Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review
Abstract
:1. Introduction
2. Congenital Malformations and Diabetes in Pregnancy
3. The Effects of Diabetes on Intrauterine and Postnatal Growth
3.1. Growth Disturbances in Newborn Infants of Diabetic Mothers
3.2. Factors Contributing to Fetal Growth
3.2.1. Insulin and Fetal Growth
3.2.2. Glucose and Fetal Growth
3.2.3. Blood Leptin Levels and Fetal Growth
3.2.4. Blood Adiponectin Level and Fetal Growth
3.2.5. Blood Levels of Ghrelin and Fetal Growth
3.2.6. Human Placental Growth Hormone (PGH)-IGF Axis and Fetal Growth
3.3. Low Birth Weight in Infants of Diabetic Mothers (LBW, SGA)
3.4. Follow-Up Studies of Weight and Height in Children of Diabetic Mothers
3.4.1. Postnatal Growth of Low Birth Weight (SGA) Infants
3.4.2. Postnatal Growth of Appropriate for Gestational Age (AGA) or Macrosomic Infants
4. The Effects of Diabetes in Pregnancy on the Newborn Infant and in the Neonatal Period
4.1. Postnatal Complications
4.1.1. Diabetes Associated Stillbirth and Perinatal Death
4.1.2. Time of Delivery
4.1.3. Mode of Delivery
4.1.4. Shoulder Dystocia
4.1.5. Prematurity and Prematurity Complications
4.1.6. Course at the Neonatal Intensive Care Unit (NICU)
4.1.7. Respiratory Morbidity
4.1.8. Hypertrophic Cardiomyopathy
4.1.9. Perinatal Asphyxia
4.1.10. Neonatal Hypoglycemia
4.1.11. Fetal Macrosomia (LGA)
4.1.12. Fetal Growth Restriction (FGR)
4.1.13. Polycythemia
5. Development of Children Born to Mothers with Diabetes
5.1. Development of Children Born to Mothers with GDM
5.2. Development of Children Born to Mothers with PGDM
5.2.1. Studies Describing Decreased Cognitive Function in Children of Mothers with PGDM
5.2.2. Studies That Did Not Find Decreased Cognitive Function in Children of Mothers with PGDM
Type of Neurodevelopmental Problem | Authors and Reference Number | Description of Findings |
---|---|---|
Decreased cognitive abilities | Churchill et al. [220] | Reduced IQ scores in children of PGDM with acetonuria but not without acetonuria. No correlation with duration of diabetes |
Decreased cognitive abilities and language development | Stehbens et al. [221] Petersen et al. [222] Bloch-Petersen et al. [223] | A decrease in children that were SGA. Children’s age ranged from 1–5 years |
General developmental retardation including motor delay | Kimmerle et al. [224] | Mothers had PGDM with nephropathy. Most severe problems in offspring of mothers with renal failure |
Neurodevelopmental delay in the first year | Hod et al. [225] | Neurodevelopmental delay at one year of age |
Normal cognitive development | Persson and Gentz [218] Cummins and Norish [229] Boghossian et al. [158] Rizzo et al. [159] Ornoy et al. [163] | All PGDM mothers were well treated. Infants, preschool and early school-age children. If treatment started late in pregnancy, there were some children with developmental delays |
Motor developmental delay | Ornoy et al. [8,163] Rizzo et al. [159] | Children at early school age of well-treated mothers. They had normal cognition |
ADHD | Nomura et al. [231] Ornoy et al. [8] Xiang et al. [232] Kong et al. [233] Li et al. [234] | Mothers with PGDM, well treated. Low SES increased the rate of ADHD. More severe PGDM, more ADHD. Obesity with PGDM further increased the rate of ADHD |
ASD | Kong et al. [233] Li et al. [234] Xu et al.; meta-analysis of 12 studies [235] | The rate of ASD was further increased if the PGDM mothers were also obese. A similar increase in ASD was also found in offspring of mothers with GDM [234,236,237] |
6. Diabetes in Pregnancy and ADHD
7. Diabetes in Pregnancy and ASD
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
T1DM | type 1 diabetes mellitus |
T2DM | type 2 diabetes mellitus |
GDM | gestational diabetes mellitus |
PGDM | pre-gestational diabetes mellitus |
HbA1c | glycosylated hemoglobin |
AVS | atrioventricular septal |
aOR | adjusted odds ratio |
CI | confidence interval |
RR | relative risk |
HR | hazard ratio |
PI | ponderal index |
hCG | human chorionic gonadotropin |
hPL | human placental lactogen |
hPGH | human placental growth hormone |
PGH | Placental growth hormone |
IGF-I | insulin-like growth factor I |
IGFBPs | IGF binding proteins |
IGFBP1 | IGF binding protein 1 |
apo-M | apolipoprotein M |
TNF-α | tumor necrosis factor-α |
GC/MS | gas chromatography/mass spectrometry |
LC/MS | liquid chromatography/mass spectrometry |
IUGR | intrauterine growth retardation |
Glut | glucose transporter proteins |
GWG | gestational weight gain |
LGA | large for gestational age |
SGA | small for gestational age |
AGA | Appropriate for Gestational Age |
VLBW | very low birth weight |
FGR | fetal growth restriction |
GHBP | growth hormone-binding protein |
BMI | body mass index |
IQ | intelligence quotient |
ACOG | the American College of Obstetricians and Gynecologists |
EFW | estimated fetal weight |
US | ultrasound |
NICU | neonatal intensive care unit |
ROP | retinopathy of prematurity |
RDS | respiratory distress syndrome |
PDA | patent ductus arteriosus |
EOS | early-onset sepsis |
IVH | intraventricular hemorrhage |
PVL | periventricular leukomalacia |
BPD | bronchopulmonary dysplasia |
UA | umbilical artery |
IADPSG | Diabetes and Pregnancy Study Group |
NICE | National Institute for Health and Care Excellence |
SES | socio-economic status |
ADHD | Attention deficit hyperactivity disorder |
ASD | Autism spectrum disorder |
References
- Reece, E.A. Diabetes-induced birth defects: What do we know? What can we do? Curr. Diabetes Rep. 2012, 12, 24–32. [Google Scholar] [CrossRef]
- Reece, E.A. Perspectives on obesity, pregnancy and birth outcomes in the United States: The scope of the problem. Am. J. Obs. Gynecol. 2008, 198, 23–27. [Google Scholar] [CrossRef]
- Reece, E.A. The fetal and maternal consequences of gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2010, 23, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Feig, D.S.; Palda, V.A. Type 2 diabetes in pregnancy: A growing concern. Lancet 2002, 359, 1690–1692. [Google Scholar] [CrossRef]
- Harris, B.S.; Bishop, K.C.; Kemeny, H.R.; Walker, J.S.; Rhee, E.; Kuller, J.A. Risk Factors for Birth Defects. Obstet. Gynecol. Surv. 2017, 72, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.; Bock, C.; Wetzel, M.; Maul, H.; Loerbroks, A. The prevalence of gestational diabetes in advanced economies. J. Perinat. Med. 2012, 40, 511–520. [Google Scholar] [CrossRef]
- Kong, L.; Nilsson, I.A.K.; Gissler, M.; Lavebratt, C. Associations of Maternal Diabetes and Body Mass Index with Offspring Birth Weight and Prematurity. JAMA Pediatr. 2019, 173, 371–378. [Google Scholar] [CrossRef]
- Ornoy, A.; Ratzon, N.; Greenbaum, C.; Wolf, A.; Dulitzky, M. School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J. Pediatr. Endocrinol. Metab. 2001, 14 (Suppl. 1), 681–689. [Google Scholar] [CrossRef]
- Ornoy, A.; Reece, E.A.; Pavlinkova, G.; Kappen, C.; Miller, R.K. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res. Part C Embryo Today Rev. 2015, 105, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, G. Maternal complications in diabetic pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 77–90. [Google Scholar] [CrossRef]
- Kitzmiller, J.L.; Combs, C.A. Diabetic nephropathy and pregnancy. Obstet. Gynecol. Clin. N. Am. 1996, 23, 173–203. [Google Scholar] [CrossRef]
- Leguizamon, G.; Reece, E.A. Effect of medical therapy on progressive nephropathy: Influence of pregnancy, diabetes and hypertension. J. Matern. Fetal Med. 2000, 9, 70–78. [Google Scholar] [CrossRef]
- Reece, E.A.; Leguizamon, G.; Homko, C. Pregnancy performance and outcomes associated with diabetic nephropathy. Am. J. Perinatol. 1998, 15, 413–421. [Google Scholar] [CrossRef]
- Stévenin, C.; Collet, C.; White, C.; Marre, M. Management of diabetic nephropathy before and during pregnancy. Diabetes Metab. 2001, 27, S42–S47. [Google Scholar]
- Tinker, S.C.; Gilboa, S.M.; Moore, C.A.; Waller, D.K.; Simeone, R.M.; Kim, S.Y.; Jamieson, D.J.; Botto, L.D.; Reefhuis, J. Specific birth defects in pregnancies of women with diabetes: National Birth Defects Prevention Study, 1997–2011. Am. J. Obs. Gynecol. 2020, 222, 176.e1–176.e11. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.F.; Hare, J.W.; Cloherty, J.P.; Benacerraf, B.R.; Soeldner, J.S. First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology 1989, 39, 225–231. [Google Scholar] [CrossRef]
- Engineer, A.; Saiyin, T.; Greco, E.R.; Feng, Q. Say NO to ROS: Their Roles in Embryonic Heart Development and Pathogenesis of Congenital Heart Defects in Maternal Diabetes. Antioxidants 2019, 8, 436. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Frías, M.L. Epidemiological analysis of outcomes of pregnancy in diabetic mothers: Identification of the most characteristic and most frequent congenital anomalies. Am. J. Med. Genet. 1994, 51, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Wren, C.; Birrell, G.; Hawthorne, G. Cardiovascular malformations in infants of diabetic mothers. Heart 2003, 89, 1217–1220. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, N.; Brazil, D.P.; McAuliffe, F. Fetal cardiac effects of maternal hyperglycemia during pregnancy. Birth Defects Res. Part Aclinical Mol. Teratol. 2009, 85, 523–530. [Google Scholar] [CrossRef]
- Correa, A.; Gilboa, S.M.; Besser, L.M.; Botto, L.D.; Moore, C.A.; Hobbs, C.A.; Cleves, M.A.; Riehle-Colarusso, T.J.; Waller, D.K.; Reece, E.A. Diabetes mellitus and birth defects. Am. J. Obs. Gynecol. 2008, 199, 237-e1. [Google Scholar] [CrossRef] [Green Version]
- Sirico, A.; Sarno, L.; Zullo, F.; Martinelli, P.; Maruotti, G.M. Pregestational diabetes and fetal heart rate in the first trimester of pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 232, 30–32. [Google Scholar] [CrossRef]
- Borsari, L.; Malagoli, C.; Werler, M.M.; Rothman, K.J.; Malavolti, M.; Rodolfi, R.; De Girolamo, G.; Nicolini, F.; Vinceti, M. Joint Effect of Maternal Tobacco Smoking and Pregestational Diabetes on Preterm Births and Congenital Anomalies: A Population-Based Study in Northern Italy. J. Diabetes Res. 2018, 2018, 2782741. [Google Scholar] [CrossRef]
- López-de-Andrés, A.; Perez-Farinos, N.; Hernández-Barrera, V.; Palomar-Gallego, M.A.; Carabantes-Alarcón, D.; Zamorano-León, J.J.; de Miguel-Diez, J.; Jimenez-Garcia, R. A Population-Based Study of Diabetes during Pregnancy in Spain (2009–2015): Trends in Incidence, Obstetric Interventions, and Pregnancy Outcomes. J. Clin. Med. 2020, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Xu, Q.; Yang, H.; Yang, Y.; Wang, L.; Chen, H.; Anderson, C.; Liu, X.; Song, G.; Li, Q.; et al. Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women: A population-based cohort study in China. PLoS Med. 2019, 16, e1002926. [Google Scholar] [CrossRef]
- Billionnet, C.; Mitanchez, D.; Weill, A.; Nizard, J.; Alla, F.; Hartemann, A.; Jacqueminet, S. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 2017, 60, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Zawiejska, A.; Wróblewska-Seniuk, K.; Gutaj, P.; Mantaj, U.; Gomulska, A.; Kippen, J.; Wender-Ozegowska, E. Early Screening for Gestational Diabetes Using IADPSG Criteria May Be a Useful Predictor for Congenital Anomalies: Preliminary Data from a High-Risk Population. J. Clin. Med. 2020, 9, 3553. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Sun, Y.; Du, Y.; Santillan, M.K.; Santillan, D.A.; Snetselaar, L.G.; Bao, W. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus With Congenital Anomalies of the Newborn. Diabetes Care 2020, 43, 2983–2990. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A.; Rand, S.B.; Bischitz, N. Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: Studies on cultured rat embryos. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2010, 89, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bitsanis, D.; Ghebremeskel, K.; Moodley, T.; Crawford, M.A.; Djahanbakhch, O. Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids. Lipids 2006, 41, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.; Piddington, R.; Goldman, A.; Egler, J.; Moehring, J. Myo-inositol and prostaglandins reverse the glucose inhibition of neural tube fusion in cultured mouse embryos. Diabetologia 1990, 33, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, M.; Arata, N.; Ogawa, Y. Obesity and abnormal glucose tolerance in the offspring of mothers with diabetes. Curr. Opin. Obstet. Gynecol. 2018, 30, 361–368. [Google Scholar] [CrossRef]
- Ornoy, A. The impact of intrauterine exposure versus postnatal environment in neurodevelopmental toxicity: Long-term neurobehavioral studies in children at risk for developmental disorders. Toxicol. Lett. 2003, 140, 171–181. [Google Scholar] [CrossRef]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, B.L.; Metzger, B.E.; Cho, N.H.; Loeb, C.A. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 1995, 18, 611–617. [Google Scholar] [CrossRef]
- Kc, K.; Shakya, S.; Zhang, H. Gestational Diabetes Mellitus and Macrosomia: A Literature Review. Ann. Nutr. Metab. 2015, 66 (Suppl. 2), 14–20. [Google Scholar] [CrossRef]
- Vieira, M.C.; Sankaran, S.; Pasupathy, D. Fetal macrosomia. Obstet. Gynaecol. Reprod. Med. 2020, 30, 146–151. [Google Scholar] [CrossRef]
- Visser, G.H.; de Valk, H.W. Management of diabetes in pregnancy: Antenatal follow-up and decisions concerning timing and mode of delivery. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J. The Pregnant Diabetic and Her Newborn: Problems and Management. Arch. Intern. Med. 1968, 122, 92. [Google Scholar]
- Greco, P.; Vimercati, A.; Scioscia, M.; Rossi, A.C.; Giorgino, F.; Selvaggi, L. Timing of Fetal Growth Acceleration in Women with Insulin-Dependent Diabetes. Fetal Diagn. Ther. 2003, 18, 437–441. [Google Scholar] [CrossRef]
- Boulet, S.L.; Alexander, G.R.; Salihu, H.M.; Pass, M. Macrosomic births in the United States: Determinants, outcomes, and proposed grades of risk. Am. J. Obstet. Gynecol. 2003, 188, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Oral, E.; Cağdaş, A.; Gezer, A.; Kaleli, S.; Aydinli, K.; Öçer, F. Perinatal and maternal outcomes of fetal macrosomia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 99, 167–171. [Google Scholar] [CrossRef]
- Hyperglycemia and Adverse Pregnancy Outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [CrossRef] [PubMed] [Green Version]
- Perlow, J.H.; Wigton, T.; Hart, J.; Strassner, H.T.; Nageotte, M.P.; Wolk, B.M. Birth trauma. A five-year review of incidence and associated perinatal factors. J. Reprod. Med. 1996, 41, 754. [Google Scholar]
- Stotland, N.E.; Caughey, A.B.; Breed, E.M.; Escobar, G.J. Risk factors and obstetric complications associated with macrosomia. Int. J. Gynecol. Obstet. 2004, 87, 220–226. [Google Scholar] [CrossRef]
- Meshari, A.A.; De Silva, S.; Rahman, I. Fetal macrosomia—maternal risks and fetal outcome. Int. J. Gynecol. Obstet. 1990, 32, 215–222. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [Green Version]
- Barbour, L.A. Metabolic Culprits in Obese Pregnancies and Gestational Diabetes Mellitus: Big Babies, Big Twists, Big Picture The 2018 Norbert Freinkel Award Lecture. Diabetes Care 2019, 42, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Gao, N.; Gorski, R.K.; White, P.; Hardy, O.T.; Rafiq, K.; Brestelli, J.E.; Chen, G.; Stoeckert, C.J., Jr.; Kaestner, K.H. Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4alpha. Genes Dev. 2007, 21, 756–769. [Google Scholar] [CrossRef] [Green Version]
- Plank, J.L.; Frist, A.Y.; LeGrone, A.W.; Magnuson, M.A.; Labosky, P.A. Loss of Foxd3 results in decreased β-cell proliferation and glucose intolerance during pregnancy. Endocrinology 2011, 152, 4589–4600. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.; Kirkegaard, J.S.; Hoelper, S.; Seymour, P.A.; Rescan, C.; Nielsen, J.H.; Madsen, O.D.; Jensen, J.N.; Krüger, M.; Grønborg, M.; et al. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo. Mol. Endocrinol. 2016, 30, 133–143. [Google Scholar] [CrossRef]
- Moyce, B.L.; Dolinsky, V.W. Maternal β-Cell Adaptations in Pregnancy and Placental Signalling: Implications for Gestational Diabetes. Int. J. Mol. Sci. 2018, 19, 3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampmann, U.; Knorr, S.; Fuglsang, J.; Ovesen, P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J. Diabetes Res. 2019, 2019, 5320156. [Google Scholar] [CrossRef] [Green Version]
- Fuglsang, J.; Lauszus, F.; Flyvbjerg, A.; Ovesen, P. Human placental growth hormone, insulin-like growth factor I and-II, and insulin requirements during pregnancy in type 1 diabetes. J. Clin. Endocrinol. Metab. 2003, 88, 4355–4361. [Google Scholar] [CrossRef] [Green Version]
- Velegrakis, A.; Sfakiotaki, M.; Sifakis, S. Human placental growth hormone in normal and abnormal fetal growth (Review). Biomed Rep. 2017, 7, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caufriez, A.; Frankenne, F.; Hennen, G.; Copinschi, G. Regulation of maternal IGF-I by placental GH in normal and abnormal human pregnancies. Am. J. Physiol. 1993, 265, E572–E577. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Luo, G.H.; Zhang, J.; Jiang, H.; Wei, J.; Shi, Y.P.; Zhang, X.Y.; Xu, N. Increased mRNA levels of apolipoprotein M and apolipoprotein AI in the placental tissues with fetal macrosomia. Arch. Gynecol. Obs. 2015, 291, 299–303. [Google Scholar] [CrossRef]
- Hammoud, N.M.; Visser, G.H.A.; van Rossem, L.; Biesma, D.H.; Wit, J.M.; de Valk, H.W. Long-term BMI and growth profiles in offspring of women with gestational diabetes. Diabetologia 2018, 61, 1037–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptiste-Roberts, K.; Nicholson, W.K.; Wang, N.Y.; Brancati, F.L. Gestational diabetes and subsequent growth patterns of offspring: The National Collaborative Perinatal Project. Matern. Child Health J. 2012, 16, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, T.A.; Xiang, A.H. Gestational diabetes mellitus. J. Clin. Investig. 2005, 115, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Catalano, P.M. Obesity, insulin resistance, and pregnancy outcome. Reproduction 2010, 140, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Briana, D.D.; Malamitsi-Puchner, A. Reviews: Adipocytokines in normal and complicated pregnancies. Reprod. Sci. 2009, 16, 921–937. [Google Scholar] [CrossRef]
- Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996, 271, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Graça, G.; Duarte, I.F.; Barros, A.S.; Goodfellow, B.J.; Diaz, S.O.; Pinto, J.; Carreira, I.M.; Galhano, E.; Pita, C.; Gil, A.M. Impact of Prenatal Disorders on the Metabolic Profile of Second Trimester Amniotic Fluid: A Nuclear Magnetic Resonance Metabonomic Study. J. Proteome Res. 2010, 9, 6016–6024. [Google Scholar] [CrossRef]
- O’Neill, K.; Alexander, J.; Azuma, R.; Xiao, R.; Snyder, N.W.; Mesaros, C.A.; Blair, I.A.; Pinney, S.E. Gestational Diabetes Alters the Metabolomic Profile in 2nd Trimester Amniotic Fluid in a Sex-Specific Manner. Int. J. Mol. Sci. 2018, 19, 2696. [Google Scholar] [CrossRef] [Green Version]
- Huynh, J.; Dawson, D.; Roberts, D.; Bentley-Lewis, R. A systematic review of placental pathology in maternal diabetes mellitus. Placenta 2015, 36, 101–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desoye, G.; Gauster, M.; Wadsack, C. Placental transport in pregnancy pathologies. Am. J. Clin. Nutr. 2011, 94, 1896S–1902S. [Google Scholar] [CrossRef] [Green Version]
- Barbour, L.A.; Hernandez, T.L. Maternal Lipids and Fetal Overgrowth: Making Fat from Fat. Clin. Ther. 2018, 40, 1638–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanirowski, P.J.; Szukiewicz, D.; Pazura-Turowska, M.; Sawicki, W.; Cendrowski, K. Placental Expression of Glucose Transporter Proteins in Pregnancies Complicated by Gestational and Pregestational Diabetes Mellitus. Can. J. Diabetes 2018, 42, 209–217. [Google Scholar] [CrossRef]
- Scholl, T.O.; Sowers, M.; Chen, X.; Lenders, C. Maternal glucose concentration influences fetal growth, gestation, and pregnancy complications. Am. J. Epidemiol. 2001, 154, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Combs, C.A.; Gunderson, E.; Kitzmiller, J.L.; Gavin, L.A.; Main, E.K. Relationship of Fetal Macrosomia to Maternal Postprandial Glucose Control During Pregnancy. Diabetes Care 1992, 15, 1251. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.E.; Silverman, B.L.; Freinkel, N.; Dooley, S.L.; Ogata, E.S.; Green, O.C. Amniotic fluid insulin concentration as a predictor of obesity. Arch. Dis. Child. 1990, 65, 1050. [Google Scholar] [CrossRef] [Green Version]
- Silverman, B.L.; Rizzo, T.A.; Cho, N.H.; Metzger, B.E. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 1998, 21 (Suppl. 2), B142–B149. [Google Scholar]
- DubÉ, M.-C.; Morisset, A.-S.; Tchernof, A.; Weisnagel, S.J. Cord blood C-peptide levels relate to the metabolic profile of women with and without gestational diabetes. Acta Obstet. Gynecol. Scand. 2012, 91, 1469–1473. [Google Scholar] [CrossRef]
- Carpenter, M.W.; Canick, J.A.; Hogan, J.W.; Shellum, C.; Somers, M.; Star, J.A. Amniotic fluid insulin at 14-20 weeks’ gestation: Association with later maternal glucose intolerance and birth macrosomia. Diabetes Care 2001, 24, 1259–1263. [Google Scholar] [CrossRef] [Green Version]
- Atègbo, J.M.; Grissa, O.; Yessoufou, A.; Hichami, A.; Dramane, K.L.; Moutairou, K.; Miled, A.; Grissa, A.; Jerbi, M.; Tabka, Z.; et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J. Clin. Endocrinol. Metab. 2006, 91, 4137–4143. [Google Scholar] [CrossRef] [PubMed]
- Wolf, H.J.; Ebenbichler, C.F.; Huter, O.; Bodner, J.; Lechleitner, M.; Föger, B.; Patsch, J.R.; Desoye, G. Fetal leptin and insulin levels only correlate inlarge-for-gestational age infants. Eur. J. Endocrinol. 2000, 142, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Persson, B.; Westgren, M.; Celsi, G.; Nord, E.; Ortqvist, E. Leptin concentrations in cord blood in normal newborn infants and offspring of diabetic mothers. Horm. Metab. Res. 1999, 31, 467–471. [Google Scholar] [CrossRef]
- Horosz, E.; Bomba-Opon, D.A.; Szymanska, M.; Wielgos, M. Third trimester plasma adiponectin and leptin in gestational diabetes and normal pregnancies. Diabetes Res. Clin. Pract. 2011, 93, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Lepercq, J.; Taupin, P.; Dubois-Laforgue, D.; Duranteau, L.; Lahlou, N.; Boitard, C.; Landais, P.; Hauguel-De Mouzon, S.; Timsit, J. Heterogeneity of fetal growth in type 1 diabetic pregnancy. Diabetes Metab. 2001, 27, 339–344. [Google Scholar] [PubMed]
- De Silva, M.H.A.D.; Hewawasam, R.P.; Iresha, M.A.G. Cord Leptin, C-Peptide and Insulin Levels in Large for Gestational Age Newborns in Sri Lanka. Int. J. Pediatr. 2019, 2019, 4268658. [Google Scholar] [CrossRef]
- Hytinantti, T.K.; Juntunen, M.; Koistinen, H.A.; Koivisto, V.A.; Karonen, S.L.; Andersson, S. Postnatal changes in concentrations of free and bound leptin. Arch. Dis. Childhood. Fetal Neonatal Ed. 2001, 85, F123–F126. [Google Scholar] [CrossRef] [Green Version]
- Chaoimh, C.N.; Murray, D.M.; Kenny, L.C.; Irvine, A.D.; Hourihane, J.O.; Kiely, M. Cord blood leptin and gains in body weight and fat mass during infancy. Eur. J. Endocrinol. 2016, 175, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worda, C.; Leipold, H.; Gruber, C.; Kautzky-Willer, A.; Knöfler, M.; Bancher-Todesca, D. Decreased plasma adiponectin concentrations in women with gestational diabetes mellitus. Am. J. Obs. Gynecol. 2004, 191, 2120–2124. [Google Scholar] [CrossRef]
- Lindsay, R.S.; Walker, J.D.; Havel, P.J.; Hamilton, B.A.; Calder, A.A.; Johnstone, F.D. Adiponectin is present in cord blood but is unrelated to birth weight. Diabetes Care 2003, 26, 2244–2249. [Google Scholar] [CrossRef] [Green Version]
- Telejko, B.; Kuzmicki, M.; Zonenberg, A.; Modzelewska, A.; Niedziolko-Bagniuk, K.; Ponurkiewicz, A.; Wawrusiewicz-Kurylonek, N.; Nikolajuk, A.; Szamatowicz, J.; Laudanski, P.; et al. Ghrelin in gestational diabetes: Serum level and mRNA expression in fat and placental tissue. Exp. Clin. Endocrinol. Diabetes 2010, 118, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Hehir, M.P.; Laursen, H.; Higgins, M.F.; Brennan, D.J.; O’Connor, D.P.; McAuliffe, F.M. Ghrelin concentrations in maternal and cord blood of type 1 diabetic and non-diabetic pregnancies at term. Endocrine 2013, 43, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Karakulak, M.; Saygili, U.; Temur, M.; Yilmaz, Ö.; Özün Özbay, P.; Calan, M.; Coşar, H. Comparison of umbilical cord ghrelin concentrations in full-term pregnant women with or without gestational diabetes. Endocr. Res. 2017, 42, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, J.; Heiman, M.; Wong, A.C.; Wach, R.; Chessex, P.; Chanoine, J.P. Elevated umbilical cord ghrelin concentrations in small for gestational age neonates. J. Clin. Endocrinol. Metab. 2003, 88, 4324–4327. [Google Scholar] [CrossRef]
- Ng, P.C.; Lee, C.H.; Lam, C.W.; Wong, E.; Chan, I.H.; Fok, T.F. Plasma ghrelin and resistin concentrations are suppressed in infants of insulin-dependent diabetic mothers. J. Clin. Endocrinol. Metab. 2004, 89, 5563–5568. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Serek, R.; Crane, D.I.; Veveris-Lowe, T.; Parry, A.; Johnson, S.; Leung, K.C.; Ho, K.K.; Bougoussa, M.; Hennen, G.; et al. Placental growth hormone (GH), GH-binding protein, and insulin-like growth factor axis in normal, growth-retarded, and diabetic pregnancies: Correlations with fetal growth. J. Clin. Endocrinol. Metab. 2000, 85, 1143–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadakia, R.; Ma, M.; Josefson, J.L. Neonatal adiposity increases with rising cord blood IGF-1 levels. Clin. Endocrinol. 2016, 85, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.F.; Russell, N.E.; Crossey, P.A.; Nyhan, K.C.; Brazil, D.P.; McAuliffe, F.M. Maternal and Fetal Placental Growth Hormone and IGF Axis in Type 1 Diabetic Pregnancy. PLoS ONE 2012, 7, e29164. [Google Scholar] [CrossRef]
- Ringholm, L.; Juul, A.; Pedersen-Bjergaard, U.; Thorsteinsson, B.; Damm, P.; Mathiesen, E.R. Lower levels of placental growth hormone in early pregnancy in women with type 1 diabetes and large for gestational age infants. Growth Horm. IGF Res. 2015, 25, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, P.G.; Stewart, M.O.; Taylor, A.; Howell, R.; Lind, T. Insulin-like growth factor 1 and its binding protein 1 during normal and diabetic pregnancies. Obstet. Gynecol. 1990, 76, 223–229. [Google Scholar]
- Liu, Y.-J.; Tsushima, T.; Minei, S.; Sanaka, M.; Nagashima, T.; Yanagisawa, K.; Omori, Y. Insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBP-1,-2 and-3) in diabetic pregnancy: Relationship to macrosomia. Endocr. J. 1996, 43, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisi, D.K.; Liu, X.J.; Wykes, L.J.; Skinner, C.D.; Koski, K.G. Insulin-like growth factor II and binding proteins 1 and 3 from second trimester human amniotic fluid are associated with infant birth weight. J. Nutr. 2005, 135, 1667–1672. [Google Scholar] [CrossRef] [Green Version]
- Underwood, L.E.; D’Ercole, A.J. Insulin and insulin-like growth factors/somatomedins in fetal and neonatal development. Clin. Endocrinol. Metab. 1984, 13, 69–89. [Google Scholar] [CrossRef]
- Eidelman, A.I.; Samueloff, A. The pathophysiology of the fetus of the diabetic mother. Semin. Perinatol. 2002, 26, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Krüger, C.; Dörr, H.; Von Muehlendahl, K.; Herkenhoff, H. Neonatal diabetes and intra-uterine growth retardation. Eur. J. Pediatr. 1996, 156, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A. Insulin deficiency: Effects on fetal growth and development. J. Paediatr. Child Health 1993, 29, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Reiher, H.; Fuhrmann, K.; Noack, S.; Woltanski, K.-P.; Jutzi, E.; Dorsche, H.H.v.; Hahn, H.-J. Age-dependent Insulin Secretion of the Endocrine Pancreas In Vitro from Fetuses of Diabetic and Nondiabetic Patients. Diabetes Care 1983, 6, 446. [Google Scholar] [CrossRef] [PubMed]
- Sokooti, S.; Kieneker, L.M.; Borst, M.H.d.; Muller Kobold, A.; Kootstra-Ros, J.E.; Gloerich, J.; van Gool, A.J.; Heerspink, H.J.L.; Gansevoort, R.T.; Dullaart, R.P.F.; et al. Plasma C-Peptide and Risk of Developing Type 2 Diabetes in the General Population. J. Clin. Med. 2020, 9, 3001. [Google Scholar] [CrossRef]
- Jansson, T.; Myatt, L.; Powell, T.L. The role of trophoblast nutrient and ion transporters in the development of pregnancy complications and adult disease. Curr. Vasc. Pharmacol. 2009, 7, 521–533. [Google Scholar] [CrossRef]
- Stanirowski, P.; Szukiewicz, D.; Pyzlak, M.; Abdalla, N.; Sawicki, W.; Cendrowski, K. Analysis of correlations between the placental expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 and selected maternal and fetal parameters in pregnancies complicated by diabetes mellitus. J. Matern. Fetal Neonatal Med. 2017, 32, 1–221. [Google Scholar] [CrossRef]
- Lampl, M.; Jeanty, P. Exposure to maternal diabetes is associated with altered fetal growth patterns: A hypothesis regarding metabolic allocation to growth under hyperglycemic-hypoxemic conditions. Am. J. Hum. Biol. 2004, 16, 237–263. [Google Scholar] [CrossRef]
- Romon, M.; Nuttens, M.C.; Vambergue, A.; Vérier-Mine, O.; Biausque, S.; Lemaire, C.; Fontaine, P.; Salomez, J.L.; Beuscart, R. Higher carbohydrate intake is associated with decreased incidence of newborn macrosomia in women with gestational diabetes. J. Am. Diet. Assoc. 2001, 101, 897–902. [Google Scholar] [CrossRef]
- Parfitt, V.; Clark, J.; Turner, G.; Hartog, M. Maternal postprandial blood glucose levels influence infant birth weight in diabetic pregnancy. Diabetes Res. 1992, 19, 133–135. [Google Scholar] [PubMed]
- Li, M.; Hinkle, S.N.; Grantz, K.L.; Kim, S.; Grewal, J.; Grobman, W.A.; Skupski, D.W.; Newman, R.B.; Chien, E.K.; Sciscione, A.; et al. Glycaemic status during pregnancy and longitudinal measures of fetal growth in a multi-racial US population: A prospective cohort study. Lancet Diabetes Endocrinol. 2020, 8, 292–300. [Google Scholar] [CrossRef]
- Chiefari, E.; Quaresima, P.; Visconti, F.; Mirabelli, M.; Brunetti, A. Gestational diabetes and fetal overgrowth: Time to rethink screening guidelines. Lancet. Diabetes Endocrinol. 2020, 8, 561–562. [Google Scholar] [CrossRef]
- Quaresima, P.; Visconti, F.; Chiefari, E.; Mirabelli, M.; Borelli, M.; Caroleo, P.; Foti, D.; Puccio, L.; Venturella, R.; Di Carlo, C.; et al. Appropriate Timing of Gestational Diabetes Mellitus Diagnosis in Medium- and Low-Risk Women: Effectiveness of the Italian NHS Recommendations in Preventing Fetal Macrosomia. J. Diabetes Res. 2020, 2020, 5393952. [Google Scholar] [CrossRef]
- Silva, A.L.d.; Amaral, A.R.d.; Oliveira, D.S.d.; Martins, L.; Silva, M.R.E.; Silva, J.C. Neonatal outcomes according to different therapies for gestational diabetes mellitus. J. Pediatr. 2017, 93, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladfors, L.; Shaat, N.; Wiberg, N.; Katasarou, A.; Berntorp, K.; Kristensen, K. Fetal overgrowth in women with type 1 and type 2 diabetes mellitus. PLoS ONE 2017, 12, e0187917. [Google Scholar] [CrossRef] [Green Version]
- McGrath, R.T.; Glastras, S.J.; Hocking, S.L.; Fulcher, G.R. Large-for-Gestational-Age Neonates in Type 1 Diabetes and Pregnancy: Contribution of Factors Beyond Hyperglycemia. Diabetes Care 2018, 41, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansson, N.; Rosario, F.J.; Gaccioli, F.; Lager, S.; Jones, H.N.; Roos, S.; Jansson, T.; Powell, T.L. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J. Clin. Endocrinol. Metab. 2013, 98, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrens, A.; Verhaeghe, J.; Vanhole, C.; Devlieger, R.; Mathieu, C.; Benhalima, K. Risk factors for large-for-gestational age infants in pregnant women with type 1 diabetes. BMC Pregnancy Childbirth 2016, 16, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parellada, C.B.; Asbjörnsdóttir, B.; Ringholm, L.; Damm, P.; Mathiesen, E.R. Fetal growth in relation to gestational weight gain in women with type 2 diabetes: An observational study. Diabet. Med. 2014, 31, 1681–1689. [Google Scholar] [CrossRef]
- Rifas-Shiman, S.L.; Fleisch, A.; Hivert, M.F.; Mantzoros, C.; Gillman, M.W.; Oken, E. First and second trimester gestational weight gains are most strongly associated with cord blood levels of hormones at delivery important for glycemic control and somatic growth. Metab. Clin. Exp. 2017, 69, 112–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evers, I.M.; de Valk, H.W.; Mol, B.W.; ter Braak, E.W.; Visser, G.H. Macrosomia despite good glycaemic control in Type I diabetic pregnancy; results of a nationwide study in The Netherlands. Diabetologia 2002, 45, 1484–1489. [Google Scholar] [CrossRef] [Green Version]
- Kawakita, T.; Bowers, K.; McWhorter, K.; Rosen, B.; Adams, M.; Miodovnik, M.; Khoury, J.C. Characterizing Gestational Weight Gain According to Institute of Medicine Guidelines in Women with Type 1 Diabetes Mellitus: Association with Maternal and Perinatal Outcome. Am. J. Perinatol. 2016, 33, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Wiznitzer, A.; Furman, B.; Zuili, I.; Shany, S.; Reece, E.A.; Mazor, M. Cord leptin level and fetal macrosomia. Obstet. Gynecol. 2000, 96, 707–713. [Google Scholar] [CrossRef]
- Masuzaki, H.; Ogawa, Y.; Sagawa, N.; Hosoda, K.; Matsumoto, T.; Mise, H.; Nishimura, H.; Yoshimasa, Y.; Tanaka, I.; Mori, T.; et al. Nonadipose tissue production of leptin: Leptin as a novel placenta-derived hormone in humans. Nat. Med. 1997, 3, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, A.; Toro, A.; Vilariño-García, T.; Maymó, J.; Guadix, P.; Dueñas, J.L.; Fernández-Sánchez, M.; Varone, C.; Sánchez-Margalet, V. Leptin action in normal and pathological pregnancies. J. Cell. Mol. Med. 2018, 22, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, P.S.; Garland, J.S.; Shivpuri, C.; Mick, G.J.; Sasidharan, P.; Pelz, C.J.; McCormick, K.L. Neonatal cord blood leptin: Its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr. Res. 1998, 43, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozsu, E.; Ceylaner, S.; Onay, H. Early-onset severe obesity due to complete deletion of the leptin gene in a boy. J. Pediatr. Endocrinol. Metab. 2017, 30, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Niazi, R.K.; Gjesing, A.P.; Hollensted, M.; Have, C.T.; Grarup, N.; Pedersen, O.; Ullah, A.; Shahid, G.; Ahmad, W.; Gul, A.; et al. Identification of novel LEPR mutations in Pakistani families with morbid childhood obesity. BMC Med. Genet. 2018, 19, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminos, J.E.; Nogueiras, R.; Gallego, R.; Bravo, S.; Tovar, S.; García-Caballero, T.; Casanueva, F.F.; Diéguez, C. Expression and regulation of adiponectin and receptor in human and rat placenta. J. Clin. Endocrinol. Metab. 2005, 90, 4276–4286. [Google Scholar] [CrossRef]
- Wang, Z.V.; Scherer, P.E. Adiponectin, the past two decades. J. Mol. Cell Biol. 2016, 8, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, M.; Simón, I.; Vendrell, J.; Ceperuelo-Mallafré, V.; Miralles, R.M.; Albaiges, G.; Tinahones, F.; Megia, A. Maternal and cord blood adiponectin multimeric forms in gestational diabetes mellitus: A prospective analysis. Diabetes Care 2011, 34, 2418–2423. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.C.; Nuyt, A.M.; Delvin, E.; Fraser, W.D.; Julien, P.; Audibert, F.; Girard, I.; Shatenstein, B.; Deal, C.; Grenier, E.; et al. Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity 2013, 21, 210–216. [Google Scholar] [CrossRef]
- Teague, A.M.; Fields, D.A.; Aston, C.E.; Short, K.R.; Lyons, T.J.; Chernausek, S.D. Cord blood adipokines, neonatal anthropometrics and postnatal growth in offspring of Hispanic and Native American women with diabetes mellitus. Reprod. Biol. Endocrinol. 2015, 13, 68. [Google Scholar] [CrossRef] [Green Version]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000, 141, 4255–4261. [Google Scholar] [CrossRef]
- Brink, H.S.; van der Lely, A.J.; Delhanty, P.J.D.; Huisman, M.; van der Linden, J. Gestational diabetes mellitus and the ghrelin system. Diabetes Metab. 2019, 45, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Díaz, R.A.; Gómez-Medina, M.P.; Ramírez-Soriano, E.; López-Robles, L.; Aguilar-Salinas, C.A.; Saucedo, R.; Zarate, A.; Valladares-Salgado, A.; Wacher, N.H. Lower Plasma Ghrelin Levels are Found in Women with Diabetes-Complicated Pregnancies. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 425–431. [Google Scholar] [CrossRef]
- Mirlesse, V.; Frankenne, F.; Alsat, E.; Poncelet, M.; Hennen, G.; Evain-Brion, D. Placental growth hormone levels in normal pregnancy and in pregnancies with intrauterine growth retardation. Pediatr. Res. 1993, 34, 439–442. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, H.; Zeck, W.; Russell, A. Placental growth hormone, fetal growth and the IGF axis in normal and diabetic pregnancy. Curr. Diabetes Rev. 2009, 5, 185–189. [Google Scholar] [CrossRef]
- Verhaeghe, J.; Coopmans, W.; van Herck, E.; van Schoubroeck, D.; Deprest, J.A.; Witters, I. IGF-I, IGF-II, IGF Binding Protein 1, and C-Peptide in Second Trimester Amniotic Fluid Are Dependent on Gestational Age but Do Not Predict Weight at Birth. Pediatr. Res. 1999, 46, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biesenbach, G.; Grafinger, P.; Zazgornik, J.; Stöger, H. Perinatal complications and three-year follow up of infants of diabetic mothers with diabetic nephropathy stage IV. Ren. Fail. 2000, 22, 573–580. [Google Scholar] [CrossRef]
- Leguizamón, G.; Trigubo, D.; Pereira, J.I.; Vera, M.F.; Fernández, J.A. Vascular complications in the diabetic pregnancy. Curr. Diabetes Rep. 2015, 15, 22. [Google Scholar] [CrossRef]
- Samii, L.; Kallas-Koeman, M.; Donovan, L.E.; Lodha, A.; Crawford, S.; Butalia, S. The association between vascular complications during pregnancy in women with Type 1 diabetes and congenital malformations. Diabet. Med. 2019, 36, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; Shah, P.S.; Rusconi, F.; Reichman, B.; Modi, N.; Kusuda, S.; Lehtonen, L.; Håkansson, S.; Yang, J.; Isayama, T.; et al. Association of Maternal Diabetes With Neonatal Outcomes of Very Preterm and Very Low-Birth-Weight Infants: An International Cohort Study. JAMA Pediatr. 2018, 172, 867–875. [Google Scholar] [CrossRef]
- Langer, O.; Levy, J.; Brustman, L.; Anyaegbunam, A.; Merkatz, R.; Divon, M. Glycemic control in gestational diabetes mellitus--how tight is tight enough: Small for gestational age versus large for gestational age? Am. J. Obs. Gynecol. 1989, 161, 646–653. [Google Scholar] [CrossRef]
- Barker, D.J. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 1997, 13, 807–813. [Google Scholar] [CrossRef]
- Eriksson, J.; Forsén, T.; Tuomilehto, J.; Osmond, C.; Barker, D. Fetal and childhood growth and hypertension in adult life. Hypertension 2000, 36, 790–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ornoy, A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod. Toxicol. 2011, 32, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A. Biomarkers of maternal diabetes and its complication in pregnancy. Reprod. Toxicol. 2012, 34, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Osmond, C.; Forsén, T.J.; Kajantie, E.; Eriksson, J.G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 2005, 353, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Stettler, N.; Stallings, V.A.; Troxel, A.B.; Zhao, J.; Schinnar, R.; Nelson, S.E.; Ziegler, E.E.; Strom, B.L. Weight gain in the first week of life and overweight in adulthood: A cohort study of European American subjects fed infant formula. Circulation 2005, 111, 1897–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenger, P.; Czernichow, P.; Hughes, I.; Reiter, E.O. Small for gestational age: Short stature and beyond. Endocr. Rev. 2007, 28, 219–251. [Google Scholar] [CrossRef]
- Barker, D.J. Fetal origins of coronary heart disease. BMJ 1995, 311, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Taal, H.R.; Vd Heijden, A.J.; Steegers, E.A.; Hofman, A.; Jaddoe, V.W. Small and large size for gestational age at birth, infant growth, and childhood overweight. Obesity 2013, 21, 1261–1268. [Google Scholar] [CrossRef]
- Karlberg, J.; Albertsson-Wikland, K. Growth in full-term small-for-gestational-age infants: From birth to final height. Pediatr. Res. 1995, 38, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durá-Travé, T.; San Martín-García, I.; Gallinas-Victoriano, F.; Chueca Guindulain, M.J.; Berrade-Zubiri, S. Catch-up growth and associated factors in very low birth weight infants. Anales de Pediatría 2020, 93, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Finkielstain, G.P.; Lui, J.C.; Baron, J. Catch-up growth: Cellular and molecular mechanisms. World Rev. Nutr. Diet. 2013, 106, 100–104. [Google Scholar] [CrossRef]
- Wit, J.M.; Boersma, B. Catch-up growth: Definition, mechanisms, and models. J. Pediatr. Endocrinol. Metab. 2002, 15 (Suppl. 5), 1229–1241. [Google Scholar]
- Lei, X.; Chen, Y.; Ye, J.; Ouyang, F.; Jiang, F.; Zhang, J. The optimal postnatal growth trajectory for term small for gestational age babies: A prospective cohort study. J. Pediatr. 2015, 166, 54–58. [Google Scholar] [CrossRef]
- Boghossian, N.S.; Hansen, N.I.; Bell, E.F.; Brumbaugh, J.E.; Stoll, B.J.; Laptook, A.R.; Shankaran, S.; Wyckoff, M.H.; Colaizy, T.T.; Das, A.; et al. Outcomes of Extremely Preterm Infants Born to Insulin-Dependent Diabetic Mothers. Pediatrics 2016, 137. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, T.A.; Dooley, S.L.; Metzger, B.E.; Cho, N.H.; Ogata, E.S.; Silverman, B.L. Prenatal and perinatal influences on long-term psychomotor development in offspring of diabetic mothers. Am. J. Obs. Gynecol. 1995, 173, 1753–1758. [Google Scholar] [CrossRef]
- Vohr, B.R.; McGarvey, S.T. Growth patterns of large-for-gestational-age and appropriate-for-gestational-age infants of gestational diabetic mothers and control mothers at age 1 year. Diabetes Care 1997, 20, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Vohr, B.R.; McGarvey, S.T.; Tucker, R. Effects of maternal gestational diabetes on offspring adiposity at 4–7 years of age. Diabetes Care 1999, 22, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Tarry-Adkins, J.L.; Aiken, C.E.; Ozanne, S.E. Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: A systematic review and meta-analysis. PLoS Med. 2019, 16, e1002848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ornoy, A.; Ratzon, N.; Greenbaum, C.; Peretz, E.; Soriano, D.; Dulitzky, M. Neurobehaviour of school age children born to diabetic mothers. Arch. Dis. Childhood. Fetal Neonatal Ed. 1998, 79, F94–F99. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A.; Wolf, A.; Ratzon, N.; Greenbaum, C.; Dulitzky, M. Neurodevelopmental outcome at early school age of children born to mothers with gestational diabetes. Arch. Dis. Childhood. Fetal Neonatal Ed. 1999, 81, F10–F14. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.M.; McAuliffe, F.M. Prediction and prevention of the macrosomic fetus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 162, 125–130. [Google Scholar] [CrossRef]
- Pham, M.T.; Brubaker, K.; Pruett, K.; Caughey, A.B. Risk of childhood obesity in the toddler offspring of mothers with gestational diabetes. Obstet. Gynecol. 2013, 121, 976–982. [Google Scholar] [CrossRef]
- Battarbee, A.N.; Venkatesh, K.K.; Aliaga, S.; Boggess, K.A. The association of pregestational and gestational diabetes with severe neonatal morbidity and mortality. J. Perinatol. 2020, 40, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C. Predicting antepartum stillbirth. Curr. Opin. Obstet. Gynecol. 2006, 18, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Mackin, S.T.; Nelson, S.M.; Kerssens, J.J.; Wood, R.; Wild, S.; Colhoun, H.M.; Leese, G.P.; Philip, S.; Lindsay, R.S. Diabetes and pregnancy: National trends over a 15 year period. Diabetologia 2018, 61, 1081–1088. [Google Scholar] [CrossRef] [Green Version]
- Dudley, D.J. Diabetic-associated stillbirth: Incidence, pathophysiology, and prevention. Clin. Perinatol. 2007, 34, 611–626. [Google Scholar] [CrossRef]
- Syed, M.; Javed, H.; Yakoob, M.Y.; Bhutta, Z.A. Effect of screening and management of diabetes during pregnancy on stillbirths. BMC Public Health 2011, 11 (Suppl. 3), S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, U.M.; Laughon, S.K.; Sun, L.; Troendle, J.; Willinger, M.; Zhang, J. Prepregnancy risk factors for antepartum stillbirth in the United States. Obstet. Gynecol. 2010, 116, 1119–1126. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.J.; Brudenell, J.M.; Nicolaides, K.H. Fetal acidosis and hyperlacticaemia diagnosed by cordocentesis in pregnancies complicated by maternal diabetes mellitus. Diabet. Med. 1991, 8, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Macrosomia: ACOG Practice Bulletin Summary, Number 216. Obstet. Gynecol. 2020, 135, 246–248. [CrossRef] [PubMed]
- Chen, L.; Wang, W.J.; Auger, N.; Xiao, L.; Torrie, J.; McHugh, N.G.; Luo, Z.C. Diabetes in pregnancy in associations with perinatal and postneonatal mortality in First Nations and non-Indigenous populations in Quebec, Canada: Population-based linked birth cohort study. BMJ Open 2019, 9, e025084. [Google Scholar] [CrossRef]
- ACOG Committee Opinion No. 764 Summary: Medically Indicated Late-Preterm and Early-Term Deliveries. Obstet. Gynecol. 2019, 133, 400–403. [CrossRef]
- Harper, L.M.; Tita, A.T.N.; Biggio, J.R., Jr.; Chang, J.J. Gestational Age of Delivery in Pregnancies Complicated by Diabetes. Ochsner J. 2020, 20, 373–380. [Google Scholar] [CrossRef]
- Dude, A.M.; Grobman, W.A.; Yee, L.M. Association between Sonographic Estimated Fetal Weight and the Risk of Cesarean Delivery among Nulliparous Women with Diabetes in Pregnancy. Am. J. Perinatol. 2018, 35, 1297–1302. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Alqahtani, A.S. Mode of Delivery in the Setting of Repeated Vitreous Hemorrhages in Proliferative Diabetic Retinopathy: A Case Report and Review of the Literature. Cureus 2020, 12, e11239. [Google Scholar] [CrossRef]
- Moraitis, A.A.; Shreeve, N.; Sovio, U.; Brocklehurst, P.; Heazell, A.E.P.; Thornton, J.G.; Robson, S.C.; Papageorghiou, A.; Smith, G.C. Universal third-trimester ultrasonic screening using fetal macrosomia in the prediction of adverse perinatal outcome: A systematic review and meta-analysis of diagnostic test accuracy. PLoS Med. 2020, 17, e1003190. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.R.; Sharifi, F. Perinatal outcomes for untreated women with gestational diabetes by IADPSG criteria: A population-based study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 116–122. [Google Scholar] [CrossRef]
- Egan, A.M.; Danyliv, A.; Carmody, L.; Kirwan, B.; Dunne, F.P. A Prepregnancy Care Program for Women with Diabetes: Effective and Cost Saving. J. Clin. Endocrinol. Metab. 2016, 101, 1807–1815. [Google Scholar] [CrossRef] [Green Version]
- Kekäläinen, P.; Juuti, M.; Walle, T.; Laatikainen, T. Pregnancy planning in type 1 diabetic women improves glycemic control and pregnancy outcomes. J. Matern. Fetal Neonatal Med. 2016, 29, 2252–2258. [Google Scholar] [CrossRef] [PubMed]
- Berger, H.; Melamed, N.; Davis, B.M.; Hasan, H.; Mawjee, K.; Barrett, J.; McDonald, S.D.; Geary, M.; Ray, J.G. Impact of diabetes, obesity and hypertension on preterm birth: Population-based study. PLoS ONE 2020, 15, e0228743. [Google Scholar] [CrossRef]
- Riskin, A.; Itzchaki, O.; Bader, D.; Iofe, A.; Toropine, A.; Riskin-Mashiah, S. Perinatal Outcomes in Infants of Mothers with Diabetes in Pregnancy. Isr. Med. Assoc. J. 2020, 22, 569–575. [Google Scholar] [PubMed]
- Soliman, A.; Salama, H.; Al Rifai, H.; De Sanctis, V.; Al-Obaidly, S.; Al Qubasi, M.; Olukade, T. The effect of different forms of dysglycemia during pregnancy on maternal and fetal outcomes in treated women and comparison with large cohort studies. Acta Bio-Med. Atenei Parm. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Antoniou, M.C.; Gilbert, L.; Gross, J.; Rossel, J.B.; Fischer Fumeaux, C.J.; Vial, Y.; Puder, J.J. Potentially modifiable predictors of adverse neonatal and maternal outcomes in pregnancies with gestational diabetes mellitus: Can they help for future risk stratification and risk-adapted patient care? BMC Pregnancy Childbirth 2019, 19, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakita, T.; Bowers, K.; Hazrati, S.; Zhang, C.; Grewal, J.; Chen, Z.; Sun, L.; Grantz, K.L. Increased Neonatal Respiratory Morbidity Associated with Gestational and Pregestational Diabetes: A Retrospective Study. Am. J. Perinatol. 2017, 34, 1160–1168. [Google Scholar] [CrossRef]
- Hitaka, D.; Morisaki, N.; Miyazono, Y.; Piedvache, A.; Nagafuji, M.; Takeuchi, S.; Kajikawa, D.; Kanai, Y.; Saito, M.; Takada, H. Neonatal outcomes of very low birthweight infants born to mothers with hyperglycaemia in pregnancy: A retrospective cohort study in Japan. BMJ Paediatr. Open 2019, 3, e000491. [Google Scholar] [CrossRef] [Green Version]
- Grandi, C.; Tapia, J.L.; Cardoso, V.C. Impact of maternal diabetes mellitus on mortality and morbidity of very low birth weight infants: A multicenter Latin America study. J. Pediatr. 2015, 91, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Opara, C.N.; Akintorin, M.; Byrd, A.; Cirignani, N.; Akintorin, S.; Soyemi, K. Maternal diabetes mellitus as an independent risk factor for clinically significant retinopathy of prematurity severity in neonates less than 1500 g. PLoS ONE 2020, 15, e0236639. [Google Scholar] [CrossRef]
- Tunay, Z.; Özdemir, Ö.; Acar, D.E.; Öztuna, D.; Uraş, N. Maternal Diabetes as an Independent Risk Factor for Retinopathy of Prematurity in Infants With Birth Weight of 1500 g or More. Am. J. Ophthalmol. 2016, 168, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Piper, J.M.; Xenakis, E.M.; Langer, O. Delayed appearance of pulmonary maturation markers is associated with poor glucose control in diabetic pregnancies. J. Matern. Fetal Med. 1998, 7, 148–153. [Google Scholar] [CrossRef]
- McGillick, E.V.; Morrison, J.L.; McMillen, I.C.; Orgeig, S. Intrafetal glucose infusion alters glucocorticoid signaling and reduces surfactant protein mRNA expression in the lung of the late-gestation sheep fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R538–R545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miakotina, O.L.; Goss, K.L.; Snyder, J.M. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells. Respir. Res. 2002, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depla, A.L.; de Wit, L.; Steenhuis, T.J.; Slieker, M.G.; Voormolen, D.N.; Scheffer, P.G.; de Heus, R.; van Rijn, B.B.; Bekker, M.N. Effects of maternal diabetes on fetal heart function at echocardiography: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Paauw, N.D.; Stegeman, R.; de Vroede, M.; Termote, J.U.M.; Freund, M.W.; Breur, J. Neonatal cardiac hypertrophy: The role of hyperinsulinism-a review of literature. Eur. J. Pediatr. 2020, 179, 39–50. [Google Scholar] [CrossRef] [Green Version]
- El-Ganzoury, M.M.; El-Masry, S.A.; El-Farrash, R.A.; Anwar, M.; Abd Ellatife, R.Z. Infants of diabetic mothers: Echocardiographic measurements and cord blood IGF-I and IGFBP-1. Pediatr. Diabetes 2012, 13, 189–196. [Google Scholar] [CrossRef]
- Topcuoglu, S.; Karatekin, G.; Yavuz, T.; Arman, D.; Kaya, A.; Gursoy, T.; Ovalı, F. The relationship between the oxidative stress and the cardiac hypertrophy in infants of diabetic mothers. Diabetes Res. Clin. Pract. 2015, 109, 104–109. [Google Scholar] [CrossRef]
- Peixoto, A.B.; Bravo-Valenzuela, N.J.M.; Martins, W.P.; Słodki, M.; Mattar, R.; Moron, A.F.; Araujo Júnior, E. Impact of type I and type II maternal diabetes mellitus on fetal cardiac function assessment parameters using spectral and tissue Doppler. Int. J. Cardiovasc. Imaging 2020, 36, 1237–1247. [Google Scholar] [CrossRef]
- Patey, O.; Carvalho, J.S.; Thilaganathan, B. Perinatal changes in fetal cardiac geometry and function in diabetic pregnancy at term. Ultrasound Obstet. Gynecol. 2019, 54, 634–642. [Google Scholar] [CrossRef]
- Blais, S.; Patenaude, J.; Doyon, M.; Bouchard, L.; Perron, P.; Hivert, M.F.; Dallaire, F. Effect of gestational diabetes and insulin resistance on offspring’s myocardial relaxation kinetics at three years of age. PLoS ONE 2018, 13, e0207632. [Google Scholar] [CrossRef]
- Rijpert, M.; Breur, J.M.; Evers, I.M.; de Valk, H.W.; Heijnen, C.J.; Meijboom, F.J.; Visser, G.H. Cardiac function in 7-8-year-old offspring of women with type 1 diabetes. Exp. Diabetes Res. 2011, 2011, 564316. [Google Scholar] [CrossRef]
- Castelijn, B.; Hollander, K.; Hensbergen, J.F.; RG, I.J.; Valkenburg-van den Berg, A.W.; Twisk, J.; De Groot, C.; Wouters, M. Peripartum fetal distress in diabetic women: A retrospective case-cohort study. BMC Pregnancy Childbirth 2018, 18, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cnattingius, S.; Lindam, A.; Persson, M. Risks of asphyxia-related neonatal complications in offspring of mothers with type 1 or type 2 diabetes: The impact of maternal overweight and obesity. Diabetologia 2017, 60, 1244–1251. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Dai, P.; Qin, Y.; Wu, M.; Yang, B.; Yu, X. Effectiveness of telemedicine for pregnant women with gestational diabetes mellitus: An updated meta-analysis of 32 randomized controlled trials with trial sequential analysis. BMC Pregnancy Childbirth 2020, 20, 198. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zeng, X.L.; Cheng, M.L.; Yang, G.Z.; Wang, B.; Xiao, Z.W.; Luo, X.; Zhang, B.F.; Xiao, D.W.; Zhang, S.; et al. Quantitative assessment of the effect of pre-gestational diabetes and risk of adverse maternal, perinatal and neonatal outcomes. Oncotarget 2017, 8, 61048–61056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahabi, H.A.; Fayed, A.; Esmaeil, S.; Elmorshedy, H.; Titi, M.A.; Amer, Y.S.; Alzeidan, R.A.; Alodhayani, A.A.; Saeed, E.; Bahkali, K.H.; et al. Systematic review and meta-analysis of the effectiveness of pre-pregnancy care for women with diabetes for improving maternal and perinatal outcomes. PLoS ONE 2020, 15, e0237571. [Google Scholar] [CrossRef] [PubMed]
- Feig, D.S.; Donovan, L.E.; Corcoy, R.; Murphy, K.E.; Amiel, S.A.; Hunt, K.F.; Asztalos, E.; Barrett, J.F.R.; Sanchez, J.J.; de Leiva, A.; et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): A multicentre international randomised controlled trial. Lancet 2017, 390, 2347–2359. [Google Scholar] [CrossRef] [Green Version]
- Stogianni, A.; Lendahls, L.; Landin-Olsson, M.; Thunander, M. Obstetric and perinatal outcomes in pregnancies complicated by diabetes, and control pregnancies, in Kronoberg, Sweden. BMC Pregnancy Childbirth 2019, 19, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koivunen, S.; Viljakainen, M.; Männistö, T.; Gissler, M.; Pouta, A.; Kaaja, R.; Eriksson, J.; Laivuori, H.; Kajantie, E.; Vääräsmäki, M. Pregnancy outcomes according to the definition of gestational diabetes. PLoS ONE 2020, 15, e0229496. [Google Scholar] [CrossRef]
- Morikawa, M.; Kato-Hirayama, E.; Mayama, M.; Saito, Y.; Nakagawa, K.; Umazume, T.; Chiba, K.; Kawaguchi, S.; Okuyama, K.; Watari, H. Glycemic control and fetal growth of women with diabetes mellitus and subsequent hypertensive disorders of pregnancy. PLoS ONE 2020, 15, e0230488. [Google Scholar] [CrossRef]
- Fernández-Alba, J.J.; Soto Pazos, E.; Moreno Cortés, R.; Vilar Sánchez, Á.; González Macías, C.; Castillo Lara, M.; Moreno Corral, L.; Sainz Bueno, J.A. INTERGROWTH21st vs customized fetal growth curves in the assessment of the neonatal nutritional status: A retrospective cohort study of gestational diabetes. BMC Pregnancy Childbirth 2020, 20, 139. [Google Scholar] [CrossRef] [Green Version]
- Teramo, K.; Kari, M.A.; Eronen, M.; Markkanen, H.; Hiilesmaa, V. High amniotic fluid erythropoietin levels are associated with an increased frequency of fetal and neonatal morbidity in type 1 diabetic pregnancies. Diabetologia 2004, 47, 1695–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, W.; Myllynen, P.; Winn, L.M.; Ornoy, A.; Miller, R.K. Reactive oxygen species, diabetes and toxicity in the placenta—A workshop report. Placenta 2008, 29, S105–S107. [Google Scholar] [CrossRef]
- Aylward, G.P. Neurodevelopmental outcomes of infants born prematurely. J. Dev. Behav. Pediatr. 2014, 35, 394–407. [Google Scholar] [CrossRef]
- Torres-Espinola, F.J.; Berglund, S.K.; García-Valdés, L.M.; Segura, M.T.; Jerez, A.; Campos, D.; Moreno-Torres, R.; Rueda, R.; Catena, A.; Pérez-García, M.; et al. Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring Neurodevelopment at 6 and 18 Months of Age--A Follow Up from the PREOBE Cohort. PLoS ONE 2015, 10, e0133010. [Google Scholar] [CrossRef] [PubMed]
- Persson, B.; Gentz, J. Follow-up of children of insulin-dependent and gestational diabetic mothers. Neuropsychological outcome. Acta Paediatr. Scand. 1984, 73, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A.; Zaken, V.; Abir, R.; Yaffe, P.; Raz, I. Effects on rat embryos of culture in serum of women with gestational diabetes. Toxicol. Vitr. Int. J. Publ. Assoc. Bibra 1995, 9, 643–651. [Google Scholar] [CrossRef]
- Churchill, J.A.; Berendes, H.W.; Nemore, J. Neuropsychological deficits in children of diabetic mothers. A report from the Collaborative Sdy of Cerebral Palsy. Am. J. Obs. Gynecol. 1969, 105, 257–268. [Google Scholar] [CrossRef]
- Stehbens, J.A.; Baker, G.L.; Kitchell, M. Outcome at ages 1, 3, and 5 years of children born to diabetic women. Am. J. Obs. Gynecol. 1977, 127, 408–413. [Google Scholar] [CrossRef]
- Petersen, M.B.; Pedersen, S.A.; Greisen, G.; Pedersen, J.F.; Mølsted-Pedersen, L. Early growth delay in diabetic pregnancy: Relation to psychomotor development at age 4. Br. Med. J. 1988, 296, 598–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.B. Status at 4–5 Years in 90 Children of Insulin-Dependent Diabetic Mothers. In Carbohydrate Metabolism in Pregnancy and the Newborn; Stowers, S.H., Ed.; Springer: New York, NY, USA, 1989; pp. 354–361. [Google Scholar]
- Kimmerle, R.; Zass, R.P.; Cupisti, S.; Somville, T.; Bender, R.; Pawlowski, B.; Berger, M. Pregnancies in women with diabetic nephropathy: Long-term outcome for mother and child. Diabetologia 1995, 38, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Hod, M.; Levy-Shiff, R.; Lerman, M.; Schindel, B.; Ben-Rafael, Z.; Bar, J. Developmental outcome of offspring of pregestational diabetic mothers. J. Pediatr. Endocrinol. Metab. 1999, 12, 867–872. [Google Scholar] [CrossRef]
- Nelson, C.A.; Wewerka, S.S.; Borscheid, A.J.; Deregnier, R.A.; Georgieff, M.K. Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J. Pediatr. 2003, 142, 575–582. [Google Scholar] [CrossRef]
- Takeuchi, A.; Yorifuji, T.; Takahashi, K.; Nakamura, M.; Kageyama, M.; Kubo, T.; Ogino, T.; Doi, H. Neurodevelopment in full-term small for gestational age infants: A nationwide Japanese population-based study. Brain Dev. 2016, 38, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Camprubi Robles, M.; Campoy, C.; Garcia Fernandez, L.; Lopez-Pedrosa, J.M.; Rueda, R.; Martin, M.J. Maternal Diabetes and Cognitive Performance in the Offspring: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0142583. [Google Scholar] [CrossRef] [PubMed]
- Cummins, M.; Norrish, M. Follow-up of children of diabetic mothers. Arch. Dis. Child. 1980, 55, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Sells, C.J.; Robinson, N.M.; Brown, Z.; Knopp, R.H. Long-term developmental follow-up of infants of diabetic mothers. J. Pediatr. 1994, 125, S9–S17. [Google Scholar] [CrossRef]
- Nomura, Y.; Marks, D.J.; Grossman, B.; Yoon, M.; Loudon, H.; Stone, J.; Halperin, J.M. Exposure to gestational diabetes mellitus and low socioeconomic status: Effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch. Pediatr. Adolesc. Med. 2012, 166, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Xiang, A.H.; Wang, X.; Martinez, M.P.; Page, K.; Buchanan, T.A.; Feldman, R.K. Maternal Type 1 Diabetes and Risk of Autism in Offspring. JAMA 2018, 320, 89–91. [Google Scholar] [CrossRef]
- Kong, L.; Norstedt, G.; Schalling, M.; Gissler, M.; Lavebratt, C. The Risk of Offspring Psychiatric Disorders in the Setting of Maternal Obesity and Diabetes. Pediatrics 2018, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Fallin, M.D.; Riley, A.; Landa, R.; Walker, S.O.; Silverstein, M.; Caruso, D.; Pearson, C.; Kiang, S.; Dahm, J.L.; et al. The Association of Maternal Obesity and Diabetes With Autism and Other Developmental Disabilities. Pediatrics 2016, 137, e20152206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Jing, J.; Bowers, K.; Liu, B.; Bao, W. Maternal diabetes and the risk of autism spectrum disorders in the offspring: A systematic review and meta-analysis. J. Autism Dev. Disord. 2014, 44, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Lyall, K.; Pauls, D.L.; Spiegelman, D.; Ascherio, A.; Santangelo, S.L. Pregnancy complications and obstetric suboptimality in association with autism spectrum disorders in children of the Nurses’ Health Study II. Autism Res. Off. J. Int. Soc. Autism Res. 2012, 5, 21–30. [Google Scholar] [CrossRef]
- Gardener, H.; Spiegelman, D.; Buka, S.L. Prenatal risk factors for autism: Comprehensive meta-analysis. Br. J. Psychiatry J. Ment. Sci. 2009, 195, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, A.; Almqvist, C.; Larsson, H.; Långström, N.; Lawlor, D.A. Maternal diabetes in pregnancy and offspring cognitive ability: Sibling study with 723,775 men from 579,857 families. Diabetologia 2014, 57, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ornoy, A.; Weinstein-Fudim, L.; Ergaz, Z. Genetic Syndromes, Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD). Front. Neurosci. 2016, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Nahum Sacks, K.; Friger, M.; Shoham-Vardi, I.; Abokaf, H.; Spiegel, E.; Sergienko, R.; Landau, D.; Sheiner, E. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am. J. Obs. Gynecol. 2016, 215, 380-e1. [Google Scholar] [CrossRef]
- Hultman, C.M.; Sparén, P.; Cnattingius, S. Perinatal risk factors for infantile autism. Epidemiology 2002, 13, 417–423. [Google Scholar] [CrossRef]
- Xiang, A.H.; Wang, X.; Martinez, M.P.; Walthall, J.C.; Curry, E.S.; Page, K.; Buchanan, T.A.; Coleman, K.J.; Getahun, D. Association of maternal diabetes with autism in offspring. JAMA 2015, 313, 1425–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinchat, V.; Thorsen, P.; Laurent, C.; Cans, C.; Bodeau, N.; Cohen, D. Pre-, peri- and neonatal risk factors for autism. Acta Obs. Gynecol. Scand 2012, 91, 287–300. [Google Scholar] [CrossRef] [PubMed]
Type of Birth Defect | Authors and Reference Number | Description of Findings |
---|---|---|
Cardiac anomalies | Tinker et al. [15] | 24 types of cardiac defects showed a statistically significant increased risk for infants born to mothers with PGD, 4 of them with OR greater than 10: truncus arteriosus, heterotaxy, atrioventricular septal defect, and single ventricle complex. |
Wren et al. [19] | transposition of the great arteries, tricuspid atresia, and truncus arteriosus is greater than threefold excess | |
Martínez-Frías et al. [18] Corrigan et al. [20] Correa et al. [21] | ||
Limb anomalies | Tinker et al. [15] | A greater than 10-fold increased risk was observed for longitudinal limb deficiency (aOR 10.1) |
Correa et al. [21] | longitudinal limb deficiencies (aOR 6.47) | |
musculoskeletal systems anomalies | Tinker et al. [15] | Out of 46 birth defects associated with PGDM, the largest odds ratio was observed for sacral agenesis (aOR, 80.2) |
Central nervous system anomalies | Tinker et al. [15] | A greater than 10-fold increased risk for Holoprosencephaly (aOR, 13.1) |
Correa et al. [21] | PGD was associated with anencephaly and craniorachischisis (aOR, 3.39); hydrocephaly (aOR 8.80), anotia/microtia (aOR3.75) | |
Other birth defects | Correa et al. [21] | Cleft lip with or without cleft palate (aOR, 2.92), anorectal atresia (aOR, 4.70), bilateral renal agenesis/hypoplasia (aOR, 11.91) |
Factor | Maternal Circulation and Placenta | Fetal Circulation (Umbilical Vein or Amniotic Fluid) |
---|---|---|
Glucose |
| |
Insulin |
|
|
Leptin |
| |
Adiponectin |
|
|
Ghrelin |
|
|
PGH-IGF axis |
|
|
IGFs and IGFBPs |
Perinatal Complications | Authors and Reference Number | Description of Findings |
---|---|---|
Asphyxia | Castelijn et al. [204] Cnattingius [205] Xie et al. [206] | Women with type 1, 2, and gestational diabetes had an increased rate of cesarean section, instrumental delivery, low Apgar score, seizures, and/or hypoxic–ischemic encephalopathy, in association with poor glycemic control. |
Macrosomia | Wahabi et al. [208] Koivunen et al. [211] Stogianni et al. [210] | Macrosomia rate increased among women with diabetes, multiparty, obesity, and elevated gestational weight gain. Macrosomia rate decreased with improved glycemic control but was not affected by pre-pregnancy care. |
Fetal growth restriction | Wei et al. [25] Antoniou et al. [187] Wahabi et al. [208] Morikawa et al. [212] Fernández-Alba et al. [213] | The frequency of fetal growth restriction was similar between type 1 and 2 PGDM and increased with impaired fasting glucose and obesity. Hypertension increased fetal growth restriction rate in women with type 2 diabetes. Pre-pregnancy care associated with improved glycemic control reduced the fetal growth restriction rate. |
Shoulder Dystocia | Moraitis et al. [180] Shah et al. [181] Egan et al. [182] Kekäläinen et al. [183] | Ultrasonographic evaluation of expected fetal weight did not significantly predict shoulder dystocia. Untreated diabetes in pregnancy was associated with an increased rate of shoulder dystocia. Well-treated diabetes in pregnancy had a shoulder dystocia rate similar to controls. |
Prematurity | Persson et al. [142] Boghossian et al. [158] Battarbee et al. [167] Hitaka et al. [189] Grandi et al. [190] Opara et al. [191] Tunay et al. [192] | Diabetes in pregnancy increases the prematurity rate. The association between maternal diabetes and morbidities associated with prematurity vary between studies: no association [142,167], respiratory distress syndrome [189], necrotizing enterocolitis [158,190], late-onset sepsis [158], retinopathy of prematurity [158,191,192]. |
Respiratory morbidity | Battarbee et al. [167] Kawakita et al. [188] | Respiratory morbidities were significantly increased among all age groups and were significantly higher among PGDM compared to GDM, and both compared to controls. |
Hypertrophic cardiomyopathy | Depla [196] Paauw et al. [197] El-Ganzoury et al. [198] Topcuoglu et al. [199] Peixoto et al. [200] Patey et al. [201] Blais et al. [202] Rijpert et al. [203] | Offspring of both pregestational and gestational diabetic pregnancies had increased intraventricular septal thickness compared to controls, associated with poor maternal glycemic control. Fetuses of diabetic women exhibited significant alterations in cardiac geometry, myocardial deformation, and ventricular function that persisted following birth. Minor functional changes still found at the age of 3 years [202] disappeared among those evaluated at 7–8 years [203]. |
Hypoglycemia | Riskin et al. [185] Antoniou et al. [187] Yu et al. [207] Wahabi et al. [208] Feig et al. [209] | Hypoglycemia was more frequent among pregnancies with PGDM compared to GDM and both compared to controls. Maternal continuous glucose monitoring during pregnancy, but not pre-pregnancy care, resulted in fewer incidences of neonatal hypoglycemia requiring treatment with intravenous dextrose. |
Polycythemia | Teramo et al. [214] | Fetal amniotic fluid erythropoietin levels were elevated in type 1 diabetic pregnancies and were independently related to low umbilical artery pH, neonatal hypoglycemia, umbilical artery pO2, fetal macrosomia, and growth restriction. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int. J. Mol. Sci. 2021, 22, 2965. https://doi.org/10.3390/ijms22062965
Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. International Journal of Molecular Sciences. 2021; 22(6):2965. https://doi.org/10.3390/ijms22062965
Chicago/Turabian StyleOrnoy, Asher, Maria Becker, Liza Weinstein-Fudim, and Zivanit Ergaz. 2021. "Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review" International Journal of Molecular Sciences 22, no. 6: 2965. https://doi.org/10.3390/ijms22062965
APA StyleOrnoy, A., Becker, M., Weinstein-Fudim, L., & Ergaz, Z. (2021). Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. International Journal of Molecular Sciences, 22(6), 2965. https://doi.org/10.3390/ijms22062965