In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sequence and Structural Analyses
2.1.1. Multiple Sequence Alignment (MSA)
2.1.2. Homology Modeling and Structural Analyses
2.2. Molecular Dynamics Simulations
2.2.1. Conformational Analysis
2.2.2. RMSF and Average Betweenness Centrality (BC) Analyses
2.2.3. Hydrogen Bond Analysis
2.2.4. Dynamic Cross Correlation Analysis
3. Materials and Methods
3.1. Sequence Retrieval and Alignment
3.2. Homology Modeling
3.3. Interface Analysis and Hot Spot Identification
3.4. Molecular Dynamics Simulations
3.5. Average Betweenness Centrality Analysis
3.6. Dynamic Cross Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | betweenness centrality |
CA | Carbonic anhydrase |
Cam | Methanosarcina thermophila gamma carbonic anhydrase |
Cap | Pyrococcus horikoshii gamma carbonic anhydrase |
CcmM | Thermosynechococcus elongatus BP-1 gamma carbonic anhydrase |
EcoCA-γ | Escherichia coli gamma carbonic anhydrase |
γ-PhCA | Persephonella hydrogeniphila gamma carbonic anhydrase |
γ-PmCA | Persephonella marina gamma carbonic anhydrase |
γ-TtkCA | Thermosulfidibacter takaii gamma carbonic anhydrase |
MD | Molecular dynamics |
MSA | Multiple sequence alignment |
PA5540 | Pseudomonas aeruginosa gamma carbonic anhydrase |
Rg | Radius of gyration |
RMSD | Root mean square deviation |
RMSF | Root mean square fluctuation |
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Harrison, A.L.; Power, I.M.; Dipple, G.M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 2013, 47, 126–134. [Google Scholar] [CrossRef]
- Mirjafari, P.; Asghari, A.K.; Mahinpey, N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind. Eng. Chem. Res. 2007, 46, 921–926. [Google Scholar] [CrossRef]
- Silverman, D.N.; Lindskog, S. The catalytic mechanism of carbonic anhydrase: Implications of a rate-limiting protolysis of water. Acc. Chem. Res. 1988, 21, 30–36. [Google Scholar] [CrossRef]
- Di Fiore, A.; Alterio, V.; Monti, S.M.; De Simone, G.; D’Ambrosio, K. Thermostable carbonic anhydrases in biotechnological applications. Int. J. Mol. Sci. 2015, 16, 15456–15480. [Google Scholar] [CrossRef] [PubMed]
- Kikutani, S.; Nakajima, K.; Nagasato, C.; Tsuji, Y.; Miyatake, A.; Matsuda, Y. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA 2016, 113, 9828–9833. [Google Scholar] [CrossRef] [Green Version]
- Dimario, R.J.; Machingura, M.C.; Waldrop, G.L.; Moroney, J.V. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci. 2018, 268, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-I.; Han, Y.-L.; Yu, Y.-J.; Chiu, C.-Y.; Chang, Y.-K.; Ouyang, S.; Fan, K.-C.; Lo, K.-H.; Ng, I.-S. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase. Process. Biochem. 2018, 73, 38–46. [Google Scholar] [CrossRef]
- Jensen, E.L.; Clement, R.; Kosta, A.; Maberly, S.C.; Gontero, B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J. 2019, 13, 2094–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.E. Mechanism of action of carbonic anhydrase substrate, sulfonamide, and anion binding. J. Biol. Chem. 1967, 242, 5212–5219. [Google Scholar] [CrossRef]
- Silverman, D.N.; McKenna, R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Accounts Chem. Res. 2007, 40, 669–675. [Google Scholar] [CrossRef]
- Ferry, J.G. The γ class of carbonic anhydrases. Biochim. Biophys. Acta Proteins Proteom. 2010, 1804, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Alber, B.E.; Ferry, J.G. Characterization of heterologously produced carbonic anhydrase from Methanosarcina thermophila. J. Bacteriol. 1996, 178, 3270–3274. [Google Scholar] [CrossRef] [Green Version]
- White, S. Enzymatic and Structural Analyses of PA5540: A Gamma-Carbonic Anhydrase of Pseudomonas aeruginosa PAO1. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2014. Available online: http://hdl.handle.net/10214/7815 (accessed on 12 November 2020).
- Parisi, G.; Perales, M.; Fornasari, M.S.; Colaneri, A.; González-Schain, N.; Gómez-Casati, D.; Zimmermann, S.; Brennicke, A.; Araya, A.; Ferry, J.G.; et al. Gamma carbonic anhydrases in plant mitochondria. Plant Mol. Biol. 2004, 55, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Emameh, R.Z.; Kuuslahti, M.; Nosrati, H.; Lohi, H.; Parkkila, S. Assessment of databases to determine the validity of β- and γ-carbonic anhydrase sequences from vertebrates. BMC Genom. 2020, 21, 1–8. [Google Scholar] [CrossRef]
- Martin, V.; Villarreal, F.; Miras, I.; Navaza, A.; Haouz, A.; González-Lebrero, R.M.; Kaufman, S.B.; Zabaleta, E. Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon. FEBS Lett. 2009, 583, 3425–3430. [Google Scholar] [CrossRef] [Green Version]
- Fromm, S.; Braun, H.; Peterhansel, C. Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development. New Phytol. 2016, 211, 194–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, K.; Dudkina, N.V.; Jänsch, L.; Braun, H.-P.; Boekema, E.J. A structural investigation of complex I and I+III2 supercomplex from Zea mays at 11–13 Å resolution: Assignment of the carbonic anhydrase domain and evidence for structural heterogeneity within complex I. Biochim. Biophys. Acta Bioenerg. 2008, 1777, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripp, B.C.; Bell, C.B.; Cruz, F.; Krebs, C.; Ferry, J.G. A role for iron in an ancient carbonic anhydrase. J. Biol. Chem. 2004, 279, 6683–6687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, S.A.; Tomb, J.-F.; Ferry, J.G. Characterization of CamH from Methanosarcina thermophila, founding member of a subclass of the γ class of carbonic anhydrases. J. Bacteriol. 2009, 192, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, S.; Bua, S.; Supuran, C.T.; Capasso, C. Escherichia coli γ-carbonic anhydrase: Characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1545–1554. [Google Scholar] [CrossRef]
- Iverson, T.M.; Alber, B.E.; Kisker, C.; Ferry, J.G.; Rees, D.C. A closer look at the active site of γ-class carbonic anhydrases: High-Resolution Crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 2000, 39, 9222–9231. [Google Scholar] [CrossRef]
- Del Prete, S.; De Luca, V.; Vullo, D.; Scozzafava, A.; Carginale, V.; Supuran, C.T.; Capasso, C. Biochemical characterization of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis, PgiCA. J. Enzym. Inhib. Med. Chem. 2013, 29, 532–537. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, C.; Arefeen, D.; Tadesse, Y.; Long, B.M.; Price, G.D.; Rowlett, R.S.; Kimber, M.S.; Espie, G.S. Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120. Photosynth. Res. 2014, 121, 135–150. [Google Scholar] [CrossRef]
- Peña, K.L.; Castel, S.E.; De Araujo, C.; Espie, G.S.; Kimber, M.S. Structural basis of the oxidative activation of the carboxysomal -carbonic anhydrase, CcmM. Proc. Natl. Acad. Sci. USA 2010, 107, 2455–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltes-Rak, E.; Mulligan, M.E.; Coleman, J.R. Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J. Bacteriol. 1997, 179, 769–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Zhang, Y.; Wang, L.; Jing, Q.; Wang, X.; Xi, X.; Zhao, X.; Wang, H. Molecular structure of thermostable and zinc-ion-binding γ-class carbonic anhydrases. BioMetals 2019, 32, 317–328. [Google Scholar] [CrossRef]
- Nakagawa, S.; Takai, K.; Horikoshi, K.; Sako, Y. Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 2003, 53, 863–869. [Google Scholar] [CrossRef]
- Götz, D.; Banta, A.; Beveridge, T.J.; Rushdi, A.I.; Simoneit, B.R.T.; Reysenbach, A.L. Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int. J. Syst. Evol. Microbiol. 2002, 52, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Nunoura, T.; Oida, H.; Miyazaki, M.; Suzuki, Y. Thermosulfidibacter takaii gen. nov., sp. nov., a thermophilic, hydrogen-oxidizing, sulfur-reducing chemolithoautotroph isolated from a deep-sea hydrothermal field in the Southern Okinawa Trough. Int. J. Syst. Evol. Microbiol. 2008, 58, 659–665. [Google Scholar] [CrossRef]
- Manyumwa, C.V.; Emameh, R.Z.; Tastan Bishop, Ö. Alpha-carbonic anhydrases from hydrothermal vent sources as potential carbon dioxide sequestration agents: In silico sequence, structure and dynamics analyses. Int. J. Mol. Sci. 2020, 21, 8066. [Google Scholar] [CrossRef]
- Parra-Cruz, R.; Jäger, C.M.; Lau, P.L.; Gomes, R.L.; Pordea, A. Rational design of thermostable carbonic anhydrase mutants using molecular dynamics simulations. J. Phys. Chem. B 2018, 122, 8526–8536. [Google Scholar] [CrossRef] [PubMed]
- Parra-Cruz, R.; Lau, P.L.; Loh, H.-S.; Pordea, A. Engineering of Thermovibrio ammonificans carbonic anhydrase mutants with increased thermostability. J. CO2 Util. 2020, 37, 1–8. [Google Scholar] [CrossRef]
- Jeyakanthan, J.; Rangarajan, S.; Mridula, P.; Kanaujia, S.P.; Shiro, Y.; Kuramitsu, S.; Yokoyama, S.; Sekar, K. Observation of a calcium-binding site in the γ-class carbonic anhydrase from Pyrococcus horikoshii. Acta Crystallogr. Sect. D Biol. Crystallogr. 2008, 64, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Kortemme, T.; Kim, D.E.; Baker, D. Computational alanine scanning of protein-protein interfaces. Sci. Signal. 2004, 2004, pl2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.K.; Penkler, D.L.; Amamuddy, O.S.; Ross, C.; Atilgan, A.R.; Atilgan, C.; Tastan Bishop, Ö. MD-TASK: A software suite for analyzing molecular dynamics trajectories. Bioinformatics 2017, 33, 2768–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, J.; Kim, B.-H.; Grishin, N.V. PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008, 36, 2295–2300. [Google Scholar] [CrossRef]
- Tripp, B.C.; Smith, K.; Ferry, J.G. Carbonic anhydrase: New insights for an ancient enzyme. J. Biol. Chem. 2001, 276, 48615–48618. [Google Scholar] [CrossRef] [Green Version]
- Kisker, C.; Schindelin, H.; Alber, B.E.; Ferry, J.G.; Rees, D.C. A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J. 1996, 15, 2323–2330. [Google Scholar] [CrossRef]
- Park, H.-M.; Park, J.-H.; Choi, J.-W.; Lee, J.; Kim, B.Y.; Jung, C.-H.; Kim, J.-S. Structures of the γ-class carbonic anhydrase homologue YrdA suggest a possible allosteric switch. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Rowlett, R.S. Structure and catalytic mechanism of the β-carbonic anhydrases. Biochim. Biophys. Acta Proteins Proteom. 2010, 1804, 362–373. [Google Scholar] [CrossRef]
- Aspatwar, A.; Kairys, V.; Rala, S.; Parikka, M.; Bozdag, M.; Carta, F.; Supuran, C.T.; Parkkila, S. Mycobacterium tuberculosis β-carbonic anhydrases: Novel targets for developing antituberculosis drugs. Int. J. Mol. Sci. 2019, 20, 5153. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. In Methods in Enzymology; Abelson, J., Simon, M., Verdine, G., Pyle, A., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 277, pp. 396–404. [Google Scholar]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Alexander, R.S.; Nair, S.K.; Christianson, D.W. Engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry 1991, 30, 11064–11072. [Google Scholar] [CrossRef]
- West, D.; Kim, C.U.; Tu, C.; Robbins, A.H.; Gruner, S.M.; Silverman, D.N.; McKenna, R. Structural and kinetic effects on changes in the CO2 binding pocket of human carbonic anhydrase II. Biochemistry 2012, 51, 9156–9163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Tina, K.G.; Bhadra, R.; Srinivasan, N. PIC: Protein interactions calculator. Nucleic Acids Res. 2007, 35, W473–W476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laitaoja, M.; Valjakka, J.; Jänis, J. Zinc coordination spheres in protein structures. Inorg. Chem. 2013, 52, 10983–10991. [Google Scholar] [CrossRef]
- Tamames, B.; Sousa, S.F.; Tamames, J.; Fernandes, P.A.; Ramos, M.J. Analysis of zinc-ligand bond lengths in metalloproteins: Trends and patterns. Proteins Struct. Funct. Bioinform. 2007, 69, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Song, W.J.; McCormick, M.S.; Behan, R.K.; Sazinsky, M.H.; Jiang, W.; Lin, J.; Krebs, C.; Lippard, S.J. Active site threonine facilitates proton transfer during dioxygen activation at the diiron center of toluene/o-Xylene monooxygenase hydroxylase. J. Am. Chem. Soc. 2010, 132, 13582–13585. [Google Scholar] [CrossRef] [Green Version]
- Penkler, D.L.; Atilgan, C.; Tastan Bishop, Ö. Allosteric modulation of human Hsp90α conformational dynamics. J. Chem. Inf. Model. 2018, 58, 383–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Sung, J.; Yeon, J.; Choi, S.H.; Jin, M.S. Crystal structure of a highly thermostable α-carbonic anhydrase from persephonella marina EX-H1. Mol. Cells 2019, 42, 460–469. [Google Scholar] [PubMed]
- Kanth, B.K.; Jun, S.-Y.; Kumari, S.; Pack, S.P. Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: Its expression and characterization for CO2-sequestration applications. Process. Biochem. 2014, 49, 2114–2121. [Google Scholar] [CrossRef]
- Sayers, E.W.; Barrett, T.; Benson, D.A.; Bolton, E.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; DiCuccio, M.; Federhen, S.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2010, 39, D38–D51. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform. 2006, 15, 5.6.1–5.6.30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cukuroglu, E.; Gürsoy, A.; Keskin, O. HotRegion: A database of predicted hot spot clusters. Nucleic Acids Res. 2011, 40, D829–D833. [Google Scholar] [CrossRef] [PubMed]
- Lise, S.; Buchan, D.; Pontil, M.; Jones, D.T. Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS ONE 2011, 6, e16774. [Google Scholar] [CrossRef]
- Sukhwal, A.; Sowdhamini, R. PPCheck: A webserver for the quantitative analysis of protein-protein interfaces and prediction of residue hotspots. Bioinform. Biol. Insights 2015, 9, BBI.S25928. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005, 33, W368–W371. [Google Scholar] [CrossRef]
- Sanyanga, T.A.; Nizami, B.; Tastan Bishop, Ö. Mechanism of action of non-synonymous single nucleotide variations associated with α-carbonic anhydrase II deficiency. Molecules 2019, 24, 3987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafmeister, C.; Ross, W.; Romanovski, V. LEaP Analysis Tools; University of California: San Francisco, CA, USA, 1995. [Google Scholar]
- Case, K.D.A.; Belfon, I.Y.; Ben-Shalom, S.R.; Brozell, D.S.; Cerutti, T.E.; Cheatham, V.W.D., III; Cruzeiro, T.A.; Darden, R.E.; Duke, G.; Giambasu, G.; et al. AMBER 2020; University of California: San Francisco, CA, USA, 2020. [Google Scholar]
- Da Silva, A.W.S.; Vranken, W.F. ACPYPE—Antechamber python parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Williams, T.; Kelley, C.; Broker, H.B.; John Campbell, R.; Cunningham, D.; Denholm, G.; Elber, R.; Fearick, C.; Grammes, L.; Hart, L.; et al. Gnuplot 5.2. 2: An Interactive Plotting Program. 2017. Available online: http://www.gnuplot.info (accessed on 20 January 2020).
- Roe, D.R.; Cheatham, I.T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
CA | Organism | Template PDB ID | Template—Sequence Identity | Template—Sequence Coverage | z-DOPE Score | Verify 3D (%) | Procheck | |
---|---|---|---|---|---|---|---|---|
Most Favored Region (%) | Disallowed Region (%) | |||||||
γ-PhCA | Persephonella hydrogeniphila | 1V3W | 46% | 98% | −1.42 | 89.6 | 86.6 | 0 |
γ-PmCA | Persephonella marina | 46% | 98% | −1.62 | 88.6 | 88.8 | 0 | |
γ-TtkCA | Thermosulfidibacter takaii | 44% | 99% | −1.80 | 89.9 | 89.9 | 0 |
CA | Residues |
---|---|
γ-PhCA | Interface AB |
A: M1, A2, I4, K5, P6, Y7, N8, V25, I27, N41, V43, R45, D47, T63, I64, H66, H69, K70, N85, V86, M87, H89, T104, I105, M106, L122, S138 | |
B: E22, N23, W39, Y40, N41, Q60, D61, G62, H84, N85, M101, S102, A119, T136, W153, N160, Y161, Y164, S167, Y168, Q171 | |
Interface BC | |
B: I4, K5, P6, Y7, N8, V25, I27, N41, V43, R45, D47, V48, G62, T63, I64, H66, D68, H69, K70, N85, V86, M87, H89, S102, T104, I105, M106, L122, S138 | |
C: N23, W39, Y40, N41, Q60, D61, G62, H84, N85, M101, S102, A119, T136, W153, K156, N160, Y161, Y164, S167, Y168, Q171 | |
Interface AC: | |
A: N23, W39, Y40, N41, Q60, D61, H84, N85, M101, S102, A119, T136, N160, Y161, Y164, S167, Y168, N170, Q171 | |
C: A2, I4, K5, Y7, N8, V25, I27, N41, V43, R45, D47, G62, T63, I64, H66, H69, V86, M87, H89, S102, T104, M106, D107, L122, S138 | |
γ-PmCA | Interface AB |
A: I3, I4, K5, P6, Y7, K8, Y11, N23, V25, I27, N41, V42, V43, R45, D47, V48, I64, H66, V67, D68, H69, N85, V86, M87, H89, A102, T104, M106, L122, S138 | |
B: N23, W39, Y40, N41, Q60, D61, H84, N85, M101, S102, A119, T136, W153, N160, Y161, Y164, S167, Y168, N170, Q171, L172 | |
Interface BC | |
B: I3, I4, K5, P6, Y7, K8, V25, I27, N41, V43, R45, D47, V48, G62, T63, I64, H66, H69, N85, V86, M87, H89, S102, T104, V105, M106, L122, S138 | |
C: N23, W39, Y40, N41, Q60, D61, H84, N85, M101, S102, A119, T136, N160, Y161, Y164, S167, Y168, N170, Q171, L172 | |
Interface AC: | |
A: E22, N23, W39, Y40, N41, D61, H84, N85, M101, S102, A119, G120, W153, N160, Y161, Y164, S167, Y168, Q171, L172 | |
C: M1, A2, I3, I4, K5, P6, Y7, K8, V25, I27, N41, V43, R45, D47, G62, I64, H66, D68, H69, N85, M87, H89, S102, T104, V105, M106, L122 | |
γ-TtCA | Interface AB |
A: S2, V3, Y4, R5, F6, E7, K9, T10, Y24, V26, V42, R44, D46, L47, V63, H65, R83, V85, H87, G100, A101, V102, L104, V120, V136 | |
B: W38, F39, Q59, D60, H82, R83, M99, A117, G118, V136, R152, Y153, L156, R159, Y160, A163, L164, F165, V167 | |
Interface BC | |
B: V3, Y4, R5, F6, E7, Y24, V26, V42, R44, D46, L47, V63, H65, R83, V85, H87, V102, L104, V120, V136 | |
C: P21, G22, Y24, W38, F39, Q59, D60, H82, R83, M99, A117, G118, V136, R152, Y153, L156, R159, Y160, A163, L164, F165, P166, V167 | |
Interface AC: | |
A: P21, G22, W38, F39, Q59, D60, H82, R83, M99, A117, G118, L134, V136, R152, Y153, L156, R159, Y160, A163, L164, F165, P166, V167, A168, T169 | |
C: M1, S2, V3, Y4, R5, F6, E7, T10, Y24, V26, V42, R44, D46, L47, V63, H65, D67, P68, R83, A84, V85, H87, G100, A101, V102, L104, V120, V136 | |
γ-TtkCA | Interface AB |
A: I2, Y4, K5, F22, I24, N38, T39, V40, R42, D44, V45, L59, T60, M61, H63, R82, A83, M84, H86, I101, L103, L119, S135, P136 | |
B: E19, G20, W36, F37, N38, Q57, D58, L59, H81, R82, M98, G99, A116, G117, M133, H157, Y158, L161, Y165, D168 | |
Interface BC | |
B: Y4, K5, V7, F22, I24, N38, V40, R42, D44, V45, L59, T60, M61, H63, R82, M84, H86, I101, L103, L119, S135 | |
C: E19, W36, F37, N38, Q57, D58, L59, H81, R82, M98, A116, G117, M133, H157, Y158, L161, Y165, D168 | |
Interface AC: | |
A: E19, G20, W36, F37, N38, Q57, D58, L59, H81, R82, M98, G99, A116, G117, H157, Y158, L161, Y165, D168 | |
C: Y4, K5, G6, F22, I24, N38, V40, R42, D44, V45, L59, T60, M61, H63, R82, M84, H86, G99, I101, L103, L119, S135 |
CA | Residue |
---|---|
γ-PhCA | Chain A: N41, V42, D61, T63, I64, V86, H89h, M101 c, A103, T104 |
Chain B: N41, V42, T63, I64, H84h, V86, A103 | |
Chain C: N41, V42, D61, T63, H84h, V86, H89h, M101c, A103, T104 | |
γ-PmCA | Chain A: N41, V42, T63, I64, N85, V86, A103, A119 |
Chain B: N41, V42, T63, I64, H66h, H84h, V86, M101c, A103 | |
Chain C: N41, V42, V43, T63, I64, V82, H84h, V86, M87, T104 | |
γ-TtCA | Chain A:G40, N57, Q59, D60, A62, V63, H65h, H82h, V85, V86 |
Chain B: G40, D60, H65 h, H82 h, A84, V85, M99 c | |
Chain C: G40, V42, D60, A62, H82 h, A84, V85, H87 h, V97 c | |
γ-TtkCA | Chain A: N38, T39, D58, T60, M61, H63h, H81h, R82, A83, M84 |
Chain B: T39, D58, L59, T60, H81 h, A83, M84, I101 | |
Chain C: T39, L59, T60, M61, H81 h, A83, M84, M98 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manyumwa, C.V.; Bishop, Ö.T. In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus. Int. J. Mol. Sci. 2021, 22, 2861. https://doi.org/10.3390/ijms22062861
Manyumwa CV, Bishop ÖT. In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus. International Journal of Molecular Sciences. 2021; 22(6):2861. https://doi.org/10.3390/ijms22062861
Chicago/Turabian StyleManyumwa, Colleen Varaidzo, and Özlem Tastan Bishop. 2021. "In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus" International Journal of Molecular Sciences 22, no. 6: 2861. https://doi.org/10.3390/ijms22062861
APA StyleManyumwa, C. V., & Bishop, Ö. T. (2021). In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus. International Journal of Molecular Sciences, 22(6), 2861. https://doi.org/10.3390/ijms22062861