Growth Hormone and the Auditory Pathway: Neuromodulation and Neuroregeneration
Abstract
:1. Introduction
2. Physiological Role of GH in the Cochlea and the Auditory Pathway
3. GH and Hearing Impairment
4. The Sound as a Modulator of GH Secretion
5. The Effects of GH: From In Vitro/In Vivo Studies to Clinical Reports
5.1. Hair Cells
5.2. Auditory Nerve
5.3. Deep Brain
5.4. Auditory Cortex
6. Molecular Mechanisms of GH-Dependent Neuroprotection, Synaptogenesis and Neurogenesis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Akt | Protein kinase B |
BBB | Blood brain barrier |
BDNF | Brain-derived neurotrophic factor |
BLA | Basolateral complex amygdala |
EGF | Epidermal growth factor |
EPO | Erythropoietin |
GH | Growth hormone |
GHR | Growth hormone receptor |
HC | Hair cell |
HRG | Heregulin |
IGF-I | Insulin-like growth factor-I |
IGFBP3 | Insulin-like growth factor binding protein 3 |
IL-6 | Interleukin.6 |
JAK | Janus kinase |
JNK | c-Jun N-terminal kinase |
MAPK | Mitogen-activated protein kinase |
NMDA | N-Methyl-d-aspartate |
NR2B | Glutamate [NMDA] receptor subunit epsilon-2 |
NT-3 | Neurotrophin-3 |
PI3K | Phosphoinositide 3-kinase |
PTEN | Phosphatase and tensin homolog |
Ros | Reactive oxygen species |
STAT | Signal transducer and activator of transcription |
TNF | Tumor necrosis factor |
Trkc | Tropomyosin receptor kinase C |
References
- Terreros, G.; Delano, P.H. Corticofugal modulation of peripheral auditory responses. Front. Syst. Neurosci. 2015, 9, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petralia, R.S.; Wenthold, R.J. Neurotransmitters in the auditory system. In Encyclopedia of Neuroscience; Binder, M.D., Hirokawa, H., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 2847–2853. [Google Scholar]
- Harvey, S.; Johnson, C.D.; Sanders, E.J. Growth hormone in neural tissues of the chick embryo. J. Endocrinol. 2001, 169, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Devesa, J.; Almengló, C.; Devesa, P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin. Med. Insights Endocrinol. Diabetes 2016, 9, 47–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyberg, F.; Burman, P. Growth Hormone and Its Receptors in the Central Nervous System—Location and Functional Significance. Horm. Res. 1996, 45, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Lobie, P.E.; Zhu, T.; Graichen, R.; Goh, E.L. Growth hormone, insulin-like growth factor I and the CNS: Localization, function and mechanism of action. Growth Horm. IGF Res. 2000, 10 (Suppl. B), S51–S56. [Google Scholar] [CrossRef]
- Harvey, S.; Hull, K. Neural Growth Hormone: An Update. J. Mol. Neurosci. 2003, 20, 1–14. [Google Scholar] [CrossRef]
- Devesa, J.; Devesa, P.; Reimunde, P.; Arce, V. Growth hormone and kynesitherapy for brain injury recovery. In Brain Injury—Pathogenesis, Monitoring, Recovery and Management; Agrawal, A., Ed.; IntechOpen: London, UK, 2012; pp. 417–454. [Google Scholar]
- Pathipati, P.; Gorba, T.; Scheepens, A.; Goffin, V.; Sun, Y.; Fraser, M. Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience 2011, 190, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Devesa, P.; Reimunde, P.; Gallego, R.; Devesa, J.; Arce, V.M. Growth hormone (GH) treatment may cooperate with locally-produced GH in increasing the proliferative response of hippocampal progenitors to kainate-induced injury. Brain Inj. 2011, 25, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Guo, S.; Raccurt, M.; Moudilou, E.; Morel, G.; Brittian, K.; Gozal, D. Exogenous growth hormone attenuates cognitive deficits induced by intermittent hypoxia in rats. Neuroscience 2011, 196, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Han, M.; Zhang, X.; Sun, X.; Ling, F. The Effect and Mechanism of Growth Hormone Replacement on Cognitive Function in Rats with Traumatic Brain Injury. PLoS ONE 2014, 9, e108518. [Google Scholar] [CrossRef] [Green Version]
- Heredia, M.; Fuente, A.; Criado, J.; Yajeya, J.; Devesa, J.; Riolobos, A. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats. Behav. Brain Res. 2013, 247, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Heredia, M.; Palomero, J.; De La Fuente, A.; Criado, J.M.; Yajeya, J.; Devesa, J.; Devesa, P.; Vicente-Villardón, J.L.; Riolobos, A.S. Motor Improvement of Skilled Forelimb Use Induced by Treatment with Growth Hormone and Rehabilitation Is Dependent on the Onset of the Treatment after Cortical Ablation. Neural Plast. 2018, 2018, 6125901. [Google Scholar] [CrossRef] [Green Version]
- Ong, L.K.; Chow, W.Z.; Tebay, C.; Kluge, M.; Pietrogrande, G.; Zalewska, K.; Crock, P.; Åberg, N.D.; Bivard, A.; Johnson, S.J.; et al. Growth Hormone Improves Cognitive Function After Experimental Stroke. Stroke 2018, 49, 1257–1266. [Google Scholar] [CrossRef]
- Heredia, M.; Rodríguez, N.; Robledo, V.S.; Criado, J.M.; De La Fuente, A.; Devesa, J.; Devesa, P.; Riolobos, A.S. Factors Involved in the Functional Motor Recovery of Rats with Cortical Ablation after GH and Rehabilitation Treatment: Cortical Cell Proliferation and Nestin and Actin Expression in the Striatum and Thalamus. Int. J. Mol. Sci. 2019, 20, 5770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Bezanilla, S.; Åberg, N.D.; Crock, P.; Walker, F.R.; Nilsson, M.; Isgaard, J.; Ong, L.K. Growth Hormone Promotes Motor Function after Experimental Stroke and Enhances Recovery-Promoting Mechanisms within the Peri-Infarct Area. Int. J. Mol. Sci. 2020, 21, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devesa, J.; Devesa, P.; Reimunde, P. Growth hormone revisited. Med. Clin. 2010, 135, 665–670. [Google Scholar] [CrossRef] [PubMed]
- High, W.M., Jr.; Briones-Galang, M.; Clark, J.A.; Gilkison, C.; Mossberg, K.A.; Zgaljardic, D.J.; Masel, B.E.; Urban, R.J. Effect of growth hormone therapy on cognition after traumatic brain injury. J. Neurotrauma 2010, 27, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Reimunde, P.; Rodicio, C.; López, N.; Alonso, A.; Devesa, P.; Devesa, J. Effects of recombinant growth hormone replacement and physical rehabilitation in recov-ery of gross motor function in children with cerebral palsy. Ther. Clin. Risk Manag. 2010, 30, 585–592. [Google Scholar]
- Devesa, J.; Alonso, B.; Casteleiro, N.; Couto, P.; Castañón, B.; Zas, E.; Reimunde, P. Effects of recombinant growth hormone (GH) replacement and psychomotor and cognitive stimulation in the neurodevelopment of GH-deficient (GHD) children with cerebral palsy: A pilot study. Ther. Clin. Risk Manag. 2011, 7, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Reimunde, P.; Quintana, A.; Castañón, B.; Casteleiro, N.; Vilarnovo, Z.; Otero, A.; Devesa, A.; Otero-Cepeda, X.L.; Devesa, J. Effects of growth hormone (GH) replacement and cognitive rehabilitation in patients with cognitive disorders after traumatic brain injury. Brain Inj. 2011, 25, 65–73. [Google Scholar] [CrossRef]
- Devesa, J.; Reimunde, P.; Devesa, P.; Barberá, M.; Arce, V. Growth hormone (GH) and brain trauma. Horm. Behav. 2013, 63, 331–344. [Google Scholar] [CrossRef]
- Arce, V.M.; Devesa, P.; Devesa, J. Role of growth hormone (GH) in the treatment on neural diseases: From neuroprotection to neural repair. Neurosci. Res. 2013, 76, 179–186. [Google Scholar] [CrossRef]
- Devesa, J.; Díaz-Getino, G.; Rey, P.; García-Cancela, J.; Loures, I.; Nogueiras, S.; De Mendoza, A.H.; Salgado, L.; González, M.; Pablos, T.; et al. Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report. Int. J. Mol. Sci. 2015, 16, 30470–30482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossberg, K.A.; Durham, W.J.; Zgaljardic, D.J.; Gilkison, C.R.; Danesi, C.P.; Sheffield-Moore, M.; Masel, B.E.; Urban, R.J. Functional Changes after Recombinant Human Growth Hormone Replacement in Patients with Chronic Traumatic Brain Injury and Abnormal Growth Hormone Secretion. J. Neurotrauma 2017, 34, 845–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, V.E.; Locatelli, V.; Rizzi, L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int. J. Mol. Sci. 2017, 18, 2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez Valiente, A.; Trinidad, A.; García Berrocal, J.; Górriz, C.; Ramírez Camacho, R. Extended high-frequency (9–20 kHz) audiometry reference thresholds in 645 healthy subjects. Int. J. Audiol. 2014, 53, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Sutton, G. Age effect in hearing—A comparative analysis of published threshold data. Int. J. Audiol. 1979, 18, 320–334. [Google Scholar] [CrossRef]
- Rubel, E.W.; Furrer, S.A.; Stone, J.S. A brief history of hair cell regeneration research and speculations on the future. Hear. Res. 2013, 297, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Guerra, J.; Devesa, J. Hormone Therapy: Challenges for Treating Hearing Impairments. SN Compr. Clin. Med. 2019, 1, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Smeti, I.; Assou, S.; Savary, E.; Masmoudi, S.; Zine, A. Transcriptomic Analysis of the Developing and Adult Mouse Cochlear Sensory Epithelia. PLoS ONE 2012, 7, e42987. [Google Scholar] [CrossRef] [Green Version]
- Marano, R.J.; Tickner, J.; Redmond, S.L. Prolactin Expression in the Cochlea of Aged BALB/c Mice Is Gender Biased and Correlates to Loss of Bone Mineral Density and Hearing Loss. PLoS ONE 2013, 8, e63952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, C.; Crowe, B.; Anglin, D.; Chipman, J. Growth hormone and low dose estrogen in Turner syndrome: Results of a United States multi-center trial to near-final height. J. Clin. Endocrinol. Metab. 2002, 87, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Shinobu, N.; Mugiya, Y. Effects of Ovine Prolactin, Bovine Growth Hormone and Triiodothyronine on the Calcification of Otoliths and Scales in the Hypophysectomized Goldfish Carassius auratus. Fish. Sci. 1995, 61, 960–963. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, A.; Dietl, T.; Krumrey, K.; Vogl, L.; Dirlich, G.; Holsboer, F.; Heuser-Link, M. Changes in late auditory evoked potentials induced by growth hormone-releasing hormone (GHRH) but not somatostatin (SRIF) after peripheral administration in male controls. Peptides 1995, 16, 657–663. [Google Scholar] [CrossRef]
- Welch, D.; Dawes, P.J.D. Childhood Hearing Is Associated with Growth Rates in Infancy and Adolescence. Pediatr. Res. 2007, 62, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Toriello, H.; Smith, S. Hereditary Hearing Loss and Its Syndromes, 3rd ed.; Oxford Monographs on Medical Genetics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Barrenäs, M.-L.; Landin-Wilhelmsen, K.; Hanson, C. Ear and hearing in relation to genotype and growth in Turner syndrome. Hear. Res. 2000, 144, 21–28. [Google Scholar] [CrossRef]
- Prado-Barreto, V.M.; Salvatori, R.; Júnior, R.C.S.; Brandão-Martins, M.B.; Correa, E.A.; Garcez, F.B.; Valença, E.H.O.; Souza, A.H.O.; Pereira, R.M.C.; Nunes, M.A.P.; et al. Hearing Status in Adult Individuals with Lifetime, Untreated Isolated Growth Hormone Deficiency. Otolaryngol. Neck Surg. 2013, 150, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Attias, J.; Zarchi, O.; Nageris, B.I.; Laron, Z. Cochlear hearing loss in patients with Laron syndrome. Eur. Arch. Oto-Rhino-Laryngol. 2011, 269, 461–466. [Google Scholar] [CrossRef]
- Muus, J.S.; Weir, F.W.; Kreicher, K.L.; Bowlby, D.A.; Discolo, C.M.; Meyer, T.A. Hearing loss in children with growth hormone deficiency. Int. J. Pediatr. Otorhinolaryngol. 2017, 100, 107–113. [Google Scholar] [CrossRef]
- Brisset, S.; Slamová, Z.; Dusatkova, P.; Briand-Suleau, A.; Milcent, K.; Metay, C.; Simandlova, M.; Sumnik, Z.; Tosca, L.; Goossens, M.; et al. Anophthalmia, hearing loss, abnormal pituitary development and response to growth hormone therapy in three children with microdeletions of 14q22q23. Mol. Cytogenet. 2014, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanriverdi, F.; Yapislar, H.; Karaca, Z.; Unluhizarci, K.; Süer, C.; Kelestimur, F.; Ünlühızarcı, K. Evaluation of cognitive performance by using P300 auditory event related potentials (ERPs) in patients with growth hormone (GH) deficiency and acromegaly. Growth Horm. IGF Res. 2009, 19, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, F.; Suer, C.; Yapışlar, H.; Kocyigit, I.; Selçuklu, A.; Unluhizarci, K.; Casanueva, F.F.; Kelestimur, F. Growth hormone deficiency due to sports-related head trauma is associated with impaired cognitive performance in amateur boxers and kickboxers as revealed by P300 auditory event-related potentials. Clin. Endocrinol. 2013, 78, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.Y.; Ryan, A.F. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front. Aging Neurosci. 2015, 7, 58. [Google Scholar] [CrossRef]
- Waqas, M.; Gao, S.; Ali, M.; Ma, Y.; Li, W. Inner ear hair cell protection in mammals against the noise-induced cochlear damage. Neural Plast. 2018, 2018, 3170801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Xiong, H.; Sha, S. Noise-induced loss of sensory hair cells is mediated by ROS/AMPKα pathway. Redox Biol. 2020, 29, 101406. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xuan, C.; Shen, P.; He, T.; Chang, Y.; Shi, L.; Tao, S.; Yu, Z.; Brown, R.E.; Wang, J. Hippocampal Mechanisms Underlying Impairment in Spatial Learning Long After Establishment of Noise-Induced Hearing Loss in CBA Mice. Front. Syst. Neurosci. 2018, 12, 35. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, S.-H.; Huang, Y.; Liao, X.-M. The hippocampus may be more susceptible to environmental noise than the auditory cortex. Hear. Res. 2016, 333, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Stoothoff, W.H.; Johnson, G.V. Tau phosphorylation: Physiological and pathological consequences. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2005, 1739, 280–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takashima, A. Tauopathies and Tau Oligomers. J. Alzheimer’s Dis. 2013, 37, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; West, M.; Cai, Q.; Cheng, W.; Ewert, D.; Li, W.; Floyd, R.A.; Kopke, R.D. Antioxidants reduce neurodegeneration and accumulation of pathologic Tau proteins in the auditory system after blast exposure. Free Radic. Biol. Med. 2017, 108, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Schuck, J.B.; Sun, H.; Penberthy, W.T.; Cooper, N.G.; Li, X.; E Smith, M. Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma. BMC Neurosci. 2011, 12, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favino, A.; Maugeri, U.; Kauchtschischvili, G.; Della Cuna, G.R.; Nappi, G. Radioimmunoassay measurements of serum cortisol, thyroxine, growth hormone and luteinizing hormone with simultaneous electroencephalographic changes during continuous noise in man. J. Nucl. Boil. Med. 1973, 17, 119–122. [Google Scholar]
- Armario, A.; Jolin, T. Influence of intensity and duration of exposure to various stressors on serum TSH and GH levels in adult male rats. Life Sci. 1989, 44, 215–221. [Google Scholar] [CrossRef]
- Abdulateef, S.; Abdulateef, F.; Majid, A.; Nafea, H. The influence of stimulating the neural response on physiological response in chicks. EPSTEM 2018, 3, 152–158. [Google Scholar]
- Armario, A.; Lopez-Calderon, A.; Jolin, T.; Balasch, J. Response of anterior pituitary hormones to chronic stress. The specificity of adaptation. Neurosci. Biobehav. Rev. 1986, 10, 245–250. [Google Scholar] [CrossRef]
- Namavar, M.R.; Salehi, M.S.; Tamadon, A.; Bahmani, R.; Shirazi, M.R.J.; Khazali, H.; Dargahi, L.; Pandamooz, S.; Mohammad-Rezazadeh, F.; Rashidi, F.S. The Effects of Acoustic White Noise on the Rat Central Auditory System During the Fetal and Critical Neonatal Periods: A Stereological Study. Noise Heal. 2017, 19, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.; Friberg, U.; Roos, P.; Edén, S.; Isaksson, O. Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Nature 1983, 304, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.S.; Silva, I.B.D.O.; Sampaio, A.L.L.; De Oliveira, C.A.P.; Júnior, F.B. Hearing Loss in Acromegaly—A Review. Int. Arch. Otorhinolaryngol. 1990, 22, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Davenport, M.L.; Roush, J.; Liu, C.; Zagar, A.J.; Eugster, E.; Travers, S.; Fechner, P.Y.; Quigley, C.A. Growth Hormone Treatment Does Not Affect Incidences of Middle Ear Disease or Hearing Loss in Infants and Toddlers with Turner Syndrome. Horm. Res. Paediatr. 2010, 74, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Ostberg, J.E.; Beckman, A.; Cadge, B.; Conway, G.S. Oestrogen Deficiency and Growth Hormone Treatment in Childhood Are Not Associated with Hearing in Adults with Turner Syndrome. Horm. Res. Paediatr. 2004, 62, 182–186. [Google Scholar] [CrossRef]
- Guerra, J.; Devesa, A.; Llorente, D.; Mouro, R.; Alonso, A.; García-Cancela, J.; Devesa, J. Early Treatment with Growth Hormone (GH) and Rehabilitation Recovers Hearing in a Child with Cerebral Palsy. Reports 2019, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, L.R.-D.; Lassaletta, L.; Calvino, M.; Murillo-Cuesta, S.; Varela-Nieto, I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front. Aging Neurosci. 2017, 9, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, T.; Yamamoto, M.; Kumakawa, K.; Usami, S.-I.; Hato, N.; Tabuchi, K.; Takahashi, M.; Fujiwara, K.; Sasaki, A.; Komune, S.; et al. Prognostic impact of salvage treatment on hearing recovery in patients with sudden sensorineural hearing loss refractory to systemic corticosteroids: A retrospective observational study. Auris Nasus Larynx 2016, 43, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lin, C.-H.; Smith, M.E. Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma. PLoS ONE 2011, 6, e28372. [Google Scholar] [CrossRef] [Green Version]
- Gabrielpillai, J.; Geissler, C.; Stock, B.; Stöver, T.; Diensthuber, M. Growth hormone promotes neurite growth of spiral ganglion neurons. NeuroReport 2018, 29, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Liu, Y.; Xu, J.; Gan, X.; Xiao, Z. Septal and Hippocampal Neurons Contribute to Auditory Relay and Fear Conditioning. Front. Cell. Neurosci. 2018, 12, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Joseph, S.; Gander, P.E.; Barascud, N.; Halpern, A.R.; Griffiths, T.D. A Brain System for Auditory Working Memory. J. Neurosci. 2016, 36, 4492–4505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weele, C.M.V.; Saenz, C.; Yao, J.; Correia, S.S.; Goosens, K.A. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment. Front. Behav. Neurosci. 2013, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Gisabella, B.; Farah, S.; Peng, X.; Burgos-Robles, A.N.; Lim, S.H.; Goosens, K.A. Growth hormone biases amygdala network activation after fear learning. Transl. Psychiatry 2016, 6, e960. [Google Scholar] [CrossRef] [Green Version]
- Golgeli, A.; Tanriverdi, F.; Suer, C.; Gokce, C.; Ozesmi, C.; Bayram, F.; Kelestimur, F. Utility of P300 auditory event related potential latency in detecting cognitive dysfunction in growth hormone (GH) deficient patients with Sheehan’s syndrome and effects of GH replacement therapy. Eur. J. Endocrinol. 2004, 150, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Andersson-Wallgren, G.; Ohlsson, A.-C.; Albertsson-Wikland, K.; Barrenäs, M.-L. Growth Promoting Treatment Normalizes Speech Frequency in Turner Syndrome. Laryngoscope 2008, 118, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Devesa, P.; Gelabert, M.; Gallego, R.; Relova, J.L.; Devesa, J.; Arce, V.M.; Gonźlez-Mosquera, T. Growth hormone treatment enhances the functional recovery of sciatic nerves after transection and repair. Muscle Nerve 2012, 45, 385–392. [Google Scholar] [CrossRef]
- Tuffaha, S.H.; Budihardjo, J.D.; Sarhane, K.A.; Khusheim, M.; Song, D.; Broyles, J.M.; Salvatori, R.; Means, K.R.; Higgins, J.P.; Shores, J.T.; et al. Growth Hormone Therapy Accelerates Axonal Regeneration, Promotes Motor Reinnervation, and Reduces Muscle Atrophy following Peripheral Nerve Injury. Plast. Reconstr. Surg. 2016, 137, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Devesa, J.; Alonso, A.; López, N.; García, J.; Puell, C.I.; Pablos, T.; Devesa, P. Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome. Int. J. Mol. Sci. 2017, 18, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, J.; Quan, A.; Budihardjo, J.; Xiang, S.; Wang, H.; Koshy, K.; Cashman, C.; Lee, W.P.A.; Hoke, A.; Tuffaha, S.; et al. Growth Hormone Improves Nerve Regeneration, Muscle Re-innervation, and Functional Outcomes After Chronic Denervation Injury. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Waters, M.J.; Brooks, A.J. Growth Hormone Receptor: Structure Function Relationships. Horm. Res. Paediatr. 2011, 76, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Carter-Su, C.; Schwartz, J.; Argetsinger, L.S. Growth hormone signaling pathways. Growth Horm. IGF Res. 2016, 28, 11–15. [Google Scholar] [CrossRef]
- Fleming, T.; Epardo, D.; Balderas-Márquez, J.E.; Carranza, M.; Luna, M.; Harvey, S.; Arámburo, C.; Martínez-Moreno, C.G. GH neuroprotection against kainate (KA) excitotoxicity in the retina is mediated by Notch/PTEN/Akt Signaling. Invest. Ophtalmol. Vis. Sci. 2019, 60, 4532–4547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajadinakaran, G.; Sun, H.; Rinehart, C.; Rouchka, E.; Smith, M. Regulation of cell proliferation and apoptosis by growth hormone during zebrafish auditory hair cell regeneration. BMC Bioinform. 2012, 13, A3. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Moreno, C.G.; Epardo, D.; Balderas-Márquez, J.E.; Fleming, T.; Carranza, M.; Luna, M.; Harvey, S.; Arámburo, C. Regenerative Effect of Growth Hormone (GH) in the Retina after Kainic Acid Excitotoxic Damage. Int. J. Mol. Sci. 2019, 20, 4433. [Google Scholar] [CrossRef] [Green Version]
- Jen, H.-I.; Hill, M.C.; Tao, L.; Sheng, K.; Cao, W.; Zhang, H.; Yu, H.V.; Llamas, J.; Zong, C.; Martin, J.F.; et al. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 2019, 8, 44328. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeong, H.-S.; Cho, H.-H. Atoh1 as a Coordinator of Sensory Hair Cell Development and Regeneration in the Cochlea. Chonnam Med. J. 2017, 53, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Richardson, R.T.; Atkinson, P.J. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin. Biol. Ther. 2015, 15, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Calderon, H.; La Rosa, L.R.-D.; Milo, M.; Pichel, J.G.; Holley, M.; Varela-Nieto, I. RNA Microarray Analysis in Prenatal Mouse Cochlea Reveals Novel IGF-I Target Genes: Implication of MEF2 and FOXM1 Transcription Factors. PLoS ONE 2010, 5, e8699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, T.; Iijima, S.; Hoshikawa, S.; Miura, T.; Yamamoto, S.-I.; Oda, H.; Nakamura, K.; Tanaka, S. Opposing Extracellular Signal-Regulated Kinase and Akt Pathways Control Schwann Cell Myelination. J. Neurosci. 2004, 24, 6724–6732. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Moreno, C.; Fleming, T.; Carranza, M.; Ávila-Mendoza, J.; Luna, M.; Harvey, S.; Arámburo, C. Growth hormone protects against kainate excitotoxicity and induces BDNF and NT3 expression in chicken neuroretinal cells. Exp. Eye Res. 2018, 166, 1–12. [Google Scholar] [CrossRef]
- Fritzsch, B.; Tessarollo, L.; Coppola, E.; Reichardt, L.F.; Coppola, V. Neurotrophins in the ear: Their roles in sensory neuron survival and fiber guidance. Prog. Brain Res. 2004, 146, 265–278. [Google Scholar] [CrossRef]
- Chacko, L.J.; Blumer, M.J.F.; Pechriggl, E.; Rask-Andersen, H.; Dietl, W.; Haim, A.; Fritsch, H.; Glueckert, R.; Dudas, J.; Schrott-Fischer, A. Role of BDNF and neurotrophic receptors in human inner ear development. Cell Tissue Res. 2017, 370, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Naldi, A.M.; Gassmann, M.; Bodmer, D. Erythropoietin but not VEGF has a protective effect on auditory hair cells in the inner ear. Cell. Mol. Life Sci. 2009, 66, 3595–3599. [Google Scholar] [CrossRef] [PubMed]
- Monge, A.; Nagy, I.; Bonabi, S.; Schmid, S.; Gassman, M.; Bodmer, D. The effect of erythropoietin on gentamin-induced auditory hair cell loss. Laryngoscope 2006, 116, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, B.L.; Cayé-Thomasen, P.; Lund, S.P.; Wagner, N.; Asal, K.; Olsen, N.V.; Thomsena, J. Does erythropoietin augment noise induced hearing loss? Hear. Res. 2007, 223, 129–137. [Google Scholar] [CrossRef]
- Hume, C.R.; Kirkegaard, M.; Oesterle, E.C. ErbB Expression: The Mouse Inner Ear and Maturation of the Mitogenic Response to Heregulin. J. Assoc. Res. Otolaryngol. 2003, 4, 422–443. [Google Scholar] [CrossRef] [PubMed]
Condition | Findings | Hearing Loss | GH Levels | Benefit with rhGH |
---|---|---|---|---|
CHARGE syndrome | Colobomatous microphthalmia Congenital heart defects, usually conotruncal Choanal atresia Retarded growth and development Genital hypoplasia, possibly of hypothalamic origin | SNHL MHL (rare) | Normal Low (rare) | Yes |
Alström syndrome | Atypical retinal degeneration with loss of central vision in infancy Diabetes mellitus in childhood Transient obesity Posterior cortical cataract Nephropathy Acanthosis nigricans | SNHL | Low | Yes |
Acrodysostosis | Shortening of the interphalangeal joints of the hands and feet Intellectual disability Peculiar facies (short head, small broad upturned nose with flat nasal bridge and protruding jaw) Increased bone age Intrauterine growth retardation Juvenile arthritis Short stature | SNHL (rare) MHL (rare) | Normal | Yes |
Combined growth hormone deficiency with hearing loss and limited neck movement | Pituitary hormone deficiencyLimited neck movement | SNHL | Low | Yes |
Laron syndrome | Insensitivity to GH, usually caused by a mutant growth hormone receptor Short stature Increased sensitivity to insulin | SNHL MHL (rare) | Normal | No |
Intrauterine and postnatal growth failure with microcephaly and intellectual disability | Prenatal Growth Failure Elevated Growth Hormone Levels Mental Retardation | SNHL | Elevated | No |
Hajduk-Cheney syndrome | Dissolution of terminal phalanges Dolichocephaly with occipital prominence Short stature Premature loss of teeth | CHL SNHL | Normal Low (sporadic) | Yes |
Richards-Rundle syndrome | Ataxia Distal amyotrophy Intellectual disability Diabetes mellitus Absent development of secondary sex characteristics | SNHL | Normal | No |
EEC syndrome | Variable ectrodactyly of hands and feet Absence of lacrimal puncta Cleft lip-palate Occasional vestibular abnormalities | CHL | Normal Low (sporadic) | Yes |
Crandall syndrome | Generalized alopecia with pili torti Growth retardation Hypogonadism | SNHL | Low | Yes |
Hypodontia and PEG-shaped teeth, olivopontocerebellar dysplasia, hypogonadism and hearing loss | Olivopontocerebellar degeneration Hypogonadotropic hypogonadism Hypodontia Resistance to GH | SNHL (unilateral) | Normal | No |
Turner syndrome | Short stature Thick or webbed neck Gonadal dysfunction | CHL MHL SNHL | Normal | Yes |
Kabuki syndrome | Peculiar facial (elongated palpebral fissures and prominent ears) Postnatal growth retardation Intellectual disability Cardiac anomalies | CHL MHL SNHL | Normal | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, J.G.; Devesa, J. Growth Hormone and the Auditory Pathway: Neuromodulation and Neuroregeneration. Int. J. Mol. Sci. 2021, 22, 2829. https://doi.org/10.3390/ijms22062829
Gómez JG, Devesa J. Growth Hormone and the Auditory Pathway: Neuromodulation and Neuroregeneration. International Journal of Molecular Sciences. 2021; 22(6):2829. https://doi.org/10.3390/ijms22062829
Chicago/Turabian StyleGómez, Joaquín Guerra, and Jesús Devesa. 2021. "Growth Hormone and the Auditory Pathway: Neuromodulation and Neuroregeneration" International Journal of Molecular Sciences 22, no. 6: 2829. https://doi.org/10.3390/ijms22062829
APA StyleGómez, J. G., & Devesa, J. (2021). Growth Hormone and the Auditory Pathway: Neuromodulation and Neuroregeneration. International Journal of Molecular Sciences, 22(6), 2829. https://doi.org/10.3390/ijms22062829