The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle
Abstract
:1. Introduction
2. Alcohol Metabolism and Genetic Polymorphisms in Alcohol Addiction
2.1. Genes and Enzymes Involved in Alcohol Metabolism
2.1.1. The Alcohol Dehydrogenase 1B (ADH1B) and Aldehyde Dehydrogenase 2 (ALDH2) Genes
2.1.2. The Microsomal Ethanol Oxidizing System
2.2. Gene and Environmental Interactions
2.2.1. The Catechol-O-Methyltransferase Gene (COMT)
2.2.2. The Monoamine Oxidase A Gene (MAOA)
2.2.3. The Serotonin Transporter Gene (HTT)
2.3. Oxidative Stress in Alcohol Use Disorder
3. Epigenetics
3.1. DNA Methylation
3.2. Methylation and Acetylation of Histones
3.3. Epigenetic Changes of BDNF
3.4. MicroRNAs
4. Nutrition
4.1. Nutrition in Early Life
4.2. Epigenetic Effect of Diet on Health or Disease
4.3. Micronutrients in Epigenetic Modifications—The Vitamin B Group
4.4. Vitamin A
4.5. Vitamin D
4.6. Vitamin C
4.7. Nutrition and Cognitive Functions
4.8. Cannabinoids
5. Conclusions
Funding
Conflicts of Interest
References
- Ducci, F.; Goldman, D. Genetic approaches to addiction: Genes and alcohol. Addiction 2008, 103, 1414–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beayno, A.; Hayek, S.E.; Noufi, P.; Tarabay, Y.; Shamseddeen, W. The Role of Epigenetics in Addiction: Clinical Overview and Recent Updates. Methods Mol. Biol. 2019, 2011, 609–631. [Google Scholar]
- Quertemont, E. Genetic polymorphism in ethanol metabolism: Acetaldehyde contribution to alcohol abuse and alcoholism. Mol. Psychiatry 2004, 9, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Sedha, S.; Mishra, M. Genetic Polymorphism and Alcohol Metabolism. In The Recent Topics in Genetic Polymorphisms; IntechOpen: London, UK, 2019; pp. 1–13. [Google Scholar]
- Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis. 2012, 16, 667–685. [Google Scholar] [CrossRef] [Green Version]
- Gorski, N.P.; Nouraldin, H.; Dube, D.M.; Preffer, F.I.; Dombkowski, D.M.; Villa, E.M.; Lewandrowski, K.B.; Weiss, R.D.; Hufford, C.; Laposata, M. Reduced fatty acid ethyl ester synthase activity in the white blood cells of alcoholics. Alcohol. Clin. Exp. Res. 1996, 20, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.; Skopp, G.; Alt, A.; Miltner, E.; Jochum, T.; Daenhardt, C.; Sporkert, F.; Gnann, H.; Weinmann, W.; Thierauf, A. Comparison of direct and indirect alcohol markers with PEth in blood and urine in alcohol dependent inpatients during detoxication. Int. J. Legal Med. 2013, 127, 761–768. [Google Scholar] [CrossRef]
- Bhasin, S.K.; Chaturvedi, S.; Sharma, A.K.; Agarwal, D.P. Knowledge amongst adult population regarding vectors of malaria in 21 states of India. J. Commun. Dis. 2001, 33, 286–296. [Google Scholar]
- Duester, G.; Farrés, J.; Felder, M.R.; Holmes, R.S.; Höög, J.O.; Parés, X.; Plapp, B.V.; Yin, S.J.; Jörnvall, H. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem. Pharm. 1999, 58, 389–395. [Google Scholar] [CrossRef]
- Spence, J.P.; Liang, T.; Eriksson, C.J.P.; Taylor, R.E.; Wall, T.L.; Ehlers, C.L.; Carr, L.G. Evaluation of aldehyde dehydrogenase 1 promoter polymorphisms identified in human populations. Alcohol. Clin. Exp. Res. 2003, 27, 1389–1394. [Google Scholar] [CrossRef] [Green Version]
- Vasiliou, V.; Bairoch, A.; Tipton, K.F.; Nebert, D.W. Eukaryotic aldehyde dehydrogenase (ALDH) genes: Human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 1999, 9, 421–434. [Google Scholar]
- Lee, S.L.; Chau, G.Y.; Yao, C.T.; Wu, C.W.; Yin, S.J. Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: Significance of first-pass metabolism. Alcohol. Clin. Exp. Res. 2006, 30, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Osier, M.V.; Pakstis, A.J.; Soodyall, H.; Comas, D.; Goldman, D.; Odunsi, A.; Okonofua, F.; Parnas, J.; Schulz, L.O.; Bertranpetit, J.; et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 2002, 71, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.M.; Stewart, R.B.; Bell, R.L.; Badia-Elder, N.E.; Carr, L.G.; McBride, W.J.; Lumeng, L.; Li, T.K. Phenotypic and genotypic characterization of the Indiana University rat lines selectively bred for high and low alcohol preference. Behav. Genet. 2002, 32, 363–388. [Google Scholar] [CrossRef]
- Blanco, E.; McCullough, K.; Summerfield, A.; Fiorini, J.; Andreu, D.; Chiva, C.; Borrás, E.; Barnett, P.; Sobrino, F. Interspecies major histocompatibility complex-restricted Th cell epitope on foot-and-mouth disease virus capsid protein VP4. J. Virol. 2000, 74, 4902–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, J.B. Meta-analysis of the effects of alcohol dehydrogenase genotype on alcohol dependence and alcoholic liver disease. Alcohol Alcohol. 1997, 32, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.J. Alcohol Dehydrogenase: Enzymology and Metabolism. Alcohol Alcohol. Suppl. 1994, 2, 113–119. [Google Scholar]
- Tanaka, F.; Shiratori, Y.; Yokosuka, O.; Imazeki, F.; Tsukada, Y.; Omata, M. Polymorphism of alcohol-metabolizing genes affects drinking behavior and alcoholic liver disease in Japanese men. Alcohol. Clin. Exp. Res. 1997, 21, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, S.; Muramatsu, T.; Matsushita, S.; Murayama, M.; Hayashida, M. Polymorphisms of ethanol-oxidizing enzymes in alcoholics with inactive ALDH2. Hum. Genet. 1996, 97, 431–434. [Google Scholar] [CrossRef]
- Hu, X.; Oroszi, G.; Chun, J.; Smith, T.L.; Goldman, D.; Schuckit, M.A. An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin. Exp. Res. 2005, 29, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Koechling, U.M.; Amit, Z. Relationship between blood catalase activity and drinking history in a human population, a possible biological marker of the affinity to consume alcohol. Alcohol Alcohol. 1992, 27, 181–188. [Google Scholar]
- Koechling, M.U.; Amit, Z.; Negrete, J.C. Family history of alcoholism and the mediation of alcohol intake by catalase: Further evidence for catalase as a marker of the propensity to ingest alcohol. Alcohol. Clin. Exp. Res. 1995, 19, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.; LaForge, K.S.; Tian, M.; Melia, D.; Zhang, S.; Borg, L.; Gong, J.; Schluger, J.; Strong, J.A.; Leal, S.M.; et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: Possible implications for opiate addiction. Proc. Natl. Acad. Sci. USA 1998, 95, 9608–9613. [Google Scholar] [CrossRef] [Green Version]
- Anton, R.F.; Oroszi, G.; O’Malley, S.; Couper, D.; Swift, R.; Pettinati, H.; Goldman, D. An evaluation of mu-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: Results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch. Gen. Psychiatry 2008, 65, 135–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspi, A.; Moffitt, T.E.; Cannon, M.; McClay, J.; Murray, R.; Harrington, H.; Taylor, A.; Arseneault, L.; Williams, B.; Braithwaite, A.; et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene X environment interaction. Biol. Psychiatry 2005, 57, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, J.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; et al. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 2003, 301, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Blomeyer, D.; Treutlein, J.; Esser, G.; Schmidt, M.H.; Schumann, G.; Laucht, M. Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use. Biol. Psychiatry 2008, 63, 146–151. [Google Scholar] [CrossRef]
- Chen, J.; Lipska, B.K.; Halim, N.; Ma, Q.D.; Matsumoto, M.; Melhem, S.; Kolachana, B.S.; Hyde, T.M.; Herman, M.M.; Apud, J.; et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet. 2004, 75, 807–821. [Google Scholar] [CrossRef] [Green Version]
- Weinshilboum, M.R.; Otterness, D.M.; Szumlanski, C.L. Methylation pharmacogenetics: Catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu. Rev. Pharm. Toxicol. 1999, 39, 19–52. [Google Scholar] [CrossRef]
- Vandenbergh, D.J.; Rodriguez, L.A.; Miller, I.T.; Uhl, G.R.; Lachman, H.M. High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers. Am. J. Med. Genet. 1997, 74, 439–442. [Google Scholar] [CrossRef]
- Kauhanen, J.; Hallikainen, T.; Tuomainen, T.P.; Koulu, M.; Karvonen, M.K.; Salonen, J.T.; Tiihonen, J. Association between the functional polymorphism of catechol-O-methyltransferase gene and alcohol consumption among social drinkers. Alcohol. Clin. Exp. Res. 2000, 24, 135–139. [Google Scholar] [CrossRef]
- Reilly, M.T.; Noronha, A.; Goldman, D.; Koob, G.F. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017, 122, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Filbey, F.M.; Claus, E.D.; Morgan, M.; Forester, G.R.; Hutchison, K. Dopaminergic genes modulate response inhibition in alcohol abusing adults. Addict. Biol. 2012, 17, 1046–1056. [Google Scholar] [CrossRef]
- Sabol, Z.S.; Hu, S.; Hamer, D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet. 1998, 103, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducci, F.; Enoch, M.A.; Hodgkinson, C.; Xu, K.; Catena, M.; Robin, R.W.; Goldman, D. Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Mol. Psychiatry 2008, 13, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, J.S.; Delahanty, R.J.; Prasad, H.C.; McCauley, J.L.; Han, Q.; Jiang, L.; Li, C.; Folstein, S.E.; Blakely, R.D. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am. J. Hum. Genet. 2005, 77, 265–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalsman, G.; Huang, Y.Y.; Oquendo, M.A.; Burke, A.K.; Hu, X.Z.; Brent, D.A.; Ellis, S.P.; Goldman, D.; Mann, J.J. Association of a triallelic serotonin transporter gene promoter region (5-HTTLPR) polymorphism with stressful life events and severity of depression. Am. J. Psychiatry 2006, 163, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Z.; Xu, Y.; Hu, D.C.; Hui, Y.; Yang, F.X. Apoptosis induction on human hepatoma cells Hep G2 of decabrominated diphenyl ether (PBDE-209). Toxicol. Lett. 2007, 171, 19–28. [Google Scholar] [CrossRef]
- Barr, C.S.; Newman, T.K.; Lindell, S.; Shannon, C.; Champoux, M.; Lesch, K.P.; Suomi, S.J.; Goldman, D.; Higley, J.D. Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates. Arch. Gen. Psychiatry 2004, 61, 1146–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, F.C.; Tang, S.H.; Huang, M.C.; Chen, C.C.; Kuo, T.L.; Yin, S.J. Oxidative status in patients with alcohol dependence: A clinical study in Taiwan. J. Toxicol. Environ. Health-Part. A-Curr. Issues 2005, 68, 1497–1509. [Google Scholar] [CrossRef]
- Cooke, S.M.; Olinski, R.; Evans, M.D. Does measurement of oxidative damage to DNA have clinical significance? Clin. Chim. Acta 2006, 365, 30–49. [Google Scholar] [CrossRef]
- Griffiths, H.R.; Møller, L.; Bartosz, G.; Bast, A.; Bertoni-Freddari, C.; Collins, A.; Cooke, M.; Coolen, S.; Haenen, G.; Hoberg, A.M.; et al. Biomarkers. Mol. Asp. Med. 2002, 23, 101–208. [Google Scholar] [CrossRef]
- Chen, C.H.; Pan, C.H.; Chen, C.C.; Huang, M.C. Increased Oxidative DNA Damage in Patients with Alcohol Dependence and Its Correlation with Alcohol Withdrawal Severity. Alcohol.-Clin. Exp. Res. 2011, 35, 338–344. [Google Scholar] [CrossRef]
- Hirano, T. Alcohol Consumption and Oxidative DNA Damage. Int. J. Environ. Res. Public Health 2011, 8, 2895–2906. [Google Scholar] [CrossRef] [Green Version]
- Petitpas, F.; Sichel, F.; Hébert, B.; Lagadu, S.; Beljean, M.; Pottier, D.; Laurentie, M.; Prevost, V. Effects of alcohol consumption on biomarkers of oxidative damage to DNA and lipids in ethanol-fed pigs. Exp. Toxicol. Pathol. 2013, 65, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Haorah, J.; Persidsky, Y. Protective mechanism of acetyl-L-carnitine against alcohol-induced mitochondrial dysfunction, neuroinflammation, neurotoxicity and CNS injury. Alcohol.-Clin. Exp. Res. 2008, 32, 154. [Google Scholar]
- Gackowski, D.; Rozalski, R.; Siomek, A.; Dziaman, T.; Nicpon, K.; Klimarczyk, M.; Araszkiewicz, A.; Olinski, R. Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease/vascular dementia. J. Neurol. Sci. 2008, 266, 57–62. [Google Scholar] [CrossRef]
- Crews, F.T.; Nixon, K. Mechanisms of Neurodegeneration and Regeneration in Alcoholism. Alcohol Alcohol. 2009, 44, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmisano, M.; Pandey, S.C. Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol 2017, 60, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Schuebel, K.; Gitik, M.; Domschke, K.; Goldman, D. Making Sense of Epigenetics. Int. J. Neuropsychopharmacol. 2016, 19, pyw058. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.L. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol. Neurobiol. 2016, 53, 545–560. [Google Scholar] [CrossRef] [Green Version]
- Holliday, R. Epigenetics: A historical overview. Epigenetics 2006, 1, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Szulwach, K.E.; Li, X.; Li, Y.; Song, C.X.; Han, J.W.; Kim, S.; Namburi, S.; Hermetz, K.; Kim, J.J.; Rudd, M.K.; et al. Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells. PLoS Genet. 2011, 7, e1002154. [Google Scholar] [CrossRef] [Green Version]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.L.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, M.; Gama-Sosa, M.A.; Huang, L.H.; Midgett, R.M.; Kuo, K.C.; McCune, R.A.; Gehrke, C. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982, 10, 2709–2721. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.J.; Zhang, Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet. 2017, 18, 517–534. [Google Scholar] [CrossRef]
- Wu, S.C.; Zhang, Y. Active DNA demethylation: Many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 2010, 11, 607–620. [Google Scholar] [CrossRef] [Green Version]
- Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013, 502, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Kriaucionis, S.; Heintz, N. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science 2009, 324, 929–930. [Google Scholar] [CrossRef] [Green Version]
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhutani, N.; Burns, D.M.; Blau, H.M. DNA demethylation dynamics. Cell 2011, 146, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Globisch, D.; Münzel, M.; Müller, M.; Michalakis, S.; Wagner, M.; Koch, S.; Brückl, T.; Biel, M.; Carell, T. Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates. PLoS ONE 2010, 5, e15367. [Google Scholar] [CrossRef] [Green Version]
- Siomek, A.; Gackowski, D.; Szpila, A.; Brzóska, K.; Guz, J.; Sochanowicz, B.; Kruszewski, M. Epigenetic modifications and NF-kappaB pathway activity in Cu,Zn-SOD-deficient mice. Mol. Cell Biochem. 2014, 397, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Oscar-Berman, M.; Marinkovic, K. Alcoholism and the brain: An overview. Alcohol Res. Health 2003, 27, 125–133. [Google Scholar]
- Dziaman, T.; Gackowski, D.; Guz, J.; Linowiecka, K.; Bodnar, M.; Starczak, M.; Zarakowska, E.; Modrzejewska, M.; Szpila, A.; Szpotan, J.; et al. Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions-benign adenomas and inflammatory bowel disease. Clin. Epigenetics 2018, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Foksinski, M.; Zarakowska, E.; Gackowski, D.; Skonieczna, M.; Gajda, K.; Hudy, D.; Szpila, A.; Bialkowski, K.; Starczak, M.; Labejszo, A.; et al. Profiles of a broad spectrum of epigenetic DNA modifications in normal and malignant human cell lines: Proliferation rate is not the major factor responsible for the 5-hydroxymethyl-2′-deoxycytidine level in cultured cancerous cell lines. PLoS ONE 2017, 12, e0188856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsch, D.; Lenz, B.; Fiszer, R.; Frieling, H.; Kornhuber, J.; Bleich, S. Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J. Neural Transm. 2006, 113, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.; Tapocik, J.D.; Juergens, N.; Pitcairn, C.; Borich, A.; Schank, J.R.; Sun, H.; Schuebel, K.; Zhou, Z.; Yuan, Q.; et al. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J. Neurosci. 2015, 35, 6153–6164. [Google Scholar] [CrossRef]
- LaPlant, Q.; Vialou, V.; Covington, H.E.; Dumitriu, D.; Feng, J.; Warren, B.L.; Maze, I.; Dietz, D.M.; Watts, E.L.; Iñiguez, S.D.; et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 2010, 13, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anier, K.; Zharkovsky, A.; Kalda, A. S-adenosylmethionine modifies cocaine-induced DNA methylation and increases locomotor sensitization in mice. Int. J. Neuropsychopharmacol. 2013, 16, 2053–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moonat, S.; Sakharkar, A.J.; Zhang, H.; Pandey, S.C. The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism. Addict. Biol. 2011, 16, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Im, H.I.; Hollander, J.A.; Bali, P.; Kenny, P.J. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 2010, 13, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.R.; Zhang, R.; Li, W.; Liao, Y.; Tang, J.; Miao, Q.; Hao, W. Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia-Pac. Psychiatry 2013, 5, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Bruckmann, C.; Di Santo, A.; Karle, K.N.; Batra, A.; Nieratschkera, V. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome. Epigenetics 2016, 11, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggeri, B.; Nymberg, C.; Vuoksimaa, E.; Lourdusamy, A.; Wong, C.P.; Carvalho, F.M.; Jia, T.; Cattrell, A.; Macare, C.; Banaschewski, T.; et al. Association of Protein Phosphatase PPM1G with Alcohol Use Disorder and Brain Activity during Behavioral Control in a Genome-Wide Methylation Analysis. Am. J. Psychiatry 2015, 172, 543–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandaswamy, R.; Allegrini, A.; Plomin, R.; von Stumm, S. Predictive validity of genome-wide polygenic scores for alcohol use from adolescence to young adulthood. Drug Alcohol. Depend. 2021, 219, 108480. [Google Scholar] [CrossRef]
- Bonsch, D.; Lenz, B.; Reulbach, U.; Kornhuber, J.; Bleich, S. Homocysteine associated genomic DNA hypermethylation in patients with chronic alcoholism. J. Neural Transm. 2004, 111, 1611–1616. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, Y.H.; Lee, W.K.; Na, Y.K.; Hong, H.S. Effect of alcohol consumption on peripheral blood Alu methylation in Korean men. Biomarkers 2016, 21, 243–248. [Google Scholar] [CrossRef]
- Hillemacher, T.; Frieling, H.; Luber, K.; Yazici, A.; Muschler, M.A.N.; Lenz, B.; Wilhelm, J.; Kornhuber, J.; Bleich, S. Epigenetic regulation and gene expression of vasopressin and atrial natriuretic peptide in alcohol withdrawal. Psychoneuroendocrinology 2009, 34, 555–560. [Google Scholar] [CrossRef]
- Schlaff, G.; Walter, H.; Lesch, O.M. The Lesch alcoholism typology-psychiatric and psychosocial treatment approaches. Ann. Gastroenterol. 2011, 24, 89–97. [Google Scholar]
- Hillemacher, T.; Weinland, C.; Heberlein, A.; Gröschl, M.; Schanze, A.; Frieling, H.; Wilhelm, J.; Kornhuber, J.; Bleich, S. Increased levels of adiponectin and resistin in alcohol dependenc—possible link to craving. Drug Alcohol. Depend. 2009, 99, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Nieratschker, V.; Grosshans, M.; Frank, J.; Strohmaier, J.; von der Goltz, C.; El-Maarri, O.; Witt, S.H.; Cichon, S.; Nöthen, M.M.; Kiefer, F.; et al. Epigenetic alteration of the dopamine transporter gene in alcohol-dependent patients is associated with age. Addict. Biol. 2014, 19, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Samochowiec, A.; Horodnicki, J.H.; Samochowiec, J. Wpływ cech osobowości i polimorfizmow genów DRD4 i 5HTT rodziców na predyspozycje ich synów do uzależnienia się od alkohlou. Psychiatr. Pol. 2011, XLV, 337–347. [Google Scholar]
- Bleich, S.; Lenz, B.; Ziegenbein, M.; Beutler, S.; Frieling, H.; Kornhuber, J.; Bönsch, D. Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol. Clin. Exp. Res. 2006, 30, 587–591. [Google Scholar] [CrossRef]
- Biermann, T.; Reulbach, U.; Lenz, B.; Muschler, M.; Sperling, W.; Hillemacher, T.; Kornhuber, J.; Bleich, S. Herp mRNA expression in patients classified according to Lesch’s typology. Alcohol 2009, 43, 91–95. [Google Scholar] [CrossRef]
- Bonsch, D.; Greifenberg, V.; Bayerlein, K.; Biermann, T.; Reulbach, U.; Hillemacher, T.; Kornhuber, J.; Bleich, S. Alpha-synuclein protein levels are increased in alcoholic patients and are linked to craving. Alcohol. Clin. Exp. Res. 2005, 29, 763–765. [Google Scholar] [CrossRef]
- Muschler, M.A.; Hillemacher, T.; Kraus, C.; Kornhuber, J.; Bleich, S.; Frieling, H. DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J. Neural Transm. 2010, 117, 513–519. [Google Scholar] [CrossRef]
- Bonsch, D.; Lenz, B.; Kornhuber, J.; Bleich, S. DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport 2005, 16, 167–170. [Google Scholar] [CrossRef]
- Philibert, R.A.; Gunter, T.D.; Beach, S.R.; Brody, G.; Madan, A. MAOA methylation is associated with nicotine and alcohol dependence in women. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. 2008, 147, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Choi, K.H.; Renthal, W.; Tsankova, N.M.; Theobald, D.E.H.; Truong, H.T.; Russo, S.J.; Laplant, Q.; Sasaki, T.S.; Whistler, K.N.; et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 2005, 48, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Kalda, A.; Heidmets, L.T.; Shen, H.Y.; Zharkovsky, A.; Chen, J.F. Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav. Brain Res. 2007, 181, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.C.; Zhang, H.; Ugale, R.; Prakash, A.; Xu, T.; Misra, K. Effector immediate-early gene arc in the amygdala plays a critical role in alcoholism. J. Neurosci. 2008, 28, 2589–2600. [Google Scholar] [CrossRef] [Green Version]
- Park, H.P.; Miller, R.; Shukla, S.D. Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytes. Biochem. Biophys. Res. Commun. 2003, 306, 501–504. [Google Scholar] [CrossRef]
- Pascual, M.; Boix, J.; Felipo, V.; Guerri, C. Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J. Neurochem. 2009, 108, 920–931. [Google Scholar] [CrossRef]
- Pascual, M.; Do Couto, B.R.; Alfonso-Loeches, S.; Aguilar, M.A.; Rodriguez-Arias, M.; Guerri, C. Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology 2012, 62, 2309–2319. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Shukla, S.D. Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol. 2006, 41, 126–132. [Google Scholar] [CrossRef]
- Warnault, V.; Darcq, E.; Levine, A.; Barak, S.; Ron, D. Chromatin remodeling--a novel strategy to control excessive alcohol consumption. Transl. Psychiatry 2013, 3, e231. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Finegersh, A.; Homanics, G.E. Acute ethanol alters multiple histone modifications at model gene promoters in the cerebral cortex. Alcohol. Clin. Exp. Res. 2014, 38, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- D’Addario, C.; Caputi, F.F.; Ekström, T.J.; Di Benedetto, M.; Maccarrone, M.; Romualdi, P.; Candeletti, S. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J. Mol. Neurosci. 2013, 49, 312–319. [Google Scholar] [CrossRef]
- Ponomarev, I.; Wang, S.; Zhang, L.; Harris, R.A.; Mayfield, R.D. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci. 2012, 32, 1884–1897. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001, 24, 97–129. [Google Scholar] [CrossRef]
- Koob, G.F.; Roberts, A.J.; Kieffer, B.L.; Heyser, C.J.; Katner, S.N.; Ciccocioppo, R.; Weiss, F. Animal models of motivation for drinking in rodents with a focus on opioid receptor neuropharmacology. Recent Dev. Alcohol. 2003, 16, 263–281. [Google Scholar] [PubMed]
- Pozzo-Miller, L.D.; Gottschalk, W.; Zhang, L.; McDermott, K.; Du, J.; Gopalakrishnan, R.; Oho, C.; Sheng, Z.H.; Lu, B. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 1999, 19, 4972–4983. [Google Scholar] [CrossRef]
- Pandey, S.C.; Zhang, H.; Roy, A.; Misra, K. Central and medial amygdaloid brain-derived neurotrophic factor signaling plays a critical role in alcohol-drinking and anxiety-like behaviors. J. Neurosci. 2006, 26, 8320–8331. [Google Scholar] [CrossRef] [Green Version]
- You, C.; Zhang, H.; Sakharkar, A.J.; Teppen, T.; Pandey, S.C. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. Int. J. Neuropsychopharmacol. 2014, 17, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.C.; Ugale, R.; Zhang, H.; Tang, L.; Prakash, A. Brain chromatin remodeling: A novel mechanism of alcoholism. J. Neurosci. 2008, 28, 3729–3737. [Google Scholar] [CrossRef]
- Hensler, G.J.; Ladenheim, E.E.; Lyons, W.E. Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (+/−) mice. J. Neurochem. 2003, 85, 1139–1147. [Google Scholar] [CrossRef]
- Notaras, M.; Hill, R.; van den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: Progress and controversy. Mol. Psychiatry 2015, 20, 916–930. [Google Scholar] [CrossRef]
- Warnault, V.; Darcq, M.; Morisot, N.; Phamluong, K.; Wilbrecht, L.; Massa, S.M.; Longo, F.M.; Ron, D. The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol consumption in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biol. Psychiatry 2016, 79, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egecioglu, E.; Skibicka, K.P.; Hansson, C.; Alvarez-Crespo, M.; Friberg, A.P.; Jerlhag, E.; Engel, J.A.; Dickson, S.L. Hedonic and incentive signals for body weight control. Rev. Endocr. Metab. Disord. 2011, 12, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barringhaus, K.G.; Zamore, P.D. MicroRNAs Regulating a Change of Heart. Circulation 2009, 119, 2217–2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Waters, D.; Camacho, O.M.; Minet, E. Quantification of plasma microRNAs in a group of healthy smokers, ex-smokers and non-smokers and correlation to biomarkers of tobacco exposure. Biomarkers 2015, 20, 123–131. [Google Scholar] [CrossRef] [PubMed]
- McCrae, J.C.; Sharkey, N.; Webb, D.J.; Vliegenthart, A.D.B.; Dear, J.V. Ethanol consumption produces a small increase in circulating miR-122 in healthy individuals. Clin. Toxicol. 2016, 54, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, Q.; Jing, X.; Zhao, Y.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci. Rep. 2016, 6, 35691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vo, N.; Klein, M.E.; Varlamova, O.; Keller, D.M.; Yamamoto, T.; Goodman, R.H.; Impey, S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 16426–16431. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.F.; Sakamoto, K.; Wayman, G.A.; Impey, S.; Obrietan, K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS ONE 2010, 5, e15497. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cui, Q. Specific Roles of MicroRNAs in Their Interactions with Environmental Factors. J. Nucleic Acids 2012, 2012, 978384. [Google Scholar] [CrossRef]
- Xu, T.L.L.; Hu, H.; Meng, X.; Huang, C.; Zhang, J.Q.L.; Li, J. MicroRNAs in alcoholic liver disease: Recent advances and future applications. J. Cell. Physiol. 2019, 234, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.L.; Novo-Veleiro, I.; Manzanedo, L.; Alvela-Suárez, L.; Macías, R.; Laso, F.J.; Marcos, M. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J. Gastroenterol. 2018, 24, 4104–4118. [Google Scholar] [CrossRef]
- Klarich, D.S.; Penprase, J.; Cintora, P.; Medrano, O.; Erwin, D.; Brasser, S.M.; Hong, M.Y. Effects of moderate alcohol consumption on gene expression related to colonic inflammation and antioxidant enzymes in rats. Alcohol 2017, 61, 25–31. [Google Scholar] [CrossRef]
- Kontou, N.; Psaltopoulou, T.; Soupos, N.; Polychronopoulos, E.; Xinopoulos, D.; Linos, A.; Panagiotakos, D. Alcohol consumption and colorectal cancer in a Mediterranean population: A case-control study. Dis. Colon Rectum 2012, 55, 703–710. [Google Scholar] [CrossRef]
- Tiffon, C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Friso, S. Epigenetics: A New Bridge between Nutrition and Health. Adv. Nutr. 2010, 1, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, R.; Maleszka, J.; Foret, S.; Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008, 319, 1827–1830. [Google Scholar] [CrossRef] [Green Version]
- Maleszka, R. Epigenetic integration of environmental and genomic signals in honey bees. Epigenetics 2008, 3, 188–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.J.; Xu, Y.M.; Lau, A.T. Epigenetic effects of the 13 vitamins. Curr. Pharmacol. Rep. 2018, 4, 453–467. [Google Scholar] [CrossRef]
- Ford, D.; Ions, L.J.; Alatawi, F.; Wakeling, L.A. The potential role of epigenetic responses to diet in ageing. Proc. Nutr. Soc. 2011, 70, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Lucassen, P.J.; Naninck, E.F.; van Goudoever, J.B.; Fitzsimons, C.; Joels, M.; Korosi, A. Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci. 2013, 36, 621–631. [Google Scholar] [CrossRef]
- Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S. Choline, Other Methyl-Donors and Epigenetics. Nutrients 2017, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yan, J.; West, A.A.; Perry, C.A.; Malysheva, O.V.; Devapatla, S.; Pressman, E.; Vermeylen, F.; Caudill, M.A. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012, 26, 3563–3574. [Google Scholar] [CrossRef] [Green Version]
- Boeke, C.E.; Gillman, M.W.; Hughes, M.D.; Rifas-Shiman, S.L.; Villamor, E.; Oken, E. Choline intake during pregnancy and child cognition at age 7 years. Am. J. Epidemiol. 2013, 177, 1338–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanwar, V.S.; Ghosh, S.; Sati, S.; Ghose, S.; Kaur, L.; Kumar, K.A.; Shamsudheen, K.V.; Patowary, A.; Singh, M.; Jyothi, V.; et al. Maternal vitamin B12 deficiency in rats alters DNA methylation in metabolically important genes in their offspring. Mol. Cell Biochem. 2020, 468, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Alavian-Ghavanini, A.; Ruegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharm. Toxicol. 2018, 122, 38–45. [Google Scholar] [CrossRef]
- Blasco, C.; Caballería, J.; Deulofeu, R.; Lligoña, A.; Parés, A.; Lluis, J.M.; Gual, A.; Rodés, J. Prevalence and mechanisms of hyperhomocysteinemia in chronic alcoholics. Alcohol Clin. Exp. Res. 2005, 29, 1044–1048. [Google Scholar] [CrossRef]
- Rush, C.E.; Katre, P.; Yajnik, C.S. Vitamin B12: One carbon metabolism, fetal growth and programming for chronic disease. Eur. J. Clin. Nutr. 2014, 68, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Hore, T.A.; von Meyenn, F.; Ravichandran, M.; Bachman, M.; Ficz, G.; Oxley, D.; Santos, F.; Balasubramanian, S.; Jurkowski, T.P.; Reik, W. Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naive pluripotency by complementary mechanisms. Proc. Natl. Acad. Sci. USA 2016, 113, 12202–12207. [Google Scholar] [CrossRef] [Green Version]
- Marcato, P.; Dean, C.A.; Liu, R.Z.; Coyle, K.M.; Bydoun, M.; Wallace, M.; Clements, D.; Turner, C.; Mathenge, E.G.; Gujar, S.A. Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signalling. Mol. Oncol. 2015, 9, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Balmer, J.E.; Blomhoff, R. Gene expression regulation by retinoic acid. J. Lipid Res. 2002, 43, 1773–1808. [Google Scholar] [CrossRef] [Green Version]
- Coupland, K.G.; Mellick, G.D.; Silburn, P.A.; Mather, K.; Armstrong, N.J.; Sachdev, P.S.; Brodaty, H.; Huang, Y.; Halliday, G.M.; Hallupp, M.; et al. DNA Methylation of the MAPT Gene in Parkinson’s Disease Cohorts and Modulation by Vitamin E In Vitro. Mov. Disord. 2014, 29, 1606–1614. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Reimers, E.; Fernández-Rodríguez, C.M.; Candelaria Martín-González, M.; Hernández-Betancor, I.; Abreu-González, P.; José de la Vega-Prieto, M.; Elvira-Cabrera, O.; Santolaria-Fernández, F. Antioxidant vitamins and brain dysfunction in alcoholics. Alcohol Alcohol. 2014, 49, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Seyedi, M.; Gholami, F.; Samadi, M.; Djalali, M.; Effatpanah, M.; Yekaninejad, M.S.; Hashemi, R.; Abdolahi, M.; Chamari, M.; Honarvar, N.M. The Effect of Vitamin D3 Supplementation on Serum BDNF, Dopamine, and Serotonin in Children with Attention-Deficit/Hyperactivity Disorder. CNS Neurol. Disord.-Drug Targets 2019, 18, 496–501. [Google Scholar] [CrossRef]
- Garcion, E.; Wion-Barbot, N.; Montero-Menei, C.N.; Berger, F.; Wion, D. New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab. 2002, 13, 100–105. [Google Scholar] [CrossRef]
- Pozzi Flavio, A.L.; Frajese, G.; Frajese, G. Vitamin D (Calcifediol) Supplementation Modulates NGF and BDNF and Improves Memory Function in Postmenopausal Women: A Pilot Study. Res. Endocrinol. 2013, 2013, 11. [Google Scholar]
- Hummel, D.M.; Fetahu, I.S.; Gröschel, C.; Manhardt, T.; Kállay, E. Role of proinflammatory cytokines on expression of vitamin D metabolism and target genes in colon cancer cells. J. Steroid Biochem. Mol. Biol. 2014, 144, 91–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlic, H.; Varga, F. Impact of vitamin D metabolism on clinical epigenetics. Clin. Epigenetics 2011, 2, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Tapp, H.S.; Commane, D.M.; Bradburn, D.M.; Arasaradnam, R.; Mathers, J.C.; Johnson, I.T.; Belshaw, N.J. Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa. Aging Cell 2013, 12, 148–155. [Google Scholar] [CrossRef]
- Doig, C.L.; Singh, P.K.; Dhiman, V.K.; Thorne, J.L.; Battaglia, S.; Sobolewski, M.; Maguire, O.; O’Neill, L.P.; Turner, B.M.; McCabe, C.J.; et al. Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Carcinogenesis 2013, 34, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.T.; Ahearn, E.L.; Cimmino, L. Reprogramming the Epigenome with Vitamin C. Front. Cell Dev. Biol. 2019, 7, 128. [Google Scholar] [CrossRef] [PubMed]
- Zappe, K.; Pointner, A.; Switzeny, O.J.; Magnet, U.; Tomeva, E.; Heller, J.; Mare, G.; Wagner, K.H.; Knasmueller, S.; Haslberger, A.G. Counteraction of Oxidative Stress by Vitamin E Affects Epigenetic Regulation by Increasing Global Methylation and Gene Expression of MLH1 and DNMT1 Dose Dependently in Caco-2 Cells. Oxid. Med. Cell Longev. 2018, 2018, 3734250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Zhao, L.Z.; Hong, L.; Shan, C.; Shi, W.; Cai, W. Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring’s heart. J. Nutr. Biochem. 2013, 24, 1373–1380. [Google Scholar] [CrossRef]
- Bertolo, R.F.; McBreairty, L.E. The nutritional burden of methylation reactions. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, G.F.S.; Silva, G.D.B.; Pavan, A.R.; Chiba, D.E.; Chin, C.M.; Dos Santos, J.L. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017, 9, 1201. [Google Scholar] [CrossRef] [Green Version]
- Loman, M.M.; Gunnar, M.R. Early experience and the development of stress reactivity and regulation in children. Neurosci. Biobehav. Rev. 2010, 34, 867–876. [Google Scholar] [CrossRef] [Green Version]
- Maselko, J.; Kubzansky, L.; Lipsitt, L.; Buka, S.L. Mother’s affection at 8 months predicts emotional distress in adulthood. J. Epidemiol. Community Health 2011, 65, 621–625. [Google Scholar] [CrossRef]
- Mueller, S.C.; Maheu, F.S.; Dozier, M.; Peloso, E.; Mandell, D.; Leibenluft, E.; Pine, D.S.; Ernst, M. Early-life stress is associated with impairment in cognitive control in adolescence: An fMRI study. Neuropsychologia 2010, 48, 3037–3044. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.E.; Trojanowski, J.Q. Human fetal hippocampal development: II. The neuronal cytoskeleton. J. Comp. Neurol. 1996, 367, 293–307. [Google Scholar] [CrossRef]
- De Souza, A.S.; Fernandes, F.S.; do Carmo, M. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr. Rev. 2011, 69, 132–144. [Google Scholar] [CrossRef]
- Laus, M.F.; Vales, L.D.M.F.; Costa, T.M.B.; Almeida, S.S. Early postnatal protein-calorie malnutrition and cognition: A review of human and animal studies. Int. J. Environ. Res. Public Health 2011, 8, 590–612. [Google Scholar] [CrossRef] [Green Version]
- Coupe, B.; Dutriez-Casteloot, I.; Breton, C.; Lefèvre, F.; Mairesse, J.; Dickes-Coopman, A.; Silhol, M.; Tapia-Arancibia, L.; Lesage, J.; Vieau, D. Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat. J. Neuroendocr. 2009, 21, 40–48. [Google Scholar] [CrossRef]
- Benitez-Bribiesca, L.; de la Rosa-Alvarez, I.; Mansilla-Olivares, A. Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics 1999, 104, e21. [Google Scholar] [CrossRef] [Green Version]
- Gueant, J.L.; Caillerez-Fofou, M.; Battaglia-Hsu, S.; Alberto, J.M.; Freund, J.N.; Dulluc, I.; Adjalla, C.; Maury, F.; Merle, C.; Nicolas, J.P.; et al. Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie 2013, 95, 1033–1040. [Google Scholar] [CrossRef]
- Duclos, M.; Timofeeva, E.; Michel, C.; Richard, D. Corticosterone-dependent metabolic and neuroendocrine abnormalities in obese Zucker rats in relation to feeding. Am. J. Physiol.-Endocrinol. Metab. 2005, 288, E254–E266. [Google Scholar] [CrossRef] [PubMed]
- Sebaai, N.; Lesage, J.; Breton, C.; Vieau, D.; Deloof, S. Perinatal food deprivation induces marked alterations of the hypothalamo-pituitary-adrenal axis in 8-month-old male rats both under basal conditions and after a dehydration period. Neuroendocrinology 2004, 79, 163–173. [Google Scholar] [CrossRef]
- Wren, A.M.; Small, C.J.; Fribbens, C.V.; Neary, N.M.; Ward, H.L.; Seal, L.J.; Ghatei, M.A.; Bloom, S.R. The hypothalamic mechanisms of the hypophysiotropic action of ghrelin. Neuroendocrinology 2002, 76, 316–324. [Google Scholar] [CrossRef]
- Benedict, C.; Kern, W.; Schmid, S.M.; Schultes, B.; Born, J.; Hallschmid, M. Early morning rise in hypothalamic-pituitary-adrenal activity: A role for maintaining the brain’s energy balance. Psychoneuroendocrinology 2009, 34, 455–462. [Google Scholar] [CrossRef]
- Schmidt, M.V.; Levine, S.; Alam, S.; Harbich, D.; Sterlemann, V.; Ganea, K.; de Kloet, E.R.; Holsboer, F.; Müller, M.B. Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. J. Neuroendocr. 2006, 18, 865–874. [Google Scholar] [CrossRef]
- Ong, J.; Randhawa, R. Scurvy in an alcoholic patient treated with intravenous vitamins. BMJ Case Rep. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Gautron, M.A.; Questel, F.; Lejoyeux, M.; Bellivier, F.; Vorspan, F. Nutritional Status during Inpatient Alcohol Detoxification. Alcohol Alcohol. 2018, 53, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Cenit, M.C.; Sanz, Y.; Codoner-Franch, P. Influence of gut microbiota on neuropsychiatric disorders. World J. Gastroenterol. 2017, 23, 5486–5498. [Google Scholar] [CrossRef]
- Teixeira, J.; Mota, T.; Fernandes, J.C. Nutritional evaluation of alcoholic inpatients admitted for alcohol detoxification. Alcohol Alcohol. 2011, 46, 558–560. [Google Scholar] [CrossRef] [Green Version]
- Childers, S.R.; Breivogel, C.S. Cannabis and endogenous cannabinoid systems. Drug Alcohol. Depend. 1998, 51, 173–187. [Google Scholar] [CrossRef]
- Kirkham, T.C.; Williams, C.M.; Fezza, F.; Di Marzo, V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: Stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharm. 2002, 136, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Van der Stelt, M.; Di Marzo, V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: Implications for neurological and psychiatric disorders. Eur. J. Pharm. 2003, 480, 133–150. [Google Scholar] [CrossRef]
- Hilairet, S.; Bouaboula, M.; Carrière, D.; Le Fur, G.; Casellas, P. Hypersensitization of the Orexin 1 receptor by the CB1 receptor: Evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J. Biol. Chem. 2003, 278, 23731–23737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diano, S.; Horvath, B.; Urbanski, H.F.; Sotonyi, P.; Horvath, T.L. Fasting activates the nonhuman primate hypocretin (orexin) system and its postsynaptic targets. Endocrinology 2003, 144, 3774–3778. [Google Scholar] [CrossRef] [Green Version]
- Di Marzo, V.; Goparaju, S.K.; Wang, L.; Liu, J.; Bátkai, S.; Járai, Z.; Fezza, F.; Miura, G.I.; Palmiter, R.D.; Sugiura, T.; et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001, 410, 822–825. [Google Scholar] [CrossRef]
- Rutkowska Maria, J.J. Udział układu kannabinoidowego w regulacji pobierania pokarmu. Adv. Clin. Experimantal. Med. 2005, 14, 1011–1017. [Google Scholar]
- Lile, J.A.; Morgan, D.; Freedland, C.S.; Sinnott, R.S.; Davies, H.M.L.; Nader, M.A. Self-administration of two long-acting monoamine transport blockers in rhesus monkeys. Psychopharmacology 2000, 152, 414–421. [Google Scholar] [CrossRef]
- Gouveia-Figueira, S.C.; Gouveia, C.A.; Carvalho, M.J.; Rodrigues, A.I.; Nording, M.L.; Castilho, P.C. Antioxidant Capacity, Cytotoxicity and Antimycobacterial Activity of Madeira Archipelago Endemic Helichrysum Dietary and Medicinal Plants. Antioxidants 2014, 3, 713–729. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, A.E.; Piscitelli, F.; Aveta, T.; Agosti, F.; De Col, A.; Bini, S.; Cella, S.G.; Di Marzo, V.; Sartorio, A. Anticipatory and consummatory effects of (hedonic) chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults. Food Nutr. Res. 2015, 59, 29678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahna, D.; Puri, S.; Sharma, S. DNA methylation signatures: Biomarkers of drug and alcohol abuse. Mutat. Res. 2018, 777, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Parira, T.; Laverde, A.; Agudelo, M. Epigenetic Interactions between Alcohol and Cannabinergic Effects: Focus on Histone Modification and DNA Methylation. J. Alcohol. Drug Depend. 2017, 5, 1–22. [Google Scholar] [CrossRef] [PubMed]
Allele | Former Allele Nomenclature | Protein |
---|---|---|
ADH1A | ADH1 | ADH1A |
ADH1B*1 | ADH2*1 | ADH1B1 |
ADH1B*2 | ADH2*2 | ADH1B2 |
ADH1B*3 | ADH2*3 | ADH1B3 |
ADH1C*1 | ADH3*1 | ADH1C1 |
ADH1C*2 | ADH3*2 | ADH1C2 |
Major Substrate | Gene |
---|---|
Retinal | ALDH1A1 |
Aliphatic aldehyde, retinal | ALDH1A6 |
Retinal | ALDH1A7 |
Propionaldehyde | ALDH1B1 |
Folate | ALDH1L1 |
Acetaldehyde | ALDH2 |
Fatty and aromatic aldehyde | ALDH3A1 |
Fatty and aromatic aldehyde | ALDH3A2 |
Aliphatic and aromatic aldehyde | ALDH3B1 |
Glutamate γ-semialdehyde | ALDH4A1 |
Succinic semialdehyde | ALDH5A1 |
Methylmalonate semialdehyde | ALDH6A1 |
Amine aldehyde | ALDH9A1 |
Food Items | Nutrient | Epigenetic Role |
---|---|---|
Fish, peppers, spinach, sesame seeds, brazil nuts, meats, eggs, parmesan, flax seeds, pumpkin seeds and sunflower seeds, brussels sprouts, broccoli, spinach, peas, beans | Methionine | Used in SAM synthesis |
Lettuce, spinach, broccoli, cabbage, cauliflower, brussels sprouts, asparagus, broad beans, green peas, beets, tomatoes, sunflower seeds, baker’s yeast, liver, nuts, whole grain bread, eggs, cheese | Folic Acid | Remethylation of homocysteine to methionine |
Meats, whole grain products, nuts, broccoli, potatoes, wheat germ, baker’s yeast, soybeans, bananas, dairy products, fish, eggs | Vitamin B6 | Cystathionine formation from homocysteine |
Milk, liver, shellfish, meat, fish, eggs, cheese, cold cuts, baker’s yeast | Vitamin B12 | Cofactor for methionine synthase |
Sugar beets, shellfish, spinach, wheat | Betaine | Cofactor for betaine-homocysteine methyltransferase, homocysteine methylation to methionine |
Cocked beef, chicken, veal, turkey, soy, liver, egg yolks | Choline | The source of betaine |
Red wine, grapes | Resveratrol | Modulation of DNA methyltransferase (DNMT), HDAC and lysine-specific demethylase-1 (LSD1) activity |
Garlic | Diallyl sulfide (DADS) | Inhibitor of HDAC |
Vegetable oils, nuts, pumpkin seeds, sunflower seeds, sesame, almonds, wheat germ, avocado, lard, margarine, eggs, halibut, butter, oatmeal, rye bread | Vitamin E | Induction of MLH1 and DNMT1 gene expression |
Parsley leaves, pepper, brussels sprouts, kohlrabi, broccoli, cabbage, cauliflower, spinach, rosehips, black currants, strawberries, kiwi, grapefruits, lemons, oranges | Vitamin C | Cofactor for TET and Alkb proteins and DNA demethylation |
Cofactor for Jumonji proteins and histone demethylation | ||
Carrots, kale, parsley leaves, spinach, chard, sorrel, chives, pumpkin, dried apricots, garden fennel | β-carotene, Vitamin A | Increase in DNA demethylation in a TET-dependent manner |
Liver, sweet potatoes, carrots | Increase in H3K9 and H3K14 acetylation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siomek-Gorecka, A.; Dlugosz, A.; Czarnecki, D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. Int. J. Mol. Sci. 2021, 22, 4262. https://doi.org/10.3390/ijms22084262
Siomek-Gorecka A, Dlugosz A, Czarnecki D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. International Journal of Molecular Sciences. 2021; 22(8):4262. https://doi.org/10.3390/ijms22084262
Chicago/Turabian StyleSiomek-Gorecka, Agnieszka, Anna Dlugosz, and Damian Czarnecki. 2021. "The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle" International Journal of Molecular Sciences 22, no. 8: 4262. https://doi.org/10.3390/ijms22084262
APA StyleSiomek-Gorecka, A., Dlugosz, A., & Czarnecki, D. (2021). The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. International Journal of Molecular Sciences, 22(8), 4262. https://doi.org/10.3390/ijms22084262