell death-ligand 1 (PD-L1) checkpoint inhibitors: A multicentre analysis of immune-related adverse events. Eur. J. Cancer 2020, 128, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Rogado, J.; Romero-Laorden, N.; Sanchez-Torres, J.M.; Ramos-Levi, A.M.; Pacheco-Barcia, V.; Ballesteros, A.I.; Arranz, R.; Lorenzo, A.; Gullon, P.; Garrido, A.; et al. Effect of excess weight and immune-related adverse events on the efficacy of cancer immunotherapy with anti-PD-1 antibodies. Oncoimmunology 2020, 9, 1751548. [Google Scholar] [CrossRef] [Green Version]
- Kichenadasse, G.; Miners, J.O.; Mangoni, A.A.; Rowland, A.; Hopkins, A.M.; Sorich, M.J. Association Between Body Mass Index and Overall Survival With Immune Checkpoint Inhibitor Therapy for Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2020, 6, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, J.M.; Monjazeb, A.M.; Beerthuijzen, J.M.T.; Collyar, D.; Rubinstein, L.; Harris, L.N. The Challenge for Development of Valuable Immuno-oncology Biomarkers. Clin. Cancer Res. 2017, 23, 4970–4979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, T.; Lyon, C.J.; Bergin, S.; Calligiuri, M.A.; Hsueh, W.A. Obesity, Inflammation, and Cancer. Annu. Rev. Pathol. 2016, 11, 421–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joosse, A.; Collette, S.; Suciu, S.; Nijsten, T.; Patel, P.M.; Keilholz, U.; Eggermon, A.M.; Coebergh, J.W.; de Vries, E. Sex is an independent prognostic indicator for survival and relapse/progression-free survival in metastasized stage III to IV melanoma: A pooled analysis of five European organisation for research and treatment of cancer randomized controlled trials. J. Clin. Oncol. 2013, 31, 2337–2346. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Zitvogel, L.; Ma, Y.; Raoult, D.; Kroemer, G.; Gajewski, T.F. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 2018, 359, 1366–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassy, E.E.; Ghosn, M.; Rassy, N.A.; Assi, T.; Robert, C. Do immune checkpoint inhibitors perform identically in patients with weight extremes? Immunotherapy 2018, 10, 733–736. [Google Scholar] [CrossRef]
- Long, G.V.; Tykodi, S.S.; Schneider, J.G.; Garbe, C.; Gravis, G.; Rashford, M.; Agrawal, S.; Grigoryeva, E.; Bello, A.; Roy, A.; et al. Assessment of nivolumab exposure and clinical safety of 480 mg every 4 weeks flat-dosing schedule in patients with cancer. Ann. Oncol. 2018, 29, 2208–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griggs, J.J.; Mangu, P.B.; Anderson, H.; Lyman, G.H. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2012, 30, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.M.; Heng, D.Y.; Tang, P.A. Review of the Interaction Between Body Composition and Clinical Outcomes in Metastatic Renal Cell Cancer Treated With Targeted Therapies. J. Kidney Cancer VHL 2016, 3, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Indini, A.; Di Guardo, L.; Cimminiello, C.; Prisciandaro, M.; Randon, G.; De Braud, F.; Del Vecchio, M. Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J. Cancer Res. Clin. Oncol. 2019, 145, 511–521. [Google Scholar] [CrossRef]
- Strulov Shachar, S.; Williams, G.R. The Obesity Paradox in Cancer-Moving beyond BMI. Cancer Epidemiol. Prev. Biomark. 2017, 26, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
Author, Year | Type of Study | Country(ies) | Cancer Type(s) | Sample Size | ICI(s) | BMI Cutoffs | Median BMI | Obesity and/or Overweight Rate * | Survival Outcomes | irAEs | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|
Kichenadasse, 2020 | Pooled analysis of phase 2–3 trials | International | NSCLC | 1434 | atezolizumab | Overweight 25–29.9 kg/m2 Obese ≥30 kg/m2 | N.A. | 7% | OS, PFS | no difference in irAEs incidence according to BMI | High BMI associated with better OS. Association was consistent for men and women. Obese patients with high PD-L1 expression have best survival outcomes. |
Rutkowski, 2020 | Retrospective multicenter | Italy, Poland | melanoma | 417 | Ipilimumab nivolumab pembrolizumab | Overweight 25–29.9 kg/m2 Obese ≥30 kg/m2 | 26.3 (23.7–29.7) | 23.3% | PFS, OS, DCR | N.A. | No association of BMI with DCR, PFS and OS. The interaction between BMI and gender was not statistically significant. |
Johannet, 2020 | Retrospective single center | U.S. | Solid tumors 1 | 629 | anti-CTLA4 anti-PD1/PD-L1 anti-CTLA4 + anti-PD1 | Normal <25 kg/m2 Overweight ≥25 kg/m2 | N.A. | N.A. | BOR, ORR, DCR, PFS, OS | N.A. | No association of baseline BMI with response and survival. Decreasing pretreatment BMI associates with worse response and survival |
Young, 2020 | Retrospective single center | U.S. | melanoma | 287 | ipilimumab + nivolumab atezolizumab nivolumab pembrolizumab | Overweight 25–29.9 kg/m2 Obese ≥30 kg/m2 | 28.9 (16.7–50.6) | 40.1% | PFS, OS, ORR | no differences in irAEs incidence (any grade) according to BMI | No association of BMI with ORR, PFS and OS. High TATI associated with decreased RR and PFS among women. |
Takada, 2020 | Retrospective single center | Japan | NSCLC | 226 | nivolumab pembrolizumab | Low <19.1 kg/m2 High ≥19.1 kg/m2 | 21.7 (13.9–36.2) | 78.3% | PFS, OS, ORR, DCR | N.A. | Positive association of high BMI with ORR. No impact on PFS and OS. |
Cortellini, 2020 | Retrospective multicenter | Italy | NSCLC PD-L1 ≥50% | 962 | pembrolizumab | Overweight 25–29.9 kg/m2 Obese ≥30 kg/m2 | 24.2 (14.0–44.9) | 12.2% | PFS, OS, ORR | N.A. | Positive association of high BMI with ORR, and prolonged PFS and OS |
Cortellini, 2020 | Retrospective multicenter | Italy | NSCLC melanoma RCC Other 2 | 1070 | atezolizumab nivolumab pembrolizumab | Overweight 25–29.9 kg/m2 Obese ≥30 kg/m2 | 25 (13.6–46.6) | 12.1% | PFS, OS | Higher incidence of irAEs in obese patients | Positive association of higher BMI with PFS and OS. |
Rogado, 2020 | Retrospective single center | Spain | Solid tumors 3 | 132 | nivolumab pembrolizumab | Normal <25 kg/m2 Overweight ≥25 kg/m2 | 24.9 (14.8–37.1) | 50% | ORR, PFS | no difference in irAEs incidence according to BMI | Positive association of high BMI with ORR and PFS. |
Martini, 2019 | Retrospective single center | U.S. | Solid tumors treated in phase I clinical trials 4 | 90 | ICIs + experimental agents anti-PD-L1 experimental IO agent | Overweight 25–29.9 kg/m2 Obese ≥30 kg/m2 | 27.4 (14.9–45.6) | 25.6% | PFS, OS | N.A. | Positive association of higher BMI with PFS and OS. |
Magri, 2019 | Retrospective single center | Israel | NSCLC | 46 | nivolumab | BMI analyzed as continuous variable | 23.8 (14.9–39.3) | N.A. | OS | N.A. | No association of BMI with OS. Weight loss is a prognostic parameter. |
Kondo, 2019 | Retrospective single center | Japan | melanoma | 39 | nivolumab | Low <20 kg/m2 High ≥20 kg/m2 | 23 (15.0–35.9) | N.A. | PFS, OS, EPD | N.A. | Low BMI and high CAR are associated with EPD. |
Popinat, 2019 | Retrospective single center | France | NSCLC | 55 | nivolumab | Overweight 25–29.9 kg/m2 Obese ≥30 kg/m2 | 24.7 (18.0–34.1) | N.A. | ORR, OS | no difference in irAEs incidence according to BMI | No association of BMI with ORR and OS. Low SCFM is associated with poor OS. |
Cortellini, 2019 | Retrospective multicenter | Italy | NSCLC melanoma RCC Other 5 | 976 | atezolizumab nivolumab pembrolizumab | Normal <25 kg/m2 Overweight ≥25 kg/m2 | 24.9 (13.5–46.6) | 11% | ORR, TTF, PFS, OS | Higher incidence of irAEs (any grade) in obese patients | Positive correlation of BMI with ORR, TTF, PFS and OS. Better survival results among female patients |
De Giorgi, 2019 | Italian EAP | Italy | RCC | 313 | nivolumab | Normal <25 kg/m2 Overweight ≥25 kg/m2 | N.A. | 49.8% | ORR, OS | N.A. | No association of BMI with ORR. Positive association of BMI with OS. |
Martini, 2019 | Retrospective single center | U.S. | RCC | 100 | ipilimumab + nivolumab nivolumab | Normal <25 kg/m2 Overweight ≥25 kg/m2 | 26.7 | 60% | PFS, OS | N.A. | Positive association of BMI with survival (within the Emory scoring system) |
Labadie, 2019 | Retrospective multicenter | U.S., Canada, Spain | RCC | 90 | atezolizumab nivolumab pembrolizumab | Overweight: 25–29.9 kg/m2 Obese ≥30 kg/m2 | N.A. | 23% | PFS, OS | N.A. | Positive association of BMI with PFS and OS |
McQuade, 2018 | Retrospective multicenter | U.S. | melanoma | 331 | atezolizumab nivolumab pembrolizumab | Overweight: 25–29.9 kg/m2 Obese ≥30 kg/m2 | N.A. | 36% | PFS, OS | no differences in irAEs incidence according to BMI | Positive impact of BMI in male patients. |
Richtig, 2018 | Retrospective multicenter | Austria | melanoma | 76 | ipilimumab | Normal <25 kg/m2 Overweight ≥25 kg/m2 | 25.6 (18.0–59.1) | 47% | PFS, OS, ORR | N.A. | Positive correlation with RR. No impact on PFS. Trend towards longer OS. |
Author, Year | Quality Assessment (NOS) | Random Sequence Generation | Allocation Concealment | Blinding of Participants or Personnel | Blinding of Outcome Assessment | Incomplete Outcome Data | Reporting Bias/Selective Reporting | Other Sources of Bias Was the Study Apparently Free of Other Problems that Could Put It at High Risk of Bias? | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Selection | Comparability | Exposure/Outcome | Total Score | ||||||||
Kichenadasse, 2020 | *** | ** | *** | 8 | (−) | (−) | (−) | (−) | (+/−) | (+) | (+/−) |
Rutkowski, 2020 | *** | ** | ** | 7 | (−) | (−) | (−) | (−) | (−) | (+/−) | (+/−) |
Johannet, 2020 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Young, 2020 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Takada, 2020 | ** | * | ** | 5 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Cortellini, 2020 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Cortellini, 2020 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Rogado, 2020 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Martini, 2019 | *** | * | *** | 8 | (−) | (−) | (−) | (−) | (−) | (+/−) | (+/−) |
Magri, 2019 | ** | * | ** | 5 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Kondo, 2019 | ** | * | ** | 5 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Popinat, 2019 | ** | * | ** | 5 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Cortellini, 2019 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
De Giorgi, 2019 | *** | * | *** | 7 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Martini, 2019 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Labadie, 2019 | *** | * | ** | 6 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
McQuade, 2018 | *** | ** | ** | 7 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Richtig, 2018 | ** | * | ** | 5 | (−) | (−) | (−) | (−) | (−) | (+/−) | (−) |
Author, Year | Statistical Method(s) | Survival Outcome(s) | HR, 95% CI | p Value |
---|---|---|---|---|
Kichenadasse, 2020 | Cox proportional hazards regression models | PFS | 0.88 (0.78–0.99) | 0.03 |
OS | 0.64 (0.51–0.81) | <0.001 | ||
Rutkowski, 2020 | Cox proportional hazards regression models | PFS | 1.00 (0.98–1.03) | 0.732 |
OS | 1.02 (0.99–1.05) | 0.202 | ||
Johannet, 2020 | Cox proportional hazards regression models | PFS | 1.01 (0.99–1.03) | 0.33 |
OS | 0.99 (0.96–1.02) | 0.38 | ||
Young, 2020 | Log-rank test | PFS | 1.28 (0.90–1.83) | 0.18 |
OS | 1.10 (0.72–1.67) | 0.65 | ||
Takada, 2020 | Cox proportional hazards regression models | PFS | 1.47 (1.04–2.05) * | 0.0269 * |
OS | 1.59 (1.10–2.30) * | 0.0138 * | ||
Cortellini, 2020 | Cox proportional hazards regression models | PFS | 0.61 (0.45–0.82) | 0.0012 |
OS | 0.70 (0.49–0.99) | 0.0474 | ||
Cortellini, 2020 | Log-rank test | PFS | NA | <0.0001 |
OS | NA | <0.0001 | ||
Rogado, 2020 | Log-rank test | PFS | 3.77 (1.33–10.66) | 0.01 |
Martini, 2019 | Cox proportional hazards regression models | PFS | 0.96 (0.92–1.00) | 0.03 |
OS | 0.92 (0.87–0.97) | 0.001 | ||
Magri, 2019 | Cox proportional hazards regression models | OS | 1.19 (0.93–1.51) | 0.16 |
Kondo, 2019 | Cox proportional hazards regression models | PFS | 4.12 (1.84–9.22) | p = 0.001 |
Popinat, 2019 | Cox proportional hazards regression models | OS | 0.84 (NA) * | 0.007 * |
Cortellini, 2019 | Cox proportional hazards regression models | PFS | 0.46 (0.39–0.54) | <0.0001 |
OS | 0.33 (0.28–0.41) | <0.0001 | ||
De Giorgi, 2019 | Cox proportional hazards regression models | OS | 1.58 (1.09–2.28) | 0.01 |
Martini, 2019 | Cox proportional hazards regression models | OS | NA 1 | NA 1 |
Labadie, 2019 | Cox proportional hazards regression models | PFS | 0.87 (0.79–0.96) | 0.007 |
OS | 0.19 (0.03–1.11) | 0.07 | ||
McQuade, 2018 | Cox proportional hazards regression models | PFS | 0.63 (0.41–0.95) | 0.07 |
OS | 0.54 (0.34–0.86) | 0.84 | ||
Richtig, 2018 | Log-rank test | PFS | 1.03 (0.62–1.70) | 0.924 |
OS | 1.81 (0.98–3.33) | 0.056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indini, A.; Rijavec, E.; Ghidini, M.; Tomasello, G.; Cattaneo, M.; Barbin, F.; Bareggi, C.; Galassi, B.; Gambini, D.; Grossi, F. Impact of BMI on Survival Outcomes of Immunotherapy in Solid Tumors: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 2628. https://doi.org/10.3390/ijms22052628
Indini A, Rijavec E, Ghidini M, Tomasello G, Cattaneo M, Barbin F, Bareggi C, Galassi B, Gambini D, Grossi F. Impact of BMI on Survival Outcomes of Immunotherapy in Solid Tumors: A Systematic Review. International Journal of Molecular Sciences. 2021; 22(5):2628. https://doi.org/10.3390/ijms22052628
Chicago/Turabian StyleIndini, Alice, Erika Rijavec, Michele Ghidini, Gianluca Tomasello, Monica Cattaneo, Francesca Barbin, Claudia Bareggi, Barbara Galassi, Donatella Gambini, and Francesco Grossi. 2021. "Impact of BMI on Survival Outcomes of Immunotherapy in Solid Tumors: A Systematic Review" International Journal of Molecular Sciences 22, no. 5: 2628. https://doi.org/10.3390/ijms22052628
APA StyleIndini, A., Rijavec, E., Ghidini, M., Tomasello, G., Cattaneo, M., Barbin, F., Bareggi, C., Galassi, B., Gambini, D., & Grossi, F. (2021). Impact of BMI on Survival Outcomes of Immunotherapy in Solid Tumors: A Systematic Review. International Journal of Molecular Sciences, 22(5), 2628. https://doi.org/10.3390/ijms22052628