The Plants of the Asteraceae Family as Agents in the Protection of Human Health
Abstract
:1. Introduction
2. Characteristics of the Asteraceae Family
3. Botanically Characteristics of the Asteraceae Family
4. Nutritional Value of Asteraceae Family
5. Chemical Characteristics and Health Benefits of Vegetables from the Asteraceae Family
Plants (Preparation/Extract) | Chemical Characteristic of Preparation/Extract | Type of Research | Biological Activity | References |
---|---|---|---|---|
Extract from seeds of H. cretica, H. graecum, P. echioides, R. picroides, S. hispanicus, S. oleraceus, U. picroides and T. officinale | α- and β-tocopherols (18.32 and 16.31 µg/100 g fresh weight) oxalic acid (972 mg/100 g fresh weight) | In vitro | Antimicrobial activity (bacteriostatic and bactericidal potency against Bacillus areus, Salmonella tymphimurium, Escherichia coli, Penicilium funiculosum) | [19] |
Extract from Jerusalem artichoke | Inulin (isolated from roots) | In vitro (L. paracasei BGP1 and L. plantarum CIDCA8327 strain) | Prebiotic properties (inulin improved bacterial growth) | [29] |
Aqueous extract from Achillea cucullata | The total phenol content (53.807 ± 0.059 mg GAE/g dry weight) the total flavonoid content (21.372 ± 0.026 mg QE/g) | In vitro | Antimicrobial activity (inhibitory effect against Staphylococcus aureus, Pseudomonas aeruginosa) | [1] |
Extract from the roots from Taraxacum officinale (5 fractions) | Hydroxycinnamic acids, hydroxyphenylacetic acid derivatives, sesquiterpene lactones | In vitro | Antiplatelet activity (inhibitory effect on blood platelet adhesion to endothelial cells) | [28] |
Aqueous extract from Achillea cucullata | The total phenol content (53.807 ± 0.059 mg GAE/g dry weight) the total flavonoid content (21.372 ± 0.026 mg QE/g) | In vitro | Antioxidant activity (DDPH free radical scavenging activity) | [1] |
Extract from leaf from Cichorium intybus | Anthocyanins, (the major–Cyanidin-3-O-(6”-malonyl-β-glucopyranoside)) | In vitro | Antioxidant activity (anthocyanins in leaf have free radical scavenging ability) | [9] |
Extract from leaf and petals from Taraxacum officinale | Hydroxycitric acids: in the leaf fraction 420 mg/g dry weight (the main component-l-chicoric acid 350 mg/g dry weight); in the petal fraction 214 mg/g dry weight | In vivo (18 male albino Wistar rats) | Antioxidant activity (the level of biomarkers of oxidative stress in blood plasma) | [23] |
Extract from Cynara scolymus | Phenolic acids (mainly chlorogenic acid, cynarin and caffeic acid), sesquiterpene lactones, | In vivo (60 male and 60 female Winstar rats) | Anti-inflammatory activity (increase in total leukocyte and lymphocyte counts) | [31] |
Extract from Cichorium intybus | Phenolic acids, sesquiterpene lactones, β-sitosterol | In vivo (6-week-old male mice) | Anti-inflammatory activity (increased level of IL-12) | [32] |
5.1. Antioxidant Activity
5.2. Anti-Inflammatory Activity
5.3. The Application of Asteraceae in Human Health
6. Conclusions
Funding
Conflicts of Interest
Correction Statement
Abbreviations
MIC | minimum inhibitory concentration |
MBC | minimum bactericidal concentration |
ROS | reactive oxygen species |
SBN | silibinin |
IL | interleukin |
IFN-γ | interferon γ |
PGE2 | prostaglandin E2 |
COX | cyclooxygenase |
iNOS | nitric oxide synthase |
NF-ĸβ | nuclear factor kappa-light-chain-enhancer of activated B cells |
LPS | lipopolysaccharide |
References
- Eruygur, N.; Koçyiğit, U.M.; Taslimi, P.; Ataş, M.; Tekin, M.; Gülçin, İ. Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. S. Afr. J. Bot. 2019, 120, 141–145. [Google Scholar] [CrossRef]
- Tourchi, M.; Arslan, A.; Iranshahi, M. Biological Effects of Arctiin from Some Medicinal Plants of Asteraceae Family. Am. J. Life Sci. 2016, 4, 41–47. [Google Scholar]
- Achika, J.; Arthur, D.; Gerald, I.; Adedayo, A. A Review on the Phytoconstituents and Related Medicinal Properties of Plants in the Asteraceae Family. IOSR J. Appl. Chem. 2014, 7, 1–8. [Google Scholar] [CrossRef]
- Nikolić, M.; Stevović, S. Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For. Urban Green. 2015, 14, 782–789. [Google Scholar] [CrossRef]
- Koc, S.; Isgor, B.S.; Isgor, Y.G.; Shomali Moghaddam, N.; Yildirim, O. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharm. Biol. 2015, 53, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.H.R.; Gil da Costa, R.M.; Lopes, C.; Bastos, M.M.S.M. Sesquiterpene lactones: Adverse health effects and toxicity mechanisms. Crit. Rev. Toxicol. 2013, 43, 559–579. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crops Prod. 2015, 76, 604–615. [Google Scholar] [CrossRef]
- Jafarinia, M.; Jafarinia, M. A Review of Medicinal Properties of some Asteraceae Family Plants on Immune System. Rep. Health Care 2019, 5, 1–7. [Google Scholar]
- Mulabagal, V.; Wang, H.; Ngouajio, M.; Nair, M.G. Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties. Eur. Food Res. Technol. 2009, 230, 47. [Google Scholar] [CrossRef]
- Arasan, S.; Kaya, İ. Some important plants belonging to lamiaceae family used in folkloric medicine in Savur (Mardin/Turkey) area and their application areas. J. Food Nutr. Res. 2016, 26, 512–516. [Google Scholar]
- Bohm, B.; Stuessy, T. Flavonoids of the Sunflower Family (Asteraceae); Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Munim, A.; Rod, M.R.; Tavakoli, H.; Hosseinian, F. An Analysis of the Composition, Health Benefits, and Future Market Potential of the Jerusalem Artichoke in Canada. J. Food Res. 2017, 6, 69. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Díez-Marqués, C.; Molin, M.; Tardío, J. Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. J. Food Compos. Anal. 2014, 34, 163–170. [Google Scholar] [CrossRef]
- Panfili, G.; Niro, S.; Bufano, A.; D’Agostino, A.; Fratianni, A.; Paura, B.; Falasca, L.; Cinquanta, L. Bioactive Compounds in Wild Asteraceae Edible Plants Consumed in the Mediterranean Diet. Plant Food Hum. Nutr. 2020, 75, 540–546. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical Composition and Nutritive Benefits of Chicory (Cichorium intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement. Sci. World J. 2017, 7343928. [Google Scholar] [CrossRef]
- Perović, J.; Tumbas Šaponjac, V.; Kojić, J.; Krulj, J.; Moreno, D.A.; García-Viguera, C.; Bodroža-Solarov, M.; Ilić, N. Chicory (Cichorium intybus L.) as a food ingredient—Nutritional composition, bioactivity, safety, and health claims: A review. Food Chem. 2021, 336, 127676. [Google Scholar] [CrossRef]
- Gostin, A.I.; Waisundara, V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef]
- Hu, C. Taraxacum: Phytochemistry and health benefits. Chin. Herb. Med. 2018, 10, 353–361. [Google Scholar] [CrossRef]
- Konovalov, D.A. Polyacetylene Compounds of Plants of the Asteraceae Family (Review). Pharm. Chem. J. 2014, 48, 613–631. [Google Scholar] [CrossRef]
- Jaiswal, R.; Kiprotich, J.; Kuhnert, N. Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry 2011, 72, 781–790. [Google Scholar] [CrossRef]
- Majewski, M.; Lis, B.; Juśkiewicz, J.; Ognik, K.; Borkowska-Sztachańska, M.; Jedrejek, D.; Stochmal, A.; Olas, B. Phenolic Fractions from Dandelion Leaves and Petals as Modulators of the Antioxidant Status and Lipid Profile in an In Vivo Study. Antioxidants 2020, 9, 131. [Google Scholar] [CrossRef]
- Alves, M.F.; Scotti, L.; Da Costa, F.B.; Scotti, M.T. Chemotaxonomic Study of Sesquiterpene Lactones of Asteraceae: Classical and Modern Methods. In Sesquiterpene Lactones: Advances in Their Chemistry and Biological Aspects; Springer: Berlin/Heidelberg, Germany, 2018; pp. 31–45. [Google Scholar]
- Michel, J.; Abd Rani, N.Z.; Husain, K. A Review on the Potential Use of Medicinal Plants From Asteraceae and Lamiaceae Plant Family in Cardiovascular Diseases. Front. Pharmacol. 2020, 11, 852. [Google Scholar] [CrossRef]
- Phan Canh, T.; Thao, L.T.T.; Ha, H.T.V.; Nguyen, T. DPPH-Scavenging and Antimicrobial Activities of Asteraceae Medicinal Plants on Uropathogenic Bacteria. Evid. Based Complement. Altern. Med. 2020, 11, 852. [Google Scholar]
- Jedrejek, D.; Kontek, B.; Lis, B.; Stochmal, A.; Olas, B. Evaluation of antioxidant activity of phenolic fractions from the leaves and petals of dandelion in human plasma treated with H2O2 and H2O2/Fe. Chem. Biol. Interact. 2017, 262, 29–37. [Google Scholar] [CrossRef]
- Lis, B.; Olas, B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products—history and present. J. Funct. Foods 2019, 59, 40–48. [Google Scholar] [CrossRef]
- Iraporda, C.; Rubel, I.A.; Manrique, G.D.; Abraham, A.G. Influence of inulin rich carbohydrates from Jerusalem artichoke (Helianthus tuberosus L.) tubers on probiotic properties of Lactobacillus strains. LWT 2019, 101, 738–746. [Google Scholar] [CrossRef]
- Fanoudi, S.; Alavi, M.S.; Karimi, G.; Hosseinzadeh, H. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: A review. Chem. Toxicol. 2020, 43, 240–254. [Google Scholar] [CrossRef]
- Hueza, I.M.; Gotardo, A.T.; da Silva Mattos, M.I.; Górniak, S.L. Immunomodulatory effect of Cynara scolymus (artichoke) in rats. Phytother. Res. 2019, 33, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.H.; Ebrahimnezhad, S.; Namayandeh, M.; Amirghofran, Z. The effects of cichorium intybus extract on the maturation and activity of dendritic cells. DARU J. Pharm. Sci. 2014, 22, 28. [Google Scholar] [CrossRef]
- Bae, S.; Lim, K.M.; Cha, H.J.; An, I.S.; Lee, J.P.; Lee, K.S.; Lee, G.T.; Lee, K.K.; Jung, H.J.; Ahn, K.J.; et al. Arctiin blocks hydrogen peroxide-induced senescence and cell death though microRNA expression changes in human dermal papilla cells. Biol. Res. 2014, 47, 50. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Gao, M.; Xiao, H.; Tan, C.; Du, Y. Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem. 2012, 133, 10–14. [Google Scholar] [CrossRef]
- Yousuf, M.A.; Devaraj, E.; Narayan, V. Asteraceae: A review of hepatoprotective plant principles. Drug Invent. Today 2019, 11, 22–24. [Google Scholar]
- Sawicka, B.; Skiba, D.; Pszczółkowski, P.; Aslan, I.; Sharifi-Rad, J.; Krochmal-Marczak, B. Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Mol. Cell Biol. 2020, 66, 1–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolnik, A.; Olas, B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci. 2021, 22, 3009. https://doi.org/10.3390/ijms22063009
Rolnik A, Olas B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. International Journal of Molecular Sciences. 2021; 22(6):3009. https://doi.org/10.3390/ijms22063009
Chicago/Turabian StyleRolnik, Agata, and Beata Olas. 2021. "The Plants of the Asteraceae Family as Agents in the Protection of Human Health" International Journal of Molecular Sciences 22, no. 6: 3009. https://doi.org/10.3390/ijms22063009
APA StyleRolnik, A., & Olas, B. (2021). The Plants of the Asteraceae Family as Agents in the Protection of Human Health. International Journal of Molecular Sciences, 22(6), 3009. https://doi.org/10.3390/ijms22063009