Stress Response Is the Main Trigger of Sporadic Amyloidoses
Abstract
:1. Introduction
2. Vascular Pathologies, Brain Injuries, and Oxidative Stress Trigger Amyloid Diseases
2.1. Sporadic Alzheimer’s Disease and Tauopathies
2.2. Sporadic Parkinson’s and Prion Diseases
2.3. Sporadic Amyloidoses Localized Outside the CNS
3. Different Types of Cancer Cause Amyloidogenesis of Certain Proteins
4. Infectious Agents, Chronic Pathologies, and Metabolic Diseases Cause Amyloidoses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Prusiner, S.B. Scrapie Prions. Annu. Rev. Microbiol. 1989, 43, 345–374. [Google Scholar] [CrossRef] [PubMed]
- Gajdusek, D.C.; Gibbs, C.J.; Alpers, M. Experimental Transmission of a Kuru-like Syndrome to Chimpanzees. Nature 1966, 209, 794–796. [Google Scholar] [CrossRef]
- Gibbs, C.J.; Gajdusek, D.C.; Asher, D.M.; Alpers, M.P.; Beck, E.; Daniel, P.M.; Matthews, W.B. Creutzfeldt-Jakob Disease (Spongiform Encephalopathy): Transmission to the Chimpanzee. Science 1968, 161, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, N.; Wilesmith, J.; Griot, C. Bovine Spongiform Encephalopathy (BSE): Causes and Consequences of a Common Source Epidemic. Am. J. Epidemiol. 1997, 145, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Nicotera, P. A Route for Prion Neuroinvasion. Neuron 2001, 31, 345–348. [Google Scholar] [CrossRef] [Green Version]
- Baskakov, I.V.; Breydo, L. Converting the Prion Protein: What Makes the Protein Infectious. Biochim. Biophys. Acta Mol. Basis Dis. 2007, 1772, 692–703. [Google Scholar] [CrossRef] [Green Version]
- Prusiner, S.B. Shattuck Lecture—Neurodegenerative Diseases and Prions. N. Engl. J. Med. 2001, 344, 1516–1526. [Google Scholar] [CrossRef]
- Knight, R.; Stewart, G. The New Variant Form of Creutzfeldt-Jakob Disease. FEMS Immunol. Med. Microbiol. 1998, 21, 97–100. [Google Scholar] [CrossRef]
- Gendreau, K.L.; Hall, G.F. Tangles, Toxicity, and Tau Secretion in AD—New Approaches to a Vexing Problem. Front. Neurol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Moussaud, S.; Jones, D.R.; Moussaud-Lamodière, E.L.; Delenclos, M.; Ross, O.A.; McLean, P.J. Alpha-Synuclein and Tau: Teammates in Neurodegeneration? Mol. Neurodegener. 2014. [Google Scholar] [CrossRef] [Green Version]
- Orr, M.E.; Sullivan, A.C.; Frost, B. A Brief Overview of Tauopathy: Causes, Consequences, and Therapeutic Strategies. Trends Pharmacol. Sci. 2017, 38, 637–648. [Google Scholar] [CrossRef]
- Vasili, E.; Dominguez-Meijide, A.; Outeiro, T.F. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front. Mol. Neurosci. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, L.; Bruni, A.C. Mutations in Prion Protein Gene: Pathogenic Mechanisms in C-Terminal vs. N-Terminal Domain, a Review. Int. J. Mol. Sci. 2019, 20, 3606. [Google Scholar] [CrossRef] [Green Version]
- Mucke, L.; Selkoe, D.J. Neurotoxicity of Amyloid β-Protein: Synaptic and Network Dysfunction. Cold Spring Harb. Perspect. Med. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Rosa-Neto, P.; Hsiung, G.Y.R.; Sadovnick, A.D.; Masellis, M.; Black, S.E.; Jia, J.; Gauthier, S. Early-Onset Familial Alzheimer’s Disease (EOFAD). Can. J. Neurol. Sci. 2012, 39, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrianni, J.A. The Genetics of Prion Diseases. Genet. Med. 2010, 12, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Kiuru-Enari, S.; Haltia, M. Hereditary Gelsolin Amyloidosis. In Handbook of Clinical Neurology; Gérard, S., Krarup, C., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; pp. 659–681. [Google Scholar]
- Petersén, Å.; Larsen, K.E.; Behr, G.G.; Romero, N.; Przedborski, S.; Brundin, P.; Sulzer, D. Expanded CAG Repeats in Exon 1 of the Huntington’s Disease Gene Stimulate Dopamine-Mediated Striatal Neuron Autophagy and Degeneration. Hum. Mol. Genet. 2001, 10, 1243–1254. [Google Scholar] [CrossRef]
- Lee, J.M.; Ramos, E.M.; Lee, J.H.; Gillis, T.; Mysore, J.S.; Hayden, M.R.; Warby, S.C.; Morrison, P.; Nance, M.; Ross, C.A.; et al. CAG Repeat Expansion in Huntington Disease Determines Age at Onset in a Fully Dominant Fashion. Neurology 2012, 78, 690–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, N.; Liu, X.X.; Yang, Y.Y.; Zhou, M.W. α-Synuclein in Traumatic and Vascular Diseases of the Central Nervous System. Aging 2020, 12, 22313–22334. [Google Scholar] [CrossRef]
- Alonso, A.D.; Cohen, L.S.; Corbo, C.; Morozova, V.; ElIdrissi, A.; Phillips, G.; Kleiman, F.E. Hyperphosphorylation of Tau Associates with Changes in Its Function beyond Microtubule Stability. Front. Cell. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwahara, C.; Kubosaki, A.; Nishimura, T.; Nasu, Y.; Nakamura, Y.; Saeki, K.; Matsumoto, Y.; Onodera, T. Enhanced Expression of Cellular Prion Protein Gene by Insulin or Nerve Growth Factor in Immortalized Mouse Neuronal Precursor Cell Lines. Biochem. Biophys. Res. Commun. 2000, 268, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Bai, F.; Luo, G.; Wang, J.; Liu, J.; Ge, F.; Pan, Y.; Yao, L.; Du, R.; Li, X.; et al. Hypoxia Induced Overexpression of PrPC in Gastric Cancer Cell Lines. Cancer Biol. Ther. 2007, 6, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.K.; Seo, J.S.; Moon, M.H.; Lee, Y.J.; Seol, J.W.; Park, S.Y. Hypoxia-Inducible Factor-1 Alpha Regulates Prion Protein Expression to Protect against Neuron Cell Damage. Neurobiol. Aging 2012, 33. [Google Scholar] [CrossRef]
- Cichon, A.C.; Brown, D.R. Nrf-2 Regulation of Prion Protein Expression Is Independent of Oxidative Stress. Mol. Cell. Neurosci. 2014, 63, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Sack, G.H. Serum Amyloid A—A Review. Mol. Med. 2018, 24. [Google Scholar] [CrossRef]
- Malle, E.; Sodin-Semrl, S.; Kovacevic, A. Serum Amyloid A: An Acute-Phase Protein Involved in Tumour Pathogenesis. Cell. Mol. Life Sci. 2009, 66, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Biaoxue, R.; Hua, L.; Wenlong, G.; Shuanying, Y. Increased Serum Amyloid A as Potential Diagnostic Marker for Lung Cancer: A Meta-Analysis Based on Nine Studies. BMC Cancer 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Hou, Y.; Zhao, M.; Li, T.; Liu, Y.; Chang, J.; Ren, L. Serum Amyloid a, a Potential Biomarker Both in Serum and Tissue, Correlates with Ovarian Cancer Progression. J. Ovarian Res. 2020, 13. [Google Scholar] [CrossRef]
- Raimundo, A.F.; Ferreira, S.; Martins, I.C.; Menezes, R. Islet Amyloid Polypeptide: A Partner in Crime with Aβ in the Pathology of Alzheimer’s Disease. Front. Mol. Neurosci. 2020, 13. [Google Scholar] [CrossRef]
- Sergeeva, I.A.; Christoffels, V.M. Regulation of Expression of Atrial and Brain Natriuretic Peptide, Biomarkers for Heart Development and Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832, 2403–2413. [Google Scholar] [CrossRef] [Green Version]
- Martinho, A.; Gonçalves, I.; Costa, M.; Santos, C.R. Stress and Glucocorticoids Increase Transthyretin Expression in Rat Choroid Plexus via Mineralocorticoid and Glucocorticoid Receptors. J. Mol. Neurosci. 2012, 48, 1–13. [Google Scholar] [CrossRef]
- Picken, M.M. Immunoglobulin Light and Heavy Chain Amyloidosis AL/AH: Renal Pathology and Differential Diagnosis. Contrib. Nephrol. 2007, 153, 135–155. [Google Scholar] [CrossRef]
- Monteiro, M.B.; Thieme, K.; Santos-Bezerra, D.P.; Queiroz, M.S.; Woronik, V.; Passarelli, M.; MacHado, U.F.; Giannella-Neto, D.; Oliveira-Souza, M.; Corrêa-Giannella, M.L. Beta-2-Microglobulin (B2M) Expression in the Urinary Sediment Correlates with Clinical Markers of Kidney Disease in Patients with Type 1 Diabetes. Metabolism 2016, 65, 816–824. [Google Scholar] [CrossRef]
- Black, D.D.; Rohwer-Nutter, P.L.; Davidson, N.O. Intestinal Apolipoprotein A-IV Gene Expression in the Piglet. J. Lipid Res. 1990, 31, 497–505. [Google Scholar] [CrossRef]
- Johannessen, J.V.; Gould, V.E. Neuroendocrine Skin Carcinoma Associated with Calcitonin Production: A Merkel Cell Carcinoma? Hum. Pathol. 1980, 11, 586–588. [Google Scholar]
- Gustafsson, M.; Thyberg, J.; Näslund, J.; Eliasson, E.; Johansson, J. Amyloid Fibril Formation by Pulmonary Surfactant Protein C. FEBS Lett. 1999, 464, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Crivelini, M.M.; Felipini, R.C.; Miyahara, G.I.; de Sousa, S.C.O.M. Expression of Odontogenic Ameloblast-Associated Protein, Amelotin, Ameloblastin, and Amelogenin in Odontogenic Tumors: Immunohistochemical Analysis and Pathogenetic Considerations. J. Oral Pathol. Med. 2012, 41, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s Disease. Nat. Rev. Dis. Prim. 2015, 1. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, A.; Theuns, J.; Van Broeckhoven, C. Progress in Unraveling the Genetic Etiology of Parkinson Disease in a Genomic Era. Trends Genet. 2015, 31, 140–149. [Google Scholar] [CrossRef]
- Hill, A.F.; Joiner, S.; Wadsworth, J.D.F.; Sidle, K.C.L.; Bell, J.E.; Budka, H.; Ironside, J.W.; Collinge, J. Molecular Classification of Sporadic Creutzfeldt-Jakob Disease. Brain 2003, 126, 1333–1346. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Traumatic Brain Injury and Amyloid-β Pathology: A Link to Alzheimer’s Disease? Nat. Rev. Neurosci. 2010, 11, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhong, C. Oxidative Stress in Alzheimer’s Disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Armstrong, R.A. Risk Factors for Alzheimer’s Disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimer Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef]
- Wenk, G.L. Neuropathologic Changes in Alzheimer’s Disease. J. Clin. Psychiatry 2003, 64, 7–10. [Google Scholar] [CrossRef]
- Reddy, P.H.; Oliver, D.M. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer’s Disease. Cells 2019, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.J.; Wong, P.C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu. Rev. Neurosci. 2011, 34, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Sahathevan, R.; Brodtmann, A.; Donnan, G.A. Dementia, Stroke, and Vascular Risk Factors; A Review. Int. J. Stroke 2012, 7, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.C.; Sturm, V.E.; Peterson, M.J.; Pieper, C.F.; Bullock, T.; Boeve, B.F.; Miller, B.L.; Guskiewicz, K.M.; Berger, M.S.; Kramer, J.H.; et al. Association of Traumatic Brain Injury with Subsequent Neurological and Psychiatric Disease: A Meta-Analysis. J. Neurosurg. 2016, 124, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, T.A.; Jones, R.E.; Norris, D.O. Distribution of β-Amyloid and Amyloid Precursor Protein in the Brain of Spawning (Senescent) Salmon: A Natural, Brain-Aging Model. Brain Res. 2000, 858, 237–251. [Google Scholar] [CrossRef]
- Maldonado, T.A.; Jones, R.E.; Norris, D.O. Intraneuronal Amyloid Precursor Protein (APP) and Appearance of Extracellular β-Amyloid Peptide (Aβ) in the Brain of Aging Kokanee Salmon. J. Neurobiol. 2002, 53, 11–20. [Google Scholar] [CrossRef]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, G.G. Tauopathies. In Handbook of Clinical Neurology; Kovacs, G.G., Alafuzoff, I., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; pp. 355–368. [Google Scholar]
- McKee, A.C.; Cantu, R.C.; Nowinski, C.J.; Hedley-Whyte, E.T.; Gavett, B.E.; Budson, A.E.; Santini, V.E.; Lee, H.S.; Kubilus, C.A.; Stern, R.A. Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy after Repetitive Head Injury. J. Neuropathol. Exp. Neurol. 2009, 68, 709–735. [Google Scholar] [CrossRef]
- Vanderweyde, T.; Apicco, D.J.; Youmans-Kidder, K.; Ash, P.E.A.; Cook, C.; Lummertz da Rocha, E.; Jansen-West, K.; Frame, A.A.; Citro, A.; Leszyk, J.D.; et al. Interaction of Tau with the RNA-Binding Protein TIA1 Regulates Tau Pathophysiology and Toxicity. Cell Rep. 2016, 15, 1455–1466. [Google Scholar] [CrossRef] [Green Version]
- Wolozin, B.; Ivanov, P. Stress Granules and Neurodegeneration. Nat. Rev. Neurosci. 2019, 20, 649–666. [Google Scholar] [CrossRef]
- El-Agnaf, O.M.A.; Salem, S.A.; Paleologou, K.E.; Curran, M.D.; Gibson, M.J.; Court, J.A.; Schlossmacher, M.G.; Allsop, D. Detection of Oligomeric Forms of A-synuclein Protein in Human Plasma as a Potential Biomarker for Parkinson’s Disease. FASEB J. 2006, 20, 419–425. [Google Scholar] [CrossRef]
- Sveinbjornsdottir, S. The Clinical Symptoms of Parkinson’s Disease. J. Neurochem. 2016, 139, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, K.; Tanji, K.; Mori, F.; Takahashi, H. The Lewy Body in Parkinson’s Disease: Molecules Implicated in the Formation and Degradation of α-Synuclein Aggregates. Neuropathology 2007, 27, 494–506. [Google Scholar] [CrossRef]
- Fusco, G.; Chen, S.W.; Williamson, P.T.F.; Cascella, R.; Perni, M.; Jarvis, J.A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N.; et al. Structural Basis of Membrane Disruption and Cellular Toxicity by α-Synuclein Oligomers. Science 2017, 358, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Froula, J.M.; Castellana-Cruz, M.; Anabtawi, N.M.; Camino, J.D.; Chen, S.W.; Thrasher, D.R.; Freire, J.; Yazdi, A.A.; Fleming, S.; Dobson, C.M.; et al. Defining α-Synuclein Species Responsible for Parkinson’s Disease Phenotypes in Mice. J. Biol. Chem. 2019, 294, 10392–10406. [Google Scholar] [CrossRef] [Green Version]
- Killinger, B.A.; Melki, R.; Brundin, P.; Kordower, J.H. Endogenous Alpha-Synuclein Monomers, Oligomers and Resulting Pathology: Let’s Talk about the Lipids in the Room. NPJ Park. Dis. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K.H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly. 2012, 142. [Google Scholar] [CrossRef]
- Zhang, P.; Tian, B. Metabolic Syndrome: An Important Risk Factor for Parkinson’s Disease. Oxid. Med. Cell. Longev. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Hu, D.; Han, S.; Reaney, S.H.; Di Monte, D.A.; Fink, A.L. Effect of 4-Hydroxy-2-Nonenal Modification on α-Synuclein Aggregation. J. Biol. Chem. 2007, 282, 5862–5870. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.J.; Ho, D.H.; Park, E.; Jung, J.W.; Cho, K.; Hong, J.H.; Lee, H.J.; Kim, K.P.; Lee, S.J. Lipid Peroxidation Product 4-Hydroxy-2-Nonenal Promotes Seeding-Capable Oligomer Formation and Cell-to-Cell Transfer of α-Synuclein. Antioxid. Redox Signal. 2013, 18, 770–783. [Google Scholar] [CrossRef] [Green Version]
- De Bold, A.J. Atrial Natriuretic Factor: A Hormone Produced by the Heart. Science 1985, 230, 767–770. [Google Scholar] [CrossRef]
- Nishikimi, T.; Maeda, N.; Matsuoka, H. The Role of Natriuretic Peptides in Cardioprotection. Cardiovasc. Res. 2006, 69, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Podduturi, V.; Armstrong, D.R.; Hitchcock, M.A.; Roberts, W.C.; Guileyardo, J.M. Isolated Atrial Amyloidosis and the Importance of Molecular Classification. Baylor Univ. Med. Cent. Proc. 2013, 26, 387–389. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.; Saraiva, M.J. Transthyretin: A Multifaceted Protein. Biomol. Concepts 2014, 5, 45–54. [Google Scholar] [CrossRef]
- Pomerance, A. Senile Cardiac Amyloidosis. Br. Heart J. 1965, 27, 711–718. [Google Scholar] [CrossRef]
- Ng, B.; Connors, L.H.; Davidoff, R.; Skinner, M.; Falk, R.H. Senile Systemic Amyloidosis Presenting with Heart Failure: A Comparison with Light Chain-Associated Amyloidosis. Arch. Intern. Med. 2005, 165, 1425–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Buxbaum, J.N.; Reixach, N. Age-Related Oxidative Modifications of Transthyretin Modulate Its Amyloidogenicity. Biochemistry 2013, 52, 1913–1926. [Google Scholar] [CrossRef] [Green Version]
- Gerasimova, E.M.; Fedotov, S.A.; Kachkin, D.V.; Vashukova, E.S.; Glotov, A.S.; Chernoff, Y.O.; Rubel, A.A. Protein Misfolding during Pregnancy: New Approaches to Preeclampsia Diagnostics. Int. J. Mol. Sci. 2019, 20, 6183. [Google Scholar] [CrossRef] [Green Version]
- Tranquilli, A.L.; Dekker, G.; Magee, L.; Roberts, J.; Sibai, B.M.; Steyn, W.; Zeeman, G.G.; Brown, M.A. The Classification, Diagnosis and Management of the Hypertensive Disorders of Pregnancy: A Revised Statement from the ISSHP. Pregnancy Hypertens. 2014, 4, 97–104. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Cerdeira, A.S.; Karumanchi, S.A. Angiogenic Factors in Preeclampsia and Related Disorders. Cold Spring Harb. Perspect. Med. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Raghupathy, R. Cytokines as Key Players in the Pathophysiology of Preeclampsia. Med. Princ. Pract. 2013, 22, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Yung, H.W. Endoplasmic Reticulum Stress in the Pathogenesis of Early-Onset Pre-Eclampsia. Pregnancy Hypertens. 2011, 1, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Buhimschi, I.A.; Zhao, G.; Funai, E.F.; Harris, N.; Sasson, I.E.; Bernstein, I.M.; Saade, G.R.; Buhimschi, C.S. Proteomic Profiling of Urine Identifies Specific Fragments of SERPINA1 and Albumin as Biomarkers of Preeclampsia. Am. J. Obstet. Gynecol. 2008, 199. [Google Scholar] [CrossRef]
- Buhimschi, I.A.; Nayeri, U.A.; Zhao, G.; Shook, L.L.; Pensalfini, A.; Funai, E.F.; Bernstein, I.M.; Glabe, C.G.; Buhimschi, C.S. Protein Misfolding, Congophilia, Oligomerization, and Defective Amyloid Processing in Preeclampsia. Sci. Transl. Med. 2014, 6. [Google Scholar] [CrossRef]
- Pras, M.; Schubert, M.; Zucker-Franklin, D.; Rimon, A.; Franklin, E.C. The Characterization of Soluble Amyloid Prepared in Water. J. Clin. Investig. 1968, 47, 924–933. [Google Scholar] [CrossRef] [Green Version]
- Quock, T.P.; Yan, T.; Chang, E.; Guthrie, S.; Broder, M.S. Epidemiology of AL Amyloidosis: A Real-World Study Using US Claims Data. Blood Adv. 2018, 2, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Madan, S.; Dispenzieri, A.; Lacy, M.Q.; Buadi, F.; Hayman, S.R.; Zeldenrust, S.R.; Rajkumar, S.V.; Gertz, M.A.; Kumar, S.K. Clinical Features and Treatment Response of Light Chain (AL) Amyloidosis Diagnosed in Patients with Previous Diagnosis of Multiple Myeloma. Mayo Clin. Proc. 2010, 85, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Westermark, G.T.; Fändrich, M.; Westermark, P. AA Amyloidosis: Pathogenesis and Targeted Therapy. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 321–344. [Google Scholar] [CrossRef]
- Urieli-Shoval, S.; Linke, R.P.; Matzner, Y. Expression and Function of Serum Amyloid A, a Major Acute-Phase Protein, in Normal and Disease States. Curr. Opin. Hematol. 2000, 7, 64–69. [Google Scholar] [CrossRef]
- Ardaillou, R. Kidney and Calcitonin. Nephron 1975, 15, 250–260. [Google Scholar] [CrossRef]
- Bell, N.H.; Queener, S. Stimulation of Calcitonin Synthesis and Release in Vitro by Calcium and Dibutyryl Cyclic AMP. Nature 1974, 248, 343–344. [Google Scholar] [CrossRef]
- Hill, K.; Diaz, J.; Hagemann, I.S.; Chernock, R.D. Multiple Myeloma Presenting as Massive Amyloid Deposition in a Parathyroid Gland Associated with Amyloid Goiter: A Medullary Thyroid Carcinoma Mimic on Intra-Operative Frozen Section. Head Neck Pathol. 2018, 12, 269–273. [Google Scholar] [CrossRef]
- Murphy, C.L.; Kestler, D.P.; Foster, J.S.; Wang, S.; Macy, S.D.; Kennel, S.J.; Carlson, E.R.; Hudson, J.; Weiss, D.T.; Solomon, A. Odontogenic Ameloblast-Associated Protein Nature of the Amyloid Found in Calcifying Epithelial Odontogenic Tumors and Unerupted Tooth Follicles. Amyloid 2008, 15, 89–95. [Google Scholar] [CrossRef]
- Lee, H.K.; Ji, S.; Park, S.J.; Choung, H.W.; Choi, Y.; Lee, H.J.; Park, S.Y.; Park, J.C. Odontogenic Ameloblast-Associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-Odam-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling. J. Biol. Chem. 2015, 290, 14740–14753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, A.; Murphy, C.L.; Weaver, K.; Weiss, D.T.; Hrncic, R.; Eulitz, M.; Donnell, R.L.; Sletten, K.; Westermark, G.; Westermark, P. Calcifying Epithelial Odontogenic (Pindborg) Tumor-Associated Amyloid Consists of a Novel Human Protein. J. Lab. Clin. Med. 2003, 142, 348–355. [Google Scholar] [CrossRef]
- Linke, R.P.; Serpell, L.C.; Lottspeich, F.; Toyoda, M. Cathepsin K as a Novel Amyloid Fibril Protein in Humans. Amyloid 2017, 24, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, Y.J.; Grass, D.; De Beer, F.C.; Kindy, M.S. Inflammation-Dependent Cerebral Deposition of Serum Amyloid A Protein in a Mouse Model of Amyloidosis. J. Neurosci. 2002, 22, 5900–5909. [Google Scholar] [CrossRef]
- Buck, M.; Gouwy, M.; Wang, J.; Snick, J.; Opdenakker, G.; Struyf, S.; Damme, J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and Their Concentration-Dependent Functions During Host Insults. Curr. Med. Chem. 2016, 23, 1725–1755. [Google Scholar] [CrossRef] [Green Version]
- Witkowska-Piłaszewicz, O.D.; Żmigrodzka, M.; Winnicka, A.; Miśkiewicz, A.; Strzelec, K.; Cywińska, A. Serum Amyloid A in Equine Health and Disease. Equine Vet. J. 2019, 51, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic Syndrome: Definitions and Controversies. BMC Med. 2011, 9. [Google Scholar] [CrossRef] [Green Version]
- Herrera, M.I.; Udovin, L.D.; Toro-Urrego, N.; Kusnier, C.F.; Luaces, J.P.; Otero-Losada, M.; Capani, F. Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Campos-Peña, V.; Toral-Rios, D.; Becerril-Pérez, F.; Sánchez-Torres, C.; Delgado-Namorado, Y.; Torres-Ossorio, E.; Franco-Bocanegra, D.; Carvajal, K. Metabolic Syndrome as a Risk Factor for Alzheimer’s Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid. Redox Signal. 2017, 26, 542–560. [Google Scholar] [CrossRef]
- Westermark, P.; Andersson, A.; Westermark, G.T. Islet Amyloid Polypeptide, Islet Amyloid, and Diabetes Mellitus. Physiol. Rev. 2011, 91, 795–826. [Google Scholar] [CrossRef] [Green Version]
- Andreetto, E.; Yan, L.M.; Tatarek-Nossol, M.; Velkova, A.; Frank, R.; Kapurniotu, A. Identification of Hot Regions of the Aβ-IAPP Interaction Interface as High-Affinity Binding Sites in Both Cross- and Self-Association. Angew. Chem. Int. Ed. 2010, 49, 3081–3085. [Google Scholar] [CrossRef]
- Jayaraman, A.; Pike, C.J. Alzheimer’s Disease and Type 2 Diabetes: Multiple Mechanisms Contribute to Interactions. Curr. Diab. Rep. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Kohan, A.B.; Lo, C.M.; Liu, M.; Howles, P.; Tso, P. Apolipoprotein A-IV: A Protein Intimately Involved in Metabolism. J. Lipid Res. 2015, 56, 1403–1418. [Google Scholar] [CrossRef] [Green Version]
- Martins, E.; Urbano, J.; Leite, S.; Pinto, A.; Garcia, R.; Bergantim, R.; Rodrigues-Pereira, P.; Costa, P.P.; Osório, H.; Tavares, I. Cardiac Amyloidosis Associated with Apolipoprotein A-IV Deposition Diagnosed by Mass Spectrometry-Based Proteomic Analysis. Eur. J. Case Rep. Intern. Med. 2019, 6. [Google Scholar] [CrossRef]
- Wang, B.M.; Stern, E.J.; Schmidt, R.A.; Pierson, D.J. Diagnosing Pulmonary Alveolar Proteinosis: A Review and an Update. Chest 1997, 111, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.F.; Presneill, J.J. Pulmonary Alveolar Proteinosis: Progress in the First 44 Years. Am. J. Respir. Crit. Care Med. 2002, 166, 215–235. [Google Scholar] [CrossRef]
- Trapnell, B.C.; Nakata, K.; Bonella, F.; Campo, I.; Griese, M.; Hamilton, J.; Wang, T.; Morgan, C.; Cottin, V.; McCarthy, C. Pulmonary Alveolar Proteinosis. Nat. Rev. Dis. Prim. 2019, 5. [Google Scholar] [CrossRef]
- Said, S.M.; Sethi, S.; Valeri, A.M.; Chang, A.; Nast, C.C.; Krahl, L.; Molloy, P.; Barry, M.; Fidler, M.E.; Cornell, L.D.; et al. Characterization and Outcomes of Renal Leukocyte Chemotactic Factor 2-Associated Amyloidosis. Kidney Int. 2014, 86, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Nasr, S.H.; Dogan, A.; Larsen, C.P. Leukocyte Cell-Derived Chemotaxin 2-Associated Amyloidosis: A Recently Recognized Disease with Distinct Clinicopathologic Characteristics. Clin. J. Am. Soc. Nephrol. 2015, 10, 2084–2093. [Google Scholar] [CrossRef] [Green Version]
- Tariq, H.; Sharkey, F.E. Leukocyte Cell-Derived Chemotaxin-2 Amyloidosis (ALECT2) in a Patient With Lung Adenocarcinoma: An Autopsy Report and Literature Review. Int. J. Surg. Pathol. 2018, 26, 271–275. [Google Scholar] [CrossRef]
- Drüeke, T.B. β2-Microglobulin and Amyloidosis. Nephrol. Dial. Transplant. 2000, 15, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Otsubo, S.; Kimata, N.; Okutsu, I.; Oshikawa, K.; Ueda, S.; Sugimoto, H.; Mitobe, M.; Uchida, K.; Otsubo, K.; Nitta, K.; et al. Characteristics of Dialysis-Related Amyloidosis in Patients on Haemodialysis Therapy for More than 30 Years. Nephrol. Dial. Transplant. 2009, 24, 1593–1598. [Google Scholar] [CrossRef] [Green Version]
- Corlin, D.B.; Heegaard, N.H.H. β2-Microglobulin Amyloidosis. Subcell. Biochem. 2012, 65, 517–540. [Google Scholar] [CrossRef]
- Eichner, T.; Radford, S.E. Understandinxg the Complex Mechanisms of β2-Microglobulin Amyloid Assembly. FEBS J. 2011, 278, 3868–3883. [Google Scholar] [CrossRef]
- Larsson, A.; Peng, S.; Persson, H.; Rosenbloom, J.; Abrams, W.R.; Wassberg, E.; Thelin, S.; Sletten, K.; Gerwins, P.; Westermark, P. Lactadherin Binds to Elastin—A Starting Point for Medin Amyloid Formation? Amyloid 2006, 13, 78–85. [Google Scholar] [CrossRef]
- Loo, D.; Mollee, P.N.; Renaut, P.; Hill, M.M. Proteomics in Molecular Diagnosis: Typing of Amyloidosis. J. Biomed. Biotechnol. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Nizhnikov, A.A.; Alexandrov, A.I.; Ryzhova, T.A.; Mitkevich, O.V.; Dergalev, A.A.; Ter-Avanesyan, M.D.; Galkin, A.P. Proteomic Screening for Amyloid Proteins. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, P.S.; Skinner, M.; Sipe, J.D.; Lokich, J.J.; Zamcheck, N.; Cohen, A.S. Acute-Phase Proteins or Tumour Markers: The Role of SAA, SAP, CRP and CEA as Indicators of Metastasis in a Broad Spectrum of Neoplastic Diseases. Scand. J. Immunol. 1984, 19, 193–198. [Google Scholar] [CrossRef]
- Liu, C. Serum Amyloid A Protein in Clinical Cancer Diagnosis. Pathol. Oncol. Res. 2012, 18, 117–121. [Google Scholar] [CrossRef]
- Yamada, Y.; Fujimura, T.; Takahashi, S.; Takayama, K.; Urano, T.; Murata, T.; Obinata, D.; Ouchi, Y.; Homma, Y.; Inoue, S. Clinical Significance of Amyloid Precursor Protein in Patients with Testicular Germ Cell Tumor. Adv. Urol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, W.R.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020, 15, 359–386. [Google Scholar] [CrossRef] [PubMed]
- Mojtabavi, H.; Saghazadeh, A.; Rezaei, N. Interleukin-6 and Severe COVID-19: A Systematic Review and Meta-Analysis. Eur. Cytokine Netw. 2020, 31, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiang, X.; Ren, H.; Xu, L.; Zhao, L.; Chen, X.; Long, H.; Wang, Q.; Wu, Q. Serum Amyloid A Is a Biomarker of Severe Coronavirus Disease and Poor Prognosis. J. Infect. 2020, 80, 646–655. [Google Scholar] [CrossRef] [PubMed]
Sporadic Amyloidosis | Protein | Organs/ Tissue | Factors that Can Induce Amyloidogenesis | Effects of Pathological Factors on Amyloidogenic Protein Production/Modification/Local Concentration |
---|---|---|---|---|
Alzheimer’s disease 1 | Aβ | CNS | Oxidative stress, vascular pathology, head injuries, metabolic syndrome, type 2 diabetes | Aβ overproduction under oxidative stress [20] |
Parkinson’s disease 2 | α-Synuclein | CNS | Head trauma, exposure to farming chemicals, oxidative stress | α-Synuclein overproduction in traumatic brain injury [21] |
Tauopathies 3 | Tau | CNS | Brain injury and chronic inflammation | Tau hyperphosphorylation in traumatic brain injury [22] |
Non-inherited CJD and fatal insomnia 4 | Prion Protein | CNS | Oxidative stress, hypoxia | Prion protein overproduction under oxidative stress and hypoxia [23,24,25,26] |
Amyloidosis associated with preeclampsia 3 | α-1 antitrypsin, albumin, Ig(L), ceruloplasmin, IFI6, Aβ | All organs except CNS | Disease of pregnant women associated with impaired angiogenesis of the uterus | N/D 6 |
AA amyloidosis 3 | Serum amyloid A | All organs except CNS | Chronic infections, inflammations, different types of cancer | Serum amyloid A overproduction in chronic infections and cancer [27,28,29,30] |
Islet amyloidosis 3 | Islet amyloid polypeptide | Islets of Langerhans in pancreas | Type 2 diabetes | Islet amyloid polypeptide overproduction in type 2 diabetes [31] |
Isolated atrial amyloidosis 3 | Atrial natriuretic factor | Cardiac atria | Hypertension, myocardial infarction, cardiomyopathy, valve insufficiency | Atrial natriuretic factor overproduction in heart disease [32] |
Senile systemic amyloidosis 5 | Transthyretin | All organs except CNS | High level of glucocorticoids, psychosocial stress, oxidative stress | TTR overproduction in psychosocial stress and high glucocorticoid levels [33] |
AH amyloidosis 3 | Ig(H) | All organs except CNS | Multiple myeloma | Ig(H) overproduction in multiple myeloma [34] |
AL amyloidosis 3 | Ig(L) | All organs except CNS | Multiple myeloma and Waldenström’s macroglobulinemia | Ig(L) overproduction in multiple myeloma [34] |
β2-Microglobulin amyloidosis 5 | β2-Microglobulin | Musculoskeletal system | Chronic kidney disease and dialysis | β2-Microglobulin overproduction in renal insufficiency [35] |
Apo A-IV amyloidosis 3 | Apolipoprotein A-IV | Renal medulla and systemic | Dietary fat absorption | Apolipoprotein A-IV overproduction in high fat diet [36] |
LECT2 amyloidosis 3 | Leukocyte Chemotactic Factor-2 | All organs except CNS | Chronic renal insufficiency | N/D 6 |
Calcitonin amyloidosis 3 | Calcitonin | Thyroid gland, kidneys, fatty tissue | Carcinoma | Calcitonin overproduction in carcinoma [37] |
Lung SP-C protein amyloidosis 3 | Lung surfactant protein C | Lung | Lung infections, exposure to inhaled chemicals | Increased local concentration of the lung surfactant protein in lung infections [38] |
OAAP amyloidosis 3 | Odontogenic ameloblast-associated protein | Maxilla, mandible | Odontogenic tumors, cervix and gastric cancer | The odontogenic ameloblast-associated protein overproduction in odontogenic tumors, cervix cancer and gastric cancer [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galkin, A.P.; Sysoev, E.I. Stress Response Is the Main Trigger of Sporadic Amyloidoses. Int. J. Mol. Sci. 2021, 22, 4092. https://doi.org/10.3390/ijms22084092
Galkin AP, Sysoev EI. Stress Response Is the Main Trigger of Sporadic Amyloidoses. International Journal of Molecular Sciences. 2021; 22(8):4092. https://doi.org/10.3390/ijms22084092
Chicago/Turabian StyleGalkin, Alexey P., and Evgeniy I. Sysoev. 2021. "Stress Response Is the Main Trigger of Sporadic Amyloidoses" International Journal of Molecular Sciences 22, no. 8: 4092. https://doi.org/10.3390/ijms22084092
APA StyleGalkin, A. P., & Sysoev, E. I. (2021). Stress Response Is the Main Trigger of Sporadic Amyloidoses. International Journal of Molecular Sciences, 22(8), 4092. https://doi.org/10.3390/ijms22084092