Next Article in Journal
One-Sided Chronic Intervillositis of Unknown Etiology in Dizygotic Twins: A Description of 3 Cases
Next Article in Special Issue
Ovarian Accumulation of Nanoemulsions: Impact of Mice Age and Particle Size
Previous Article in Journal
Repurposing Bedaquiline for Effective Non-Small Cell Lung Cancer (NSCLC) Therapy as Inhalable Cyclodextrin-Based Molecular Inclusion Complexes
Previous Article in Special Issue
Examination of Surfactant Protein D as a Biomarker for Evaluating Pulmonary Toxicity of Nanomaterials in Rat
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Micro- and Nanosized Substances Cause Different Autophagy-Related Responses

1
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
2
Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
3
TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
4
Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
5
Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan
6
Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA
7
Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2021, 22(9), 4787; https://doi.org/10.3390/ijms22094787
Submission received: 8 April 2021 / Revised: 27 April 2021 / Accepted: 29 April 2021 / Published: 30 April 2021
(This article belongs to the Special Issue Nanotoxicology and Nanosafety 3.0)

Abstract

:
With rapid industrialization, humans produce an increasing number of products. The composition of these products is usually decomposed. However, some substances are not easily broken down and gradually become environmental pollutants. In addition, these substances may cause bioaccumulation, since the substances can be fragmented into micro- and nanoparticles. These particles or their interactions with other toxic matter circulate in humans via the food chain or air. Whether these micro- and nanoparticles interfere with extracellular vesicles (EVs) due to their similar sizes is unclear. Micro- and nanoparticles (MSs and NSs) induce several cell responses and are engulfed by cells depending on their size, for example, particulate matter with a diameter ≤2.5 μm (PM2.5). Autophagy is a mechanism by which pathogens are destroyed in cells. Some artificial materials are not easily decomposed in organisms. How do these cells or tissues respond? In addition, autophagy operates through two pathways (increasing cell death or cell survival) in tumorigenesis. Many MSs and NSs have been found that induce autophagy in various cells and tissues. As a result, this review focuses on how these particles interfere with cells and tissues. Here, we review MSs, NSs, and PM2.5, which result in different autophagy-related responses in various tissues or cells.

1. Introduction

Micro- and nanomaterials with different physical and chemical properties have been developed for human needs [1,2]. However, micro- and nanomaterials also show unexpected toxicity [3]. Nanotoxicology is rapidly developing with potential hazardous effects for nanomaterials [4,5]. Due to their larger sizes and small surface-to-volume ratios, micromaterials are considered less toxic than nanomaterials. In addition, nanomaterials can aggregate to a microscale size [6,7]. Micromaterials are also harmful to humans [3,8]. These materials may return to humans via the food chain [9,10]. Human consumption of micro- or nanoplastics may occur through seafood [11,12], water [13,14], etc. However, PM2.5 (particulate matter ≤ 2.5 μm) is a mix of micro- and nanosized substances (MSs and NSs) that can cause many chronic diseases [15,16]. Many studies show that MSs and NSs are toxic [17]. These related materials have a potential risk to human health.
Air pollution has become increasingly severe due to the process of industrialization and urbanization in many developing countries [18,19]. Particulate matter (PM) is composed of different sized solids and/or liquids suspended in the air. According to their diameter, PM can be grouped into the following four different categories: total suspended particulates; PM with a diameter <10 μm (PM10); fine PM with a diameter < 2.5 μm (PM2.5); and ultrafine PM with a diameter < 0.1 μm (PM0.1) [20,21]. When people breaths, PM2.5 is easily inhaled, is deposited in the airways and alveoli, penetrates the blood, circulates, and induces damage to tissues and organs [22,23]. PM2.5 is mainly derived from industrial factories, petroleum-consuming vehicle emissions, dust from mining, combustion, etc. In summary, the composition of PM2.5 is overly complicated [24,25,26,27]. PM2.5 particles can interact with metals, inorganic particles, organic carbon, and microbes, resulting in toxic reactions, such as inflammation, DNA damage, reactive oxygen species (ROS) induction, and mitochondria dysfunction. These unusual responses in cells are related to the pathogenesis of a series of human diseases [28,29,30], such as emphysema in mice [31], lung cancer, and chronic airway inflammatory diseases [32]; the promotion of cancer stem cell properties [33]; the impairment sperm quality in mice [34]; the induction of allergic airway inflammation in mice [35]; and the development of Alzheimer’s disease [36], PM2.5 induces not only oxidative stress but also autophagy [37,38].
MSs and NSs use several endocytosis pathways to enter cells [39,40]. The main endocytosis pathways include clathrin-mediated endocytosis [41], caveolae/lipid raft-mediated endocytosis [42], clathrin- and caveolin-independent endocytosis [43], macropinocytosis [44] and phagocytosis [45] (Figure 1). In a previous report, endocytosis was found to be associated with autophagy [46]. MSs and NSs can also be degraded by a lysosome after entering the cells through three main pathways, including macroautophagy, microautophagy, chaperone-mediated autophagy (CMA), and ribonucleic/deoxyribonucleic (RN/DN)-autophagy [46,47,48,49]. Microautophagy refers to the process by which cells directly take up a substance by invagination or scission from the lysosomal membrane [50,51] (Figure 2). CMA differs from microautophagy in that it does not use membranous structures to separate cargo. CMA uses chaperones to identify cargo proteins that contain a specific peptide motif [52,53]. Macroautophagy, which refers to common autophagy, is the process responsible for the degradation of large cargoes, such as damaged organelles, intracellular pathogens, and protein aggregates. In macroautophagy, a double membrane structure protrudes from the endoplasmic reticulum (ER) and, extends into a ball-like structure after its closure into an autophagosome [54,55]. Autophagy plays an important role in most eukaryotes and is highly conserves in the cellular process of many mammalian on autophagy-related genes (Atgs) [56]. The primary processes regulate autophagy as the phagophore assembly, autophagosome formation and maturation and autolysosome degradation [57]. In addition, autophagy can interfere with the regulation of core metabolism [58,59], damage control [60,61], and cell death [62,63]. Many proteins regulate autophagy, such as unc-51-like autophagy activating kinase 1 (ULK1), Atg13, focal adhesion kinase (FAK) family kinase-interacting protein 200 (FIP200), phosphatidylinositol 3-phosphate (PI3P), vacuolar protein sorting-associated protein 34 (Vps34), Vps15, Beclin1, and Atg14 in the phagophore assembly. In addition, Atg12, Atg10, Atg5, p62, Atg4, and LC3 participate in other autophagy processes [57]. The autophagosome fuses with a lysosome to an autolysosome that contains over 60 hydrolases [64,65], such as cathepsin B, cathepsin L, legumain [66], and cathepsin D [67]. If some materials in the autolysosome are not easily decomposed in the autophagy process, how do these cells or tissues respond? There are several diseases, such as pneumoconiosis, silicosis, and asbestosis caused by silica or undecomposed substances [68]. It is unclear whether previous studies have provided solutions for preventing the effects of micro- and nanosized substances and PM2.5.
Extracellular vesicles (EVs) are defined as lipid-bound particles of various sizes secreted from cells to extracellular spaces or circulated to target tissues [69,70]. EVs can be briefly classify into three types based on their size and biogenesis [71,72]. Small EVs are 50–100 nm in size and, include exosomes and endosome-derived membrane vesicles that are formed from multivesicular bodies (MVBs), intraluminal vesicles (ILVs) and the cellular plasma membrane [73,74]. Microvesicles (MVs), microparticles (MPs) and ectosomes are considered large EVs that are shed directly from the cell surface [73,75]; apoptotic bodies are formed during apoptosis genesis, and their diameters range between 1000 and 5000 nm [76,77]. Previous studies have shown that EVs have important biological relevance, such as immunity and inflammation [78,79], hemostasis [80,81], reproduction [82], and tumorigenesis [83]. Recently, conditioned medium from stem cells is as a new therapeutic application [84,85]. Conditioned medium applicates in diabetic wound healing [86,87], preventing activation of keloid fibroblasts in human [88], musculoskeletal tissue regeneration [89], hair regeneration in human [90], retinal ischemia-reperfusion in rat [91], differentiation of rat retinal progenitor cells [92], promoting survival and neurite outgrowth of neural stem cells in canine [93], autoimmune encephalomyelitis in mice [94], spinal cord injury in canine [95], lung injury and disease [96], EVs can isolated form conditioned medium [97]. Therefore, EVs have sizes similar to those of MSs and NSs or particulate matter less than 2.5 μm (PM2.5). Whether these micro- and nanoparticles interfere with the function of EVs is still unclear.

2. Classification of Micro- and Nanosized Substances (MSs and NSs)

Microparticles and nanoparticles are particulate particles with a size ranging from 1–1000 μm or 1–1000 nm, respectively [98]. The sources of MSs and NSs can be classified into three main categories based on their origin. There are three main categories (A), (B), and (C).
(A) Unexpected MSs and NSs are produced through industrial processes, such as particles produced from urban dust, non-exhaust vehicle emissions, vehicle engine exhaust, road dust, welding fumes, combustion processes and even some natural processes, such as forest fires or volcano bursts [99]. Automobile exhaust or diesel engines release approximately 20–130 nm sized particles. Therefore, gasoline engines release approximately 20–60 nm sized particles [100,101]. In addition, plastics originate from synthetic polymers produced by the polymerization of monomers [102]. Plastic is divided into polyamides (PA), polycarbonate (PC), polyethylene (PE), polyester (PES), polyethylene terephthalate (PET), polyetherimide (PEI), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), low-density polyethylene (LDPE), high-density polyethylene (HDPE), high impact polystyrene (HIPS), acrylonitrile butadiene styrene (ABS), polycarbonate/acrylonitrile butadiene styrene (PC/ABS), polyurethanes (PU), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE) melamine formaldehyde (MF), and urea–formaldehyde (UF) [103]. These plastics can be fragmented into smaller pieces by ultraviolet light and biodegraded [104]. Furthermore, the mixed synthetic fibers textiles we wear daily also generate MSs or NSs from laundering [105,106,107,108]. Briefly, synthetic fibers contain glass and ceramic fibers, aramid fibers, viscose rayon fibers, carbon fibers, polyolefin fibers, nylon fibers [108]. Synthetic fiber textiles have been found to produce microfibers from PES, PE, PP, LDPE, HDPE, PA, and rayon in marine sediments [109]. A single garment may release over 1900 fibers per washing [110]. On the other hand, car tires are an abundant source of microplastics in the environment [111]. Tire wear particles have been studied and calculated in many regions, such as the USA [112], China [113], France, Japan [114], among other countries [115]. A previous study indicated that the main mass of tire wear particle is over 100 μm [116]. In addition, airborne vehicle-derived Fe-bearing nanoparticles also flow into the environment [116]. Artificial turf, brake wear, airplane tires, and road markings also contribute microplastics to the environment [111,115]. Non-exhaust vehicular emissions are caused by road dust, which is itself generated by tire, brake, and clutch wear; road surface wear, and the degradation of other vehicles and road markings [117]. Furthermore, cigarette smoke and building demolition also produce MSs or NSs. Cigarette smoke produces NSs ranging from 10–700 nm [118].
(B) Engineered MSs and NSs have been manufactured by humans to possess certain properties required for their desired applications [119,120]. There are serval types of nanomaterials. For examples, inorganic nanomaterials contain iron oxide nanomaterials, gold nanomaterials, silver nanomaterials, carbon-based nanomaterials, silica nanomaterials, zinc oxide nanomaterials, quantum dots, rare earth oxide nanomaterials, alumina nanomaterials, titanium dioxide nanomaterials [121], and copper oxide nanoparticle [122]. Carbon-based nanomaterials also contain fullerenes, carbon nanotubes, carbon nanofibers, carbon black, carbon onions, and graphene [123]. In addition, dendrimers, micelles, and liposomes belong to engineered NSs [123]. Furthermore, electronic and photovoltaic devices often use gallium- and indium-based oxide and arsenide nanoparticles [124]. Besides, the NS wastewater from semiconductor manufacturing has the potential to enter the ecosystem [125].
(C) Naturally produced MSs and NSs can be found in organisms, such as viruses, bacteria, worms, insects, plants, animals and humans [123,126,127,128,129]. MSs and NSs significantly increase with industrial processes [27,123], human usage [105,130] and garbage fragments [131]. With the discovery of new techniques, more MSs or NSs contaminations have been found, making biosafety a challenging issue [132]. Besides, these MSs or NSs can accumulate in our food chain. Humans can potentially accumulate MSs and/or NSs in the gut, the liver, the kidney [133,134], and muscle tissue [135], as well as from food items, such as fish [136], seafood [11,137,138], milk [132,139], beer [140,141], sea salt [141,142], sugar [143], honey [143], plastic teabags [144], raw water [145], tap water [141], and bottled water [146,147]. In particular, some MSs and NSs engulfing cells are not easily decomposed.

3. Autophagy-Related Responses to MSs and NSs in Animal and Cell Lines

The mechanisms of autophagy in particle-induced toxicity are complex, given the different physicochemical and biochemical properties of particles and the various interactions between particles and cells. Therefore, the dispersity, size, charge and coating play important roles in toxicity [148]. Recently, many inorganic nanomaterials have been frequently used to observe inorganic nanomaterial-mediated autophagy in a variety of cell lines, such as mouse dendritic cells, U251 cells, L02 cells, LLC-PK1 cells, PC12 cells, human umbilical vein endothelial cells (HUVECs), hippocampal neurons, NCI-H460 cells, HeLa cells, RAW264.7 cells and human cerebral endothelial cells [121]. Engineered nanomaterials cause chronic inflammation in the lungs of rodents [149] and induce and/or aggravate type I allergic hypersensitivity reactions including asthma, atopic dermatitis, allergic rhinitis, food allergies [150], and immune responses [151]. In addition, magnetic nanoparticles and iron oxide nanoparticles induce inflammation [152,153], autophagy markers, such as Atg5, Atg12 and LC3 [154], carcinogenic potential [17], and human neurodegenerative diseases [155], after long-term iron oxide nanoparticle exposure [156,157]. Manganese nanoparticles activate autophagy markers, such as Beclin 1 and LC3, in dopaminergic neuronal cells [158]. Quantum dots have a potential toxicity, such as oxidative damage to DNA and proteins and changes in autophagy markers, such as p62 and LC3 [159,160,161]. Quantum dots also induce autophagy markers, such as LC3 in porcine kidney cells [162]. Graphene oxide quantum dots increase autophagy markers, p62 and LC3, in the GC-2 and TM4 cell lines (male reproductive cells in mouse) [163]. Graphene oxide cause autophagy markers, p62 and LC3, in F98 rat glioblastoma cells [164]. Metal nanoparticles and carbon nanotubes (CNTs) not only affect asthma in animal models but also induce allergic airway disease [165]. Metal nanomaterials have the potential to induce dermal and respiratory allergies [166]. PM2.5 induces autophagy markers, such as Beclin 1, ULK-1, and LC3 [167,168], and results in developmental toxicity in zebrafish embryos [169], autophagy-mediated cell death in human bronchial epithelium cells [170], and cardiac dysfunction [171]. PM2.5 may represent a significant risk factor for the development of Alzheimer’s disease [172]. PM2.5 also counteracts hepatic steatosis in mice fed a high-fat diet by stimulating hepatic autophagy markers, such as p62 and LC3 [173]. PM2.5 exposure activates the autophagy markers in the spleen of SD rats, such as ATG5, VSP34, Beclin 1, and LC3 [174]. PM2.5 exposure induces renal injury and changes autophagy markers, such as p62, Beclin 1, and LC3, in rats and HK-2 cells [175]. Diesel exhaust particles (DEP) induce the generation of ROS, pro-inflammation, and apoptosis in the HUVEC tube cells [176]. DEP induce macrophage activation and dysfunction [177]. Exposure to a high-intensity traffic area affects metabolism and hormones [178]. Traffic-related PM induces autophagy markers, such as p62, Beclin 1, and LC3, in HK-2 human kidney tubular epithelial cells and rat kidney tissues [179]. In addition, silica submicrospheres [180] or zinc oxide (ZnO) nanoparticles [181] induce autophagy marker, such as LC3. ZnO nanoparticles cause the formation of ROS and autophagy marker in human ovarian cancer cells (SKOV3) [182], human epidermal keratinocytes [183], and immune cells [184]. ZnO nanoparticles result in autophagosome accumulation and autophagic cell death in PC12 cells (pheochromocytoma cells in rat) [185]. ZnO nanoparticles induce the autophagy marker, LC3, and apoptosis marker caspase-3/7 activity and change the glutathione peroxidase, superoxide dismutase, tumor necrosis factor (TNF-α), and interleukin-6 in primary astrocyte cultures [186]. ZnO nanoparticles cause the expression of annexin V, caspase-3/7 activity, and mitochondrial membrane potential, which are mediated by lipoxygenase (LOX) in human dopaminergic neuroblastoma SH-SY5Y cells [187].
Silica nanoparticles induce cardiac dysfunction in rat hearts and human cardiomyocytes [188] and cardiotoxicity in adult rat cardiomyocytes [189]. Silica nanoparticles disturb ion channels and transmembrane potentials in cardiomyocytes and induce arrhythmias in adult male C57BL/6J mice [190]. The 20 nm silica nanoparticles significantly induce apoptosis and necrosis in human endothelial cells (ECs) [191]. Silica nanomaterials induce calcium mobilization and the formation of ROS in HUVECs and adult female Balb/c mice [192]. Silica nanoparticles also increase autophagy markers, such as LC3, and autophagic cell death in HepG2 cells (human liver cancer cells) [193]. Ultrafine silicon dioxide nanoparticles trigger apoptosis in lung epithelial cells [194]. Silica nanoparticles induce inflammation in the lungs of mice [195] and the autophagy marker, p62 [196]. Amorphous silica nanoparticles cause autophagy markers, such as p62 and LC3, and vascular endothelial cell injury [197]. Silver nanoparticles increase the formation of ROS, oxidative stress [198] and the genotoxicity in human TK6 cells (lymphoblast cells) [199]. Silver nanoparticle-induced autophagy markers, such as LC3, disrupts inflammasome activation in HepG2 cells [200]. Silver nanoparticles increase autophagy markers, such as p62 and LC3, decrease the expression of transcription factors in A549 human lung adenocarcinoma cells [201], and induce other autophagy markers, such as Beclin 1 and LC3, in the adult rat brain [202]. Amine-modified silver nanoparticles trigger autophagy markers, such as P62 and LC3, and lysosomal dysfunction in NIH 3T3 cells (mouse embryonic fibroblast cells) [203]. The spleen can capture nanoparticles in Wistar rats [204]. Nanoparticles are mainly ingested by liver Kupffer cells, but splenic macrophages also play an important role [205]. Bismuth nanoparticles induce autophagy markers, such as LC3, Beclin 1, and Atg12, resulting in nephrotoxicity in the human embryonic kidney 293 cell line and kidney of BALB/c mice [206]. Bismuth nanoparticles also induce oxidative stress, such as GSH, SOD, and catalase, and apoptosis in MCF-7 cells (human breast carcinoma cells) [207]. Bismuth sulfide nanoparticles inhibit the migration and invasion in HepG2 cells and induce autophagy markers, such as p62 [208]. Bismuth nanoparticles affect the autophagy-associated cytotoxicity and cellular uptake mechanisms in human kidney cells [209]. Nanosized titanium dioxide (Nano TiO2) results in a potential reproduction toxicity in rat Sertoli cells (SCs), induces apoptosis, decreases cell viability, and impairs morphological structures of SCs via the related wingless MMTV integration site (Wnt) pathway [210]. Long-term exposure to nano-TiO2 results in liver inflammation and hepatic fibrosis in mice [211]. Nasal instillation to nano-TiO2 induces lung injury in mice [212]. Nano-TiO2 results in inflammation and fibration in mice kidneys [213]. Nano-TiO2 changes autophagy markers, such as Beclin 1, p62 and LC3, in podocytes [214]. Nano-TiO2 causes the autophagy marker, LC3, to increase in human HaCaT cells at non-cytotoxic levels [215]. Nano-TiO2 induces autophagic response in HeLa cells [216]. Nano-TiO2 induces proteostasis disruption and autophagy markers, such as LC3 and p62, in HTR-8/SVneo cells [217]. Planetary micro- and nanosized particles cause nervous system injury [218]. Copper oxide nanoparticles induce an autophagy-related response in A549 cells [219]. Copper-palladium alloy tetrapod nanoparticles induce autophagy [220]. In addition, a workplace was assessed in terms of the exposure to engineered nanoparticles of alumina, amorphous silica, and ceria used in semiconductor device fabrication [221]. One study shows workers occupational exposure to engineered nanomaterials closed to micro-sized agglomerated NSs [222]. Autophagy induces cell survival, which may induce inflammation, toxicity, and diseases.

4. Autophagy-Related Responses in Undecomposed MSs and NSs

Briefly, plastic particles can be classified into the following three types: macroplastics (over 5 mm in size) [223], small plastic particles (less than 5 mm in size) named microplastics [224], and nanoplastics (less than 1000 nm or 100 nm in size) [225]. Recently, we overused plastic-related products. When waste plastic is fragmented into micro and nanoparticles, it can cause obstruction, inflammation, and accumulation in organs [226,227]. PS microplastics change gut microbiota dysbiosis and decrease gut mucin secretion in mice [228]. Due to their neuron toxicity, PS microplastics change the acetylcholinesterase activity in mice [135]. PS nanoplastics induce ER stress-mediated autophagy markers, such as LC3, in human lung cells [229], LGG-1, an ortholog of Atg8 on the nematode, Caenorhabditis elegans [230], and the autophagic marker, LC3B, in mouse embryonic fibroblasts [231]. Positively charged PS nanospheres induce autophagy markers, such as p62, Beclin 1, and LC3, in mice macrophage-like cells, RAW 264.7, and human lung epithelial cells, BEAS-2B [232]. Vinyl chloride (VC) or PVC is considered a carcinogenic factor that causes angiosarcoma in the liver [233]. VC induces fibrosis and autophagy markers, such as Beclin 1, and LC3, in kidney cells [234]. Synthetic textile workers are potentially exposed to high concentrations of microplastics in the air and suffer higher rates of lung-cancer-related mortality [235]. In addition, MSs and NSs, such as dust, silica, and asbestos, in cells are not easily decomposed. Workers exposed to high concentrations of dust are at risk of pneumoconiosis [68,236]. Pneumonoultramicroscopic silicovolcanoconiosis or silicosis is a type of pulmonary fibrosis caused by the accumulation of fine particles of crystalline silica in the lungs [237]. The prevalence of asbestosis is due to the use of asbestos-related products [238] (Figure 3). Asbestos also induces programmed necrosis in human mesothelial cells [239]. A recent study showed that asbestos induces autophagy markers, such as ATG5, p62, Beclin 1, and LC3, and mesothelial cell transformation [240]. In addition, microplastic particles were found to be deposited in urban dust [241,242,243]. Urban dust is a kind of airborne PM, containing 2–10 μm particles [244]. Recent, studies investigating MSs, NSs, and PM show that these materials may endocytose cells and result in cell death or cell survival, depending on their characteristics.

5. Autophagy and Tumorigenesis

We found that the previous studies show that many MSs or NSs induce autophagy (Table 1). Autophagy plays dual roles, resulting in cell death [38,245] and cell survival [246,247]. Cell survival may result in tumorigenesis [248]. Autophagy may represent a type of tumor suppressor mechanism, as it has been found that this pathway is frequently related to autophagy markers that are downregulated in tumor cells [249], which are implied to be involved in tumorigenesis [250]. Studies have indicated that a loss of autophagy function initiates cancer [251]. Autophagy is as a tumor suppressor. For example, a study indicated that mice with a deletion of atg5 and atg7 had benign liver adenomas [252]. Beclin 1 is deleted in most cases of human breast, prostate, and ovarian cancer [253]. The frameshift mutation in the ultraviolet radiation resistance-associated gene (UVRAG) decreases autophagy in colon and gastric cancers [254]. There are other proteins involved in autophagy, such as Atg4c [255], Bax-interacting factor-1 (Bif-1) [256], BH3-only proteins [257], DAP kinase [258], and PTEN [259], which shows its potential role in tumor suppression. Recently, a study showed that autophagy is involved in tumor suppression via three mechanisms. First, autophagy plays a role in tumor suppression by inhibiting necrosis-mediated inflammation. Second, autophagy plays a role in tumor suppression by maintaining genome integrity. Third, autophagy plays a role in tumor suppression by maintaining autophagy-mediated cell death and senescence [260]. In addition, autophagy plays a dual role in cancer [261]. In the beginning of tumorigenesis, autophagy prevents mutations and genotoxicity in healthy tissues due to the production of ROS [262]. However, autophagy can also be useful for tumor survival if carcinogenesis has already begun. Autophagy also helps cancer stem cells to survive stressors [263], such as cancer cell survival or chemoresistance [264]. In fact, some MSs or NSs have carcinogenic potential such as iron oxide nanoparticles [17]. PM2.5 is associated with chronic airway inflammatory diseases and lung cancer [32]. VC is considered a carcinogenic factor [233]. Asbestos causes laryngeal cancer [265]. Many MSs and NSs have been found to induce autophagy (Table 1), implying that these cells have a chance of undergoing tumorigenesis.

6. Solutions for MS- and NS-Caused Pollution

Many MSs and NSs may pose a potential risk to human health. How can these MSs and NSs be decreased and prevented from flowing into natural systems? Recently, some MSs and NSs have been applied in wastewater purification, such as activated carbon, carbon nanotubes, graphene, manganese oxide, zinc oxide, titanium oxide, magnesium oxide, and ferric oxides, which can be applied to remove heavy metals from wastewater [266]. In addition, wastewater treatment plants in several countries have found microplastic particles [267,268], such as the USA [268], Canada [269], and Turkey [270]. Several approaches can be used to decrease the volume of micro- and nanoplastics in water and wastewater, such as density separation, coagulation, membrane bioreactors, and biodegradation [271,272]. In addition, new techniques have been developed for water purification, such as three-dimensional graphene-based hybrid materials [273], the removal of heavy metals [274], and microplastic removal [275]. Biodegradation also seems to be a good approach, as plastic particles can be completely transformed into CO2 and water. Studies investigating several potential candidate marine bacteria have found that these bacteria can be used in the degradation of plastic particles [276]. Some fungal strains have been shown to degrade several plastics, such as PHB and PLA [103]. PS is known to be biodegraded in the gut of yellow mealworms because there are special microorganisms in the gut [277]. In addition, many enzymes purified from different bacteria, such as Ideonella sakaiensis 201-F6, have been identified and can degrade PET plastics [278]. In April 2020, a total of 436 species reported in 1451 publications were found to degrade plastic. The three types of species that can degrade plastic that were reported most often reported among the 66 different types are Bacillus pumilus, Aspergillus fumigatus, and Phanerochaete chrysosporium, which were found to degrade 14, 11, and 10 different types of plastic, respectively [279]. Furthermore, many enzymes have been found that can hydrolyze polyesters, such lipase, esterase, protease, cutinase, PHA depolymerase, catalase, urease and glucosidases [280]. On other hand, polyester-based biodegradable plastics, such as PLA (poly(lactic acid)), PCL (polylcaprolactone), PHB (polyhydroxybutyrate)/PHBV (Polyhydroxybutyrate-co-valarate), PBST(Poly(butylene succinate co-terephthalate), PBAT (Poly(butyrate adipate co-terephthalate)), PU (Polyurethanes) and PET (poly(ethylene terephthalate)), have potential in relation to waste reduction [280,281]. In addition, changing consumer behavior is another way to reduce plastics, such as plastic bag fee changes in Turkey [282]. The plastic carrier bag tax in Portugal reduced plastic bag consumption by 74% and increased reusable plastic bag consumption by 61% [283]. Several countries, such as the USA [284] and Caribbean countries [285], have adopted several methods for reducing single-use plastic bags.

7. Conclusions

Recently, EVs have played an important role in cell communication. The size of EVs, MSs, and NSs is similar. Some products made by humans are not easily decomposed. These products become environmental pollutants and bioaccumulate when they are fragmented into MSs and NSs. Among these particles, their interaction with other toxic matter has been well studied in PM2.5, MSs, and NSs. These studies have shown that MSs and NSs accumulate in organs via the food chain. In addition, MSs and NSs engulf cells and induce several cell responses, depending on their size and carrying capacity. Autophagy is a mechanism by which foreign matter decomposes in tissues or organisms. Some artificial materials are not easily decomposed by autophagy. Many MSs and NSs induce the formation of ROS, autophagic responses and apoptosis in various cells or tissues. Studies have indicated that autophagy operates through two pathways (cell death and cell survival) in tumorigenesis. MS- and NS-expressed autophagy may lead to tumorigenesis. Therefore, we found that pneumoconiosis, silicosis, and asbestosis from dust, silica, and asbestos have long disease histories, implying that MSs and NSs have previously interfered with cells and tissues and may interfere with our health through different materials in the future. Finally, the number of species of environmental bacteria and fungi found to degrade plastic seems to be increasing.

Author Contributions

Conceptualization, Y.-L.W., Y.-F.L. and H.-W.C.; writing—Original draft preparation, Y.-L.W., Y.-F.L. and H.-W.C.; writing—Review and editing, Y.-L.W., C.-M.Z., Y.-H.L., Y.-Y.C., Y.-F.L. and H.-W.C. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Ministry of Science and Technology, Taiwan (MOST 108-2314-B-039-061-MY3, MOST 109-2314-B-038-078-MY3, MOST 109-2314-B-038-109 and MOST 109-2314-B-038-088).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Figures were created with BioRender.com (accessed on 23 February 2021).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Reed, N.A.; Raliya, R.; Tang, R.; Xu, B.; Mixdorf, M.; Achilefu, S.; Biswas, P. Electrospray Functionalization of Titanium Dioxide Nanoparticles with Transferrin for Cerenkov Radiation Induced Cancer Therapy. ACS Appl. Bio. Mater. 2019, 2, 1141–1147. [Google Scholar] [CrossRef]
  2. Chu, C.; Lu, C.; Yuan, J.; Xing, C. Fate of Fe3O4@NH2 in soil and their fixation effect to reduce lead translocation in two rice cultivars. Food Sci. Nutr. 2020, 8, 3673–3681. [Google Scholar] [CrossRef] [PubMed]
  3. Proquin, H.; Rodriguez-Ibarra, C.; Moonen, C.G.; Urrutia Ortega, I.M.; Briede, J.J.; de Kok, T.M.; van Loveren, H.; Chirino, Y.I. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: Contribution of micro and nano-sized fractions. Mutagenesis 2017, 32, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Kazimirova, A.; El Yamani, N.; Rubio, L.; Garcia-Rodriguez, A.; Barancokova, M.; Marcos, R.; Dusinska, M. Effects of Titanium Dioxide Nanoparticles on the Hprt Gene Mutations in V79 Hamster Cells. Nanomaterials 2020, 10, 465. [Google Scholar] [CrossRef] [Green Version]
  5. Brandao, F.; Fernandez-Bertolez, N.; Rosario, F.; Bessa, M.J.; Fraga, S.; Pasaro, E.; Teixeira, J.P.; Laffon, B.; Valdiglesias, V.; Costa, C. Genotoxicity of TiO2 Nanoparticles in Four Different Human Cell Lines (A549, HEPG2, A172 and SH-SY5Y). Nanomaterials 2020, 10, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Aryal, S.; Remant, B.K.; Narayan, B.; Kim, C.K.; Kim, H.Y. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J. Colloid. Interface Sci. 2006, 299, 191–197. [Google Scholar] [CrossRef] [PubMed]
  7. Zhang, Y.; Chen, Y.; Westerhoff, P.; Crittenden, J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009, 43, 4249–4257. [Google Scholar] [CrossRef]
  8. Proquin, H.; Jonkhout, M.C.M.; Jetten, M.J.; van Loveren, H.; de Kok, T.M.; Briede, J.J. Transcriptome changes in undifferentiated Caco-2 cells exposed to food-grade titanium dioxide (E171): Contribution of the nano-and micro-sized particles. Sci. Rep. 2019, 9, 18287. [Google Scholar] [CrossRef]
  9. Judy, J.D.; Unrine, J.M.; Bertsch, P.M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 2011, 45, 776–781. [Google Scholar] [CrossRef]
  10. Judy, J.D.; Unrine, J.M.; Rao, W.; Bertsch, P.M. Bioaccumulation of gold nanomaterials by Manduca sexta through dietary uptake of surface contaminated plant tissue. Environ. Sci. Technol. 2012, 46, 12672–12678. [Google Scholar] [CrossRef]
  11. Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019, 245, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
  12. Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [Green Version]
  13. Kniggendorf, A.K.; Wetzel, C.; Roth, B. Microplastics Detection in Streaming Tap Water with Raman Spectroscopy. Sensors 2019, 19, 1839. [Google Scholar] [CrossRef] [Green Version]
  14. Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
  15. Sun, R.; Zhou, Y.; Wu, J.; Gong, Z. Influencing Factors of PM2.5 Pollution: Disaster Points of Meteorological Factors. Int. J. Environ. Res. Public Health 2019, 16, 3891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Fei, Y.X.; Zhao, B.; Yin, Q.Y.; Qiu, Y.Y.; Ren, G.H.; Wang, B.W.; Wang, Y.F.; Fang, W.R.; Li, Y.M. Ma Xing Shi Gan Decoction Attenuates PM2.5 Induced Lung Injury via Inhibiting HMGB1/TLR4/NFkappaB Signal Pathway in Rat. Front. Pharmacol. 2019, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
  17. Stueckle, T.A.; Davidson, D.C.; Derk, R.; Kornberg, T.G.; Schwegler-Berry, D.; Pirela, S.V.; Deloid, G.; Demokritou, P.; Luanpitpong, S.; Rojanasakul, Y.; et al. Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact 2017, 6, 39–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Wu, D.; Lary, D.J.; Zewdie, G.K.; Liu, X. Using machine learning to understand the temporal morphology of the PM2.5 annual cycle in East Asia. Environ. Monit. Assess. 2019, 191, 272. [Google Scholar] [CrossRef]
  19. Sah, D.; Verma, P.K.; Kandikonda, M.K.; Lakhani, A. Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain, India. Environ. Sci. Pollut Res. Int. 2019, 26, 19749–19762. [Google Scholar] [CrossRef]
  20. Jeon, Y.M.; Lee, M.Y. Airborne nanoparticles (PM0.1) induce autophagic cell death of human neuronal cells. J. Appl. Toxicol. 2016, 36, 1332–1342. [Google Scholar] [CrossRef]
  21. Corbin, J.C. PM0.1 particles from aircraft may increase risk of vascular disease. BMJ 2013, 347, f6783. [Google Scholar] [CrossRef] [PubMed]
  22. Liu, B.; Wu, S.D.; Shen, L.J.; Zhao, T.X.; Wei, Y.; Tang, X.L.; Long, C.L.; Zhou, Y.; He, D.W.; Lin, T.; et al. Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2019, 167, 161–168. [Google Scholar] [CrossRef]
  23. Wei, Y.; Cao, X.N.; Tang, X.L.; Shen, L.J.; Lin, T.; He, D.W.; Wu, S.D.; Wei, G.H. Urban fine particulate matter (PM2.5) exposure destroys blood-testis barrier (BTB) integrity through excessive ROS-mediated autophagy. Toxicol. Mech. Methods 2018, 28, 302–319. [Google Scholar] [CrossRef] [PubMed]
  24. Hime, N.J.; Marks, G.B.; Cowie, C.T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Zhang, G.; Ding, C.; Jiang, X.; Pan, G.; Wei, X.; Sun, Y. Chemical Compositions and Sources Contribution of Atmospheric Particles at a Typical Steel Industrial Urban Site. Sci. Rep. 2020, 10, 7654. [Google Scholar] [CrossRef]
  26. Fang, X.; Li, R.; Xu, Q.; Bottai, M.; Fang, F.; Cao, Y. A Two-Stage Method to Estimate the Contribution of Road Traffic to PM(2).(5) Concentrations in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 124. [Google Scholar] [CrossRef] [PubMed]
  27. Khreis, H.; Nieuwenhuijsen, M.J. Traffic-Related Air Pollution and Childhood Asthma: Recent Advances and Remaining Gaps in the Exposure Assessment Methods. Int. J. Environ. Res. Public Health 2017, 14, 312. [Google Scholar] [CrossRef] [Green Version]
  28. Qi, Z.; Song, Y.; Ding, Q.; Liao, X.; Li, R.; Liu, G.; Tsang, S.; Cai, Z. Water soluble and insoluble components of PM2.5 and their functional cardiotoxicities on neonatal rat cardiomyocytes in vitro. Ecotoxicol. Environ. Saf. 2019, 168, 378–387. [Google Scholar] [CrossRef] [PubMed]
  29. Yang, X.; Feng, L.; Zhang, Y.; Hu, H.; Shi, Y.; Liang, S.; Zhao, T.; Fu, Y.; Duan, J.; Sun, Z. Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol. Environ. Saf. 2018, 161, 198–207. [Google Scholar] [CrossRef] [PubMed]
  30. Zhu, X.; Ji, X.; Shou, Y.; Huang, Y.; Hu, Y.; Wang, H. Recent advances in understanding the mechanisms of PM2.5-mediated neurodegenerative diseases. Toxicol. Lett. 2020, 329, 31–37. [Google Scholar] [CrossRef] [PubMed]
  31. Xia, R.; Fang, N.; Yang, Y.; Xu, F.; Zhang, L.; Ji, S. PM2.5 promotes apoptosis of alveolar epithelial cells via targeting ROS/p38 signaling pathway and thus leads to emphysema in mice. Minerva Med. 2020. [Google Scholar] [CrossRef]
  32. Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett. 2018, 15, 7506–7514. [Google Scholar] [CrossRef] [Green Version]
  33. Wang, Y.; Zhong, Y.; Hou, T.; Liao, J.; Zhang, C.; Sun, C.; Wang, G. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol. Environ. Saf. 2019, 178, 159–167. [Google Scholar] [CrossRef]
  34. Zhou, L.; Su, X.; Li, B.; Chu, C.; Sun, H.; Zhang, N.; Han, B.; Li, C.; Zou, B.; Niu, Y.; et al. PM2.5 exposure impairs sperm quality through testicular damage dependent on NALP3 inflammasome and miR-183/96/182 cluster targeting FOXO1 in mouse. Ecotoxicol. Environ. Saf. 2019, 169, 551–563. [Google Scholar] [CrossRef]
  35. Ogino, K.; Nagaoka, K.; Ito, T.; Takemoto, K.; Okuda, T.; Nakayama, S.F.; Ogino, N.; Seki, Y.; Hamada, H.; Takashiba, S.; et al. Involvement of PM2.5-bound protein and metals in PM2.5-induced allergic airway inflammation in mice. Inhal. Toxicol. 2018, 30, 498–508. [Google Scholar] [CrossRef]
  36. Shou, Y.; Huang, Y.; Zhu, X.; Liu, C.; Hu, Y.; Wang, H. A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol. Environ. Saf. 2019, 174, 344–352. [Google Scholar] [CrossRef] [PubMed]
  37. Deng, X.; Zhang, F.; Rui, W.; Long, F.; Wang, L.; Feng, Z.; Chen, D.; Ding, W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. In Vitro 2013, 27, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
  38. Wang, Y.; Tang, M. PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells. Sci. Total Environ. 2020, 710, 136397. [Google Scholar] [CrossRef] [PubMed]
  39. Patel, S.; Kim, J.; Herrera, M.; Mukherjee, A.; Kabanov, A.V.; Sahay, G. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv Rev. 2019, 144, 90–111. [Google Scholar] [CrossRef] [PubMed]
  40. Gehr, P.; Clift, M.J.; Brandenberger, C.; Lehmann, A.; Herzog, F.; Rothen-Rutishauser, B. Endocytosis of environmental and engineered micro- and nanosized particles. Compr. Physiol. 2011, 1, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
  41. Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2018, 19, 313–326. [Google Scholar] [CrossRef] [PubMed]
  42. Chung, C.L.; Wang, S.W.; Sun, W.C.; Shu, C.W.; Kao, Y.C.; Shiao, M.S.; Chen, C.L. Sorafenib suppresses TGF-beta responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-beta receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma. Biochem. Pharmacol. 2018, 154, 39–53. [Google Scholar] [CrossRef]
  43. Johannes, L.; Parton, R.G.; Bassereau, P.; Mayor, S. Building endocytic pits without clathrin. Nat. Rev. Mol. Cell Biol. 2015, 16, 311–321. [Google Scholar] [CrossRef] [PubMed]
  44. King, J.S.; Kay, R.R. The origins and evolution of macropinocytosis. Philos. Trans. R Soc. Lond. B Biol. Sci. 2019, 374, 20180158. [Google Scholar] [CrossRef]
  45. Gray, M.; Botelho, R.J. Phagocytosis: Hungry, Hungry Cells. Methods Mol. Biol. 2017, 1519, 1–16. [Google Scholar] [CrossRef] [PubMed]
  46. Birgisdottir, A.B.; Johansen, T. Autophagy and endocytosis-interconnections and interdependencies. J. Cell Sci. 2020, 133. [Google Scholar] [CrossRef] [PubMed]
  47. Bejarano, E.; Cuervo, A.M. Chaperone-mediated autophagy. Proc. Am. Thorac. Soc. 2010, 7, 29–39. [Google Scholar] [CrossRef] [PubMed]
  48. Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014, 20, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Yim, W.W.; Mizushima, N. Lysosome biology in autophagy. Cell Discov. 2020, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Mijaljica, D.; Prescott, M.; Devenish, R.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy 2011, 7, 673–682. [Google Scholar] [CrossRef] [Green Version]
  51. Li, W.W.; Li, J.; Bao, J.K. Microautophagy: Lesser-known self-eating. Cell Mol. Life Sci. 2012, 69, 1125–1136. [Google Scholar] [CrossRef]
  52. Massey, A.; Kiffin, R.; Cuervo, A.M. Pathophysiology of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 2004, 36, 2420–2434. [Google Scholar] [CrossRef] [PubMed]
  53. Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef] [PubMed]
  54. Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; et al. Molecular definitions of autophagy and related processes. EMBO J. 2017, 36, 1811–1836. [Google Scholar] [CrossRef] [PubMed]
  55. Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Klionsky, D.J. Look people, “Atg” is an abbreviation for “autophagy-related.” That’s it. Autophagy 2012, 8, 1281–1282. [Google Scholar] [CrossRef] [Green Version]
  57. Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 2017, 36, 52. [Google Scholar] [CrossRef]
  58. He, C.; Bassik, M.C.; Moresi, V.; Sun, K.; Wei, Y.; Zou, Z.; An, Z.; Loh, J.; Fisher, J.; Sun, Q.; et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012, 481, 511–515. [Google Scholar] [CrossRef] [Green Version]
  59. Sousa, C.M.; Biancur, D.E.; Wang, X.; Halbrook, C.J.; Sherman, M.H.; Zhang, L.; Kremer, D.; Hwang, R.F.; Witkiewicz, A.K.; Ying, H.; et al. Erratum: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016, 540, 150. [Google Scholar] [CrossRef] [Green Version]
  60. Fernandez, A.F.; Sebti, S.; Wei, Y.; Zou, Z.; Shi, M.; McMillan, K.L.; He, C.; Ting, T.; Liu, Y.; Chiang, W.C.; et al. Author Correction: Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 2018, 561, E30. [Google Scholar] [CrossRef]
  61. Khaminets, A.; Heinrich, T.; Mari, M.; Grumati, P.; Huebner, A.K.; Akutsu, M.; Liebmann, L.; Stolz, A.; Nietzsche, S.; Koch, N.; et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015, 522, 354–358. [Google Scholar] [CrossRef] [PubMed]
  62. Green, D.R.; Galluzzi, L.; Kroemer, G. Cell biology. Metabolic control of cell death. Science 2014, 345, 1250256. [Google Scholar] [CrossRef] [Green Version]
  63. Wei, Y.; Zou, Z.; Becker, N.; Anderson, M.; Sumpter, R.; Xiao, G.; Kinch, L.; Koduru, P.; Christudass, C.S.; Veltri, R.W.; et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013, 154, 1269–1284. [Google Scholar] [CrossRef] [Green Version]
  64. Lőrincz, P.; Juhász, G. Autophagosome-lysosome fusion. J. Mol. Biol. 2020, 432, 2462–2482. [Google Scholar] [CrossRef]
  65. Schroder, B.A.; Wrocklage, C.; Hasilik, A.; Saftig, P. The proteome of lysosomes. Proteomics 2010, 10, 4053–4076. [Google Scholar] [CrossRef] [PubMed]
  66. Ishidoh, K.; Kominami, E. Processing and activation of lysosomal proteinases. Biol. Chem. 2002, 383, 1827–1831. [Google Scholar] [CrossRef]
  67. Suzuki, C.; Tanida, I.; Ohmuraya, M.; Oliva Trejo, J.A.; Kakuta, S.; Sunabori, T.; Uchiyama, Y. Lack of Cathepsin D in the Renal Proximal Tubular Cells Resulted in Increased Sensitivity against Renal Ischemia/Reperfusion Injury. Int. J. Mol. Sci. 2019, 20, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Kuo, H.-W.; Chang, C.-L.; Lai, J.-S. Prevalence of and factors related to pneumoconiosis among foundry workers in central Taiwan. Occup. Health Ind. Med. 1999, 2, 79. [Google Scholar] [CrossRef]
  69. Chong, S.Y.; Lee, C.K.; Huang, C.; Ou, Y.H.; Charles, C.J.; Richards, A.M.; Neupane, Y.R.; Pavon, M.V.; Zharkova, O.; Pastorin, G.; et al. Extracellular Vesicles in Cardiovascular Diseases: Alternative Biomarker Sources, Therapeutic Agents, and Drug Delivery Carriers. Int. J. Mol. Sci. 2019, 20, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Bei, Y.; Das, S.; Rodosthenous, R.S.; Holvoet, P.; Vanhaverbeke, M.; Monteiro, M.C.; Monteiro, V.V.S.; Radosinska, J.; Bartekova, M.; Jansen, F.; et al. Extracellular Vesicles in Cardiovascular Theranostics. Theranostics 2017, 7, 4168–4182. [Google Scholar] [CrossRef]
  71. Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
  72. Ullah, M.; Qiao, Y.; Concepcion, W.; Thakor, A.S. Stem cell-derived extracellular vesicles: Role in oncogenic processes, bioengineering potential, and technical challenges. Stem Cell Res. Ther. 2019, 10, 347. [Google Scholar] [CrossRef] [Green Version]
  73. Stahl, P.D.; Raposo, G. Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis. Physiology 2019, 34, 169–177. [Google Scholar] [CrossRef] [PubMed]
  74. Vidal, M. Exosomes: Revisiting their role as “garbage bags”. Traffic 2019, 20, 815–828. [Google Scholar] [CrossRef]
  75. Trzepizur, W.; Martinez, M.C.; Priou, P.; Andriantsitohaina, R.; Gagnadoux, F. Microparticles and vascular dysfunction in obstructive sleep apnoea. Eur. Respir. J. 2014, 44, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Poon, I.K.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: Basic biology and therapeutic potential. Nat. Rev. Immunol. 2014, 14, 166–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. Atkin-Smith, G.K.; Poon, I.K.H. Disassembly of the Dying: Mechanisms and Functions. Trends Cell Biol. 2017, 27, 151–162. [Google Scholar] [CrossRef]
  78. Meldolesi, J. Extracellular vesicles, news about their role in immune cells: Physiology, pathology and diseases. Clin. Exp. Immunol. 2019, 196, 318–327. [Google Scholar] [CrossRef] [Green Version]
  79. Slomka, A.; Urban, S.K.; Lukacs-Kornek, V.; Zekanowska, E.; Kornek, M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front. Immunol. 2018, 9, 2723. [Google Scholar] [CrossRef] [PubMed]
  80. Deng, W.; Tang, T.; Hou, Y.; Zeng, Q.; Wang, Y.; Fan, W.; Qu, S. Extracellular vesicles in atherosclerosis. Clin. Chim. Acta 2019, 495, 109–117. [Google Scholar] [CrossRef] [PubMed]
  81. Peng, M.; Liu, X.; Xu, G. Extracellular Vesicles as Messengers in Atherosclerosis. J. Cardiovasc. Transl. Res. 2020, 13, 121–130. [Google Scholar] [CrossRef]
  82. Szekeres-Bartho, J.; Sucurovic, S.; Mulac-Jericevic, B. The Role of Extracellular Vesicles and PIBF in Embryo-Maternal Immune-Interactions. Front. Immunol. 2018, 9, 2890. [Google Scholar] [CrossRef] [PubMed]
  83. Han, L.; Lam, E.W.; Sun, Y. Extracellular vesicles in the tumor microenvironment: Old stories, but new tales. Mol. Cancer 2019, 18, 59. [Google Scholar] [CrossRef] [Green Version]
  84. Bogatcheva, N.V.; Coleman, M.E. Conditioned Medium of Mesenchymal Stromal Cells: A New Class of Therapeutics. Biochemistry 2019, 84, 1375–1389. [Google Scholar] [CrossRef]
  85. Kichenbrand, C.; Velot, E.; Menu, P.; Moby, V. Dental Pulp Stem Cell-Derived Conditioned Medium: An Attractive Alternative for Regenerative Therapy. Tissue Eng. Part. B Rev. 2019, 25, 78–88. [Google Scholar] [CrossRef] [PubMed]
  86. Fui, L.W.; Lok, M.P.W.; Govindasamy, V.; Yong, T.K.; Lek, T.K.; Das, A.K. Understanding the multifaceted mechanisms of diabetic wound healing and therapeutic application of stem cells conditioned medium in the healing process. J. Tissue Eng. Regen. Med. 2019, 13, 2218–2233. [Google Scholar] [CrossRef] [PubMed]
  87. Deng, C.; He, Y.; Feng, J.; Dong, Z.; Yao, Y.; Lu, F. Conditioned medium from 3D culture system of stromal vascular fraction cells accelerates wound healing in diabetic rats. Regen. Med. 2019, 14, 925–937. [Google Scholar] [CrossRef] [PubMed]
  88. Sato, C.; Yamamoto, Y.; Funayama, E.; Furukawa, H.; Oyama, A.; Murao, N.; Hosono, H.; Kawakubo, K.; Sakamoto, N.; Ohnishi, S. Conditioned Medium Obtained from Amnion-Derived Mesenchymal Stem Cell Culture Prevents Activation of Keloid Fibroblasts. Plast. Reconstr. Surg. 2018, 141, 390–398. [Google Scholar] [CrossRef] [PubMed]
  89. Veronesi, F.; Borsari, V.; Sartori, M.; Orciani, M.; Mattioli-Belmonte, M.; Fini, M. The use of cell conditioned medium for musculoskeletal tissue regeneration. J. Cell Physiol. 2018, 233, 4423–4442. [Google Scholar] [CrossRef]
  90. Fukuoka, H.; Narita, K.; Suga, H. Hair Regeneration Therapy: Application of Adipose-Derived Stem Cells. Curr. Stem Cell Res. Ther. 2017, 12, 531–534. [Google Scholar] [CrossRef] [PubMed]
  91. Mathew, B.; Ravindran, S.; Liu, X.; Torres, L.; Chennakesavalu, M.; Huang, C.C.; Feng, L.; Zelka, R.; Lopez, J.; Sharma, M.; et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 2019, 197, 146–160. [Google Scholar] [CrossRef] [PubMed]
  92. Dai, M.; Zhang, Q.; Zheng, Z.; Wang, J. Retinal ganglion cell-conditioned medium and surrounding pressure alters gene expression and differentiation of rat retinal progenitor cells. Mol. Med. Rep. 2018, 17, 7177–7183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Nakamura, M.; Nishida, H.; Yoshizaki, K.; Akiyoshi, H.; Hatoya, S.; Sugiura, K.; Inaba, T. Canine mesenchymal stromal cell-conditioned medium promotes survival and neurite outgrowth of neural stem cells. J. Vet. Med. Sci. 2020, 82, 668–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Jahanbazi Jahan-Abad, A.; Karima, S.; Sahab Negah, S.; Noorbakhsh, F.; Borhani-Haghighi, M.; Gorji, A. Therapeutic potential of conditioned medium derived from oligodendrocytes cultured in a self-assembling peptide nanoscaffold in experimental autoimmune encephalomyelitis. Brain Res. 2019, 1711, 226–235. [Google Scholar] [CrossRef] [PubMed]
  95. Vikartovska, Z.; Kuricova, M.; Farbakova, J.; Liptak, T.; Mudronova, D.; Humenik, F.; Madari, A.; Maloveska, M.; Sykova, E.; Cizkova, D. Stem Cell Conditioned Medium Treatment for Canine Spinal Cord Injury: Pilot Feasibility Study. Int. J. Mol. Sci. 2020, 21, 5129. [Google Scholar] [CrossRef]
  96. Liu, A.; Zhang, X.; He, H.; Zhou, L.; Naito, Y.; Sugita, S.; Lee, J.W. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin. Biol. Ther. 2020, 20, 125–140. [Google Scholar] [CrossRef] [PubMed]
  97. Purushothaman, A. Exosomes from Cell Culture-Conditioned Medium: Isolation by Ultracentrifugation and Characterization. Methods Mol. Biol. 2019, 1952, 233–244. [Google Scholar] [CrossRef] [PubMed]
  98. Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D.L. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 2010, 31, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
  99. Dagsson-Waldhauserova, P.; Renard, J.B.; Olafsson, H.; Vignelles, D.; Berthet, G.; Verdier, N.; Duverger, V. Vertical distribution of aerosols in dust storms during the Arctic winter. Sci. Rep. 2019, 9, 16122. [Google Scholar] [CrossRef] [PubMed]
  100. Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–3610. [Google Scholar] [CrossRef]
  101. Sioutas, C.; Delfino, R.J.; Singh, M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ. Health Perspect. 2005, 113, 947–955. [Google Scholar] [CrossRef] [Green Version]
  102. Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our plastic age. Philos. Trans. R Soc. Lond. B Biol. Sci. 2009, 364, 1973–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Ghosh, S.K.; Pal, S.; Ray, S. Study of microbes having potentiality for biodegradation of plastics. Environ. Sci. Pollut. Res. Int. 2013, 20, 4339–4355. [Google Scholar] [CrossRef]
  104. Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Corrections to “Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type”. Environ. Sci. Technol. 2018, 52, 3831–3832. [Google Scholar] [CrossRef] [Green Version]
  105. Carney Almroth, B.M.; Astrom, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. Int. 2018, 25, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
  106. Sait, S.T.L.; Sorensen, L.; Kubowicz, S.; Vike-Jonas, K.; Gonzalez, S.V.; Asimakopoulos, A.G.; Booth, A.M. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environ. Pollut. 2021, 268, 115745. [Google Scholar] [CrossRef]
  107. Suaria, G.; Achtypi, A.; Perold, V.; Lee, J.R.; Pierucci, A.; Bornman, T.G.; Aliani, S.; Ryan, P.G. Microfibers in oceanic surface waters: A global characterization. Sci. Adv. 2020, 6, eaay8493. [Google Scholar] [CrossRef] [PubMed]
  108. Aldalbahi, A.; El-Naggar, M.E.; El-Newehy, M.H.; Rahaman, M.; Hatshan, M.R.; Khattab, T.A. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers 2021, 13, 155. [Google Scholar] [CrossRef]
  109. Gago, J.; Carretero, O.; Filgueiras, A.V.; Vinas, L. Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments. Mar. Pollut. Bull. 2018, 127, 365–376. [Google Scholar] [CrossRef] [PubMed]
  110. Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef] [PubMed]
  111. Kole, P.J.; Lohr, A.J.; Van Belleghem, F.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef] [PubMed]
  112. Leads, R.R.; Weinstein, J.E. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar. Pollut. Bull. 2019, 145, 569–582. [Google Scholar] [CrossRef]
  113. Zhang, Z.; Zulpiya, M.; Chen, Y. Current research and perspective of microplastics (MPs) in soils (dusts), rivers (lakes), and marine environments in China. Ecotoxicol. Environ. Saf. 2020, 202, 110976. [Google Scholar] [CrossRef] [PubMed]
  114. Unice, K.M.; Kreider, M.L.; Panko, J.M. Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis. Environ. Sci. Technol. 2013, 47, 8138–8147. [Google Scholar] [CrossRef]
  115. Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)-A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
  116. Klockner, P.; Seiwert, B.; Eisentraut, P.; Braun, U.; Reemtsma, T.; Wagner, S. Characterization of tire and road wear particles from road runoff indicates highly dynamic particle properties. Water Res. 2020, 185, 116262. [Google Scholar] [CrossRef]
  117. Adamiec, E.; Jarosz-Krzeminska, E.; Wieszala, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
  118. Ning, Z.; Cheung, C.S.; Fu, J.; Liu, M.; Schnell, M. Experimental study of environmental tobacco smoke particles under actual indoor environment. Sci. Total Environ. 2006, 367, 822–830. [Google Scholar] [CrossRef] [PubMed]
  119. Alven, S.; Nqoro, X.; Aderibigbe, B.A. Polymer-Based Materials Loaded with Curcumin for Wound Healing Applications. Polymers 2020, 12, 2286. [Google Scholar] [CrossRef]
  120. Zarska, M.; Sramek, M.; Novotny, F.; Havel, F.; Babelova, A.; Mrazkova, B.; Benada, O.; Reinis, M.; Stepanek, I.; Musilek, K.; et al. Biological safety and tissue distribution of (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods. Biomaterials 2018, 154, 275–290. [Google Scholar] [CrossRef] [PubMed]
  121. Guo, L.; He, N.; Zhao, Y.; Liu, T.; Deng, Y. Autophagy Modulated by Inorganic Nanomaterials. Theranostics 2020, 10, 3206–3222. [Google Scholar] [CrossRef] [PubMed]
  122. Boyles, M.S.; Ranninger, C.; Reischl, R.; Rurik, M.; Tessadri, R.; Kohlbacher, O.; Duschl, A.; Huber, C.G. Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Part. Fibre Toxicol. 2016, 13, 49. [Google Scholar] [CrossRef] [Green Version]
  123. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Nguyen, C.H.; Field, J.A.; Sierra-Alvarez, R. Microbial toxicity of gallium- and indium-based oxide and arsenide nanoparticles. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2020, 55, 168–178. [Google Scholar] [CrossRef] [PubMed]
  125. Roth, G.A.; Neu-Baker, N.M.; Brenner, S.A. SEM analysis of particle size during conventional treatment of CMP process wastewater. Sci. Total Environ. 2015, 508, 1–6. [Google Scholar] [CrossRef]
  126. Nanotechnology versus coronavirus. Nat. Nanotechnol. 2020, 15, 617. [CrossRef] [PubMed]
  127. Patil, M.P.; Kim, G.D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf. B Biointerfaces 2018, 172, 487–495. [Google Scholar] [CrossRef] [PubMed]
  128. Seib, F.P. Silk nanoparticles-an emerging anticancer nanomedicine. AIMS Bioeng. 2017, 42, 239–258. [Google Scholar] [CrossRef]
  129. Alebouyeh, S.; Assmar, M.; Mirpour, M. Effect of Chitosan Nanoparticle from Penaeus semisulcatus Shrimp on Salmonella typhi and Listeria monocytogenes. Iran. J. Public Health 2020, 49, 369. [Google Scholar] [CrossRef] [PubMed]
  130. Redondo-Hasselerharm, P.E.; de Ruijter, V.N.; Mintenig, S.M.; Verschoor, A.; Koelmans, A.A. Ingestion and Chronic Effects of Car Tire Tread Particles on Freshwater Benthic Macroinvertebrates. Environ. Sci. Technol. 2018, 52, 13986–13994. [Google Scholar] [CrossRef]
  131. Ekvall, M.T.; Lundqvist, M.; Kelpsiene, E.; Šileikis, E.; Gunnarsson, S.B.; Cedervall, T. Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Adv. 2019, 1, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
  132. Li, D.; Shi, Y.; Yang, L.; Xiao, L.; Kehoe, D.K.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food 2020, 1, 746–754. [Google Scholar] [CrossRef]
  133. Yang, Y.F.; Chen, C.Y.; Lu, T.H.; Liao, C.M. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J. Hazard. Mater. 2019, 366, 703–713. [Google Scholar] [CrossRef] [PubMed]
  134. Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Herzke, D.; Anker-Nilssen, T.; Nost, T.H.; Gotsch, A.; Christensen-Dalsgaard, S.; Langset, M.; Fangel, K.; Koelmans, A.A. Negligible Impact of Ingested Microplastics on Tissue Concentrations of Persistent Organic Pollutants in Northern Fulmars off Coastal Norway. Environ. Sci. Technol. 2016, 50, 1924–1933. [Google Scholar] [CrossRef]
  136. Abbasi, S.; Soltani, N.; Keshavarzi, B.; Moore, F.; Turner, A.; Hassanaghaei, M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere 2018, 205, 80–87. [Google Scholar] [CrossRef] [PubMed]
  137. Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef] [PubMed]
  138. Li, J.; Green, C.; Reynolds, A.; Shi, H.; Rotchell, J.M. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ. Pollut. 2018, 241, 35–44. [Google Scholar] [CrossRef]
  139. Kutralam-Muniasamy, G.; Perez-Guevara, F.; Elizalde-Martinez, I.; Shruti, V.C. Branded milks-Are they immune from microplastics contamination? Sci. Total Environ. 2020, 714, 136823. [Google Scholar] [CrossRef]
  140. Liebezeit, G.; Liebezeit, E. Synthetic particles as contaminants in German beers. Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 1574–1578. [Google Scholar] [CrossRef]
  141. Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef]
  142. Iniguez, M.E.; Conesa, J.A.; Fullana, A. Microplastics in Spanish Table Salt. Sci. Rep. 2017, 7, 8620. [Google Scholar] [CrossRef] [PubMed]
  143. Liebezeit, G.; Liebezeit, E. Non-pollen particulates in honey and sugar. Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess. 2013, 30, 2136–2140. [Google Scholar] [CrossRef]
  144. Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
  145. Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
  146. Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Furst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
  147. Welle, F.; Franz, R. Microplastic in bottled natural mineral water-literature review and considerations on exposure and risk assessment. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 2482–2492. [Google Scholar] [CrossRef]
  148. Li, Y.; Ju, D. The Role of Autophagy in Nanoparticles-Induced Toxicity and Its Related Cellular and Molecular Mechanisms. Adv. Exp. Med. Biol. 2018, 1048, 71–84. [Google Scholar] [CrossRef]
  149. You, D.J.; Bonner, J.C. Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int. J. Mol. Sci. 2020, 21, 7310. [Google Scholar] [CrossRef]
  150. Alsaleh, N.B.; Brown, J.M. Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions. Front. Immunol. 2020, 11, 222. [Google Scholar] [CrossRef]
  151. Alsaleh, N.B.; Brown, J.M. Immune responses to engineered nanomaterials: Current understanding and challenges. Curr. Opin. Toxicol. 2018, 10, 8–14. [Google Scholar] [CrossRef] [PubMed]
  152. Park, E.J.; Kim, H.; Kim, Y.; Yi, J.; Choi, K.; Park, K. Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 2010, 275, 65–71. [Google Scholar] [CrossRef]
  153. Park, E.J.; Oh, S.Y.; Lee, S.J.; Lee, K.; Kim, Y.; Lee, B.S.; Kim, J.S. Chronic pulmonary accumulation of iron oxide nanoparticles induced Th1-type immune response stimulating the function of antigen-presenting cells. Environ. Res. 2015, 143, 138–147. [Google Scholar] [CrossRef] [PubMed]
  154. Khan, M.I.; Mohammad, A.; Patil, G.; Naqvi, S.A.; Chauhan, L.K.; Ahmad, I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 2012, 33, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
  155. Petters, C.; Irrsack, E.; Koch, M.; Dringen, R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem. Res. 2014, 39, 1648–1660. [Google Scholar] [CrossRef] [PubMed]
  156. Kornberg, T.G.; Stueckle, T.A.; Antonini, J.A.; Rojanasakul, Y.; Castranova, V.; Yang, Y.; Wang, L. Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials 2017, 7, 307. [Google Scholar] [CrossRef] [Green Version]
  157. Malhotra, N.; Lee, J.S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.R.; Hsiao, C.D. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
  158. Afeseh Ngwa, H.; Kanthasamy, A.; Gu, Y.; Fang, N.; Anantharam, V.; Kanthasamy, A.G. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol. Appl. Pharmacol. 2011, 256, 227–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  159. Nikazar, S.; Sivasankarapillai, V.S.; Rahdar, A.; Gasmi, S.; Anumol, P.S.; Shanavas, M.S. Revisiting the cytotoxicity of quantum dots: An in-depth overview. Biophys. Rev. 2020, 12, 703–718. [Google Scholar] [CrossRef]
  160. Wang, Y.; Tang, M. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure. Int. J. Nanomed. 2018, 13, 2729–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  161. Li, X.; Chen, N.; Su, Y.; He, Y.; Yin, M.; Wei, M.; Wang, L.; Huang, W.; Fan, C.; Huang, Q. Autophagy-sensitized cytotoxicity of quantum dots in PC12 cells. Adv. Healthc Mater 2014, 3, 354–359. [Google Scholar] [CrossRef] [PubMed]
  162. Stern, S.T.; Zolnik, B.S.; McLeland, C.B.; Clogston, J.; Zheng, J.; McNeil, S.E. Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicol. Sci. 2008, 106, 140–152. [Google Scholar] [CrossRef] [Green Version]
  163. Ji, X.; Xu, B.; Yao, M.; Mao, Z.; Zhang, Y.; Xu, G.; Tang, Q.; Wang, X.; Xia, Y. Graphene oxide quantum dots disrupt autophagic flux by inhibiting lysosome activity in GC-2 and TM4 cell lines. Toxicology 2016, 374, 10–17. [Google Scholar] [CrossRef] [PubMed]
  164. Zhang, C.; Feng, X.; He, L.; Zhang, Y.; Shao, L. The interrupted effect of autophagic flux and lysosomal function induced by graphene oxide in p62-dependent apoptosis of F98 cells. J. Nanobiotechnol. 2020, 18, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Ihrie, M.D.; Bonner, J.C. The Toxicology of Engineered Nanomaterials in Asthma. Curr. Environ. Health Rep. 2018, 5, 100–109. [Google Scholar] [CrossRef]
  166. Roach, K.A.; Stefaniak, A.B.; Roberts, J.R. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J. Immunotoxicol. 2019, 16, 87–124. [Google Scholar] [CrossRef] [PubMed]
  167. Dornhof, R.; Maschowski, C.; Osipova, A.; Giere, R.; Seidl, M.; Merfort, I.; Humar, M. Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PLoS ONE 2017, 12, e0180291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  168. Liu, L.; Liu, Q.; Wen, D.; Rule, A.; Koehler, K.; Li, M.; Gao, L. PM 2.5 Exposure Induced Autophagy Activation via the ROS/AMPK/mTOR/ULK1 Signaling Axis in Macrophages. J. Allergy Clin. Immunol. 2019, 143, AB230. [Google Scholar] [CrossRef]
  169. Zhang, Y.; Li, S.; Li, J.; Han, L.; He, Q.; Wang, R.; Wang, X.; Liu, K. Developmental toxicity induced by PM2.5 through endoplasmic reticulum stress and autophagy pathway in zebrafish embryos. Chemosphere 2018, 197, 611–621. [Google Scholar] [CrossRef] [PubMed]
  170. Zhu, X.M.; Wang, Q.; Xing, W.W.; Long, M.H.; Fu, W.L.; Xia, W.R.; Jin, C.; Guo, N.; Xu, D.Q.; Xu, D.G. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells. Int. J. Biol. Sci. 2018, 14, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  171. Gao, J.; Yuan, J.; Wang, Q.; Lei, T.; Shen, X.; Cui, B.; Zhang, F.; Ding, W.; Lu, Z. Metformin protects against PM2.5-induced lung injury and cardiac dysfunction independent of AMP-activated protein kinase alpha2. Redox Biol. 2020, 28, 101345. [Google Scholar] [CrossRef]
  172. Calderon-Garciduenas, L.; Leray, E.; Heydarpour, P.; Torres-Jardon, R.; Reis, J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev. Neurol. 2016, 172, 69–80. [Google Scholar] [CrossRef] [PubMed]
  173. Qiu, Y.; Zheng, Z.; Kim, H.; Yang, Z.; Zhang, G.; Shi, X.; Sun, F.; Peng, C.; Ding, Y.; Wang, A.; et al. Inhalation Exposure to PM2.5 Counteracts Hepatic Steatosis in Mice Fed High-fat Diet by Stimulating Hepatic Autophagy. Sci. Rep. 2017, 7, 16286. [Google Scholar] [CrossRef] [Green Version]
  174. Su, R.; Jin, X.; Lyu, L.; Tian, J.; Amin, S.; Li, Z. The potential immunotoxicity of fine particulate matter based on SD rat spleen. Environ. Sci. Pollut. Res. Int. 2019, 26, 23958–23966. [Google Scholar] [CrossRef]
  175. Huang, X.; Zhou, Z.; Liu, X.; Li, J.; Zhang, L. PM 2.5 exposure induced renal injury via the activation of the autophagic pathway in the rat and HK-2 cell. Environ. Sci. Eur. 2020, 32, 1–13. [Google Scholar] [CrossRef]
  176. Tseng, C.Y.; Wang, J.S.; Chao, M.W. Causation by Diesel Exhaust Particles of Endothelial Dysfunctions in Cytotoxicity, Pro-inflammation, Permeability, and Apoptosis Induced by ROS Generation. Cardiovasc. Toxicol. 2017, 17, 384–392. [Google Scholar] [CrossRef] [PubMed]
  177. Lawal, A.O. Diesel Exhaust Particles and the Induction of Macrophage Activation and Dysfunction. Inflammation 2018, 41, 356–363. [Google Scholar] [CrossRef] [PubMed]
  178. Molfino, A.; Amabile, M.I.; Muscaritoli, M.; Germano, A.; Alfano, R.; Ramaccini, C.; Spagnoli, A.; Cavaliere, L.; Marseglia, G.; Nardone, A.; et al. Association between Metabolic and Hormonal Derangements and Professional Exposure to Urban Pollution in a High Intensity Traffic Area. Front. Endocrinol. 2020, 11, 509. [Google Scholar] [CrossRef]
  179. Hsu, Y.H.; Chuang, H.C.; Lee, Y.H.; Lin, Y.F.; Chen, Y.J.; Hsiao, T.C.; Wu, M.Y.; Chiu, H.W. Traffic-related particulate matter exposure induces nephrotoxicity in vitro and in vivo. Free Radic. Biol. Med. 2019, 135, 235–244. [Google Scholar] [CrossRef] [PubMed]
  180. Huang, D.; Zhou, H.; Gong, X.; Gao, J. Silica sub-microspheres induce autophagy in an endocytosis dependent manner. RSC Adv. 2017, 7, 12496–12502. [Google Scholar] [CrossRef] [Green Version]
  181. Popp, L.; Segatori, L. Zinc Oxide Particles Induce Activation of the Lysosome–Autophagy System. ACS Omega 2019, 4, 573–581. [Google Scholar] [CrossRef]
  182. Bai, D.P.; Zhang, X.F.; Zhang, G.L.; Huang, Y.F.; Gurunathan, S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomed. 2017, 12, 6521–6535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Gautam, A.; Rakshit, M.; Nguyen, K.T.; Kathawala, M.H.; Nguyen, L.T.H.; Tay, C.Y.; Wong, E.; Ng, K.W. Understanding the implications of engineered nanoparticle induced autophagy in human epidermal keratinocytes in vitro. NanoImpact 2019, 15, 100177. [Google Scholar] [CrossRef]
  184. Johnson, B.M.; Fraietta, J.A.; Gracias, D.T.; Hope, J.L.; Stairiker, C.J.; Patel, P.R.; Mueller, Y.M.; McHugh, M.D.; Jablonowski, L.J.; Wheatley, M.A.; et al. Acute exposure to ZnO nanoparticles induces autophagic immune cell death. Nanotoxicology 2015, 9, 737–748. [Google Scholar] [CrossRef]
  185. Liu, Z.; Lv, X.; Xu, L.; Liu, X.; Zhu, X.; Song, E.; Song, Y. Zinc oxide nanoparticles effectively regulate autophagic cell death by activating autophagosome formation and interfering with their maturation. Part. Fibre Toxicol. 2020, 17, 46. [Google Scholar] [CrossRef] [PubMed]
  186. Song, W.J.; Jeong, M.S.; Choi, D.M.; Kim, K.N.; Wie, M.B. Zinc Oxide Nanoparticles Induce Autophagy and Apoptosis via Oxidative Injury and Pro-Inflammatory Cytokines in Primary Astrocyte Cultures. Nanomaterials 2019, 9, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  187. Kim, D.Y.; Kim, J.H.; Lee, J.C.; Won, M.H.; Yang, S.R.; Kim, H.C.; Wie, M.B. Zinc Oxide Nanoparticles Exhibit Both Cyclooxygenase- and Lipoxygenase-Mediated Apoptosis in Human Bone Marrow-Derived Mesenchymal Stem Cells. Toxicol. Res. 2019, 35, 83–91. [Google Scholar] [CrossRef] [Green Version]
  188. Lozano, O.; Silva-Platas, C.; Chapoy-Villanueva, H.; Perez, B.E.; Lees, J.G.; Ramachandra, C.J.A.; Contreras-Torres, F.F.; Lazaro-Alfaro, A.; Luna-Figueroa, E.; Bernal-Ramirez, J.; et al. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Part. Fibre Toxicol. 2020, 17, 15. [Google Scholar] [CrossRef] [PubMed]
  189. Guerrero-Beltran, C.E.; Bernal-Ramirez, J.; Lozano, O.; Oropeza-Almazan, Y.; Castillo, E.C.; Garza, J.R.; Garcia, N.; Vela, J.; Garcia-Garcia, A.; Ortega, E.; et al. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca(2+) handling in adult rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H645–H661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  190. Liu, Y.Q.; Xue, S.M.; Zhang, P.; Xu, L.N.; Wang, D.P.; Li, G.; Cao, J.M. Silica Nanoparticles Disturb Ion Channels and Transmembrane Potentials of Cardiomyocytes and Induce Lethal Arrhythmias in Mice. Int. J. Nanomed. 2020, 15, 7397–7413. [Google Scholar] [CrossRef]
  191. Lee, K.; Lee, J.; Kwak, M.; Cho, Y.L.; Hwang, B.; Cho, M.J.; Lee, N.G.; Park, J.; Lee, S.H.; Park, J.G.; et al. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. J. Nanobiotechnol. 2019, 17, 24. [Google Scholar] [CrossRef] [PubMed]
  192. Wang, D.P.; Wang, Z.J.; Zhao, R.; Lin, C.X.; Sun, Q.Y.; Yan, C.P.; Zhou, X.; Cao, J.M. Silica nanomaterials induce organ injuries by Ca(2+)-ROS-initiated disruption of the endothelial barrier and triggering intravascular coagulation. Part. Fibre Toxicol. 2020, 17, 12. [Google Scholar] [CrossRef] [Green Version]
  193. Yu, Y.; Duan, J.; Yu, Y.; Li, Y.; Liu, X.; Zhou, X.; Ho, K.-f.; Tian, L.; Sun, Z. Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species. J. Hazard. Mater. 2014, 270, 176–186. [Google Scholar] [CrossRef] [PubMed]
  194. Lee, K.I.; Su, C.C.; Fang, K.M.; Wu, C.C.; Wu, C.T.; Chen, Y.W. Ultrafine silicon dioxide nanoparticles cause lung epithelial cells apoptosis via oxidative stress-activated PI3K/Akt-mediated mitochondria- and endoplasmic reticulum stress-dependent signaling pathways. Sci. Rep. 2020, 10, 9928. [Google Scholar] [CrossRef]
  195. Wang, M.; Li, J.; Dong, S.; Cai, X.; Simaiti, A.; Yang, X.; Zhu, X.; Luo, J.; Jiang, L.H.; Du, B.; et al. Silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction. Part. Fibre Toxicol. 2020, 17, 23. [Google Scholar] [CrossRef]
  196. Wu, Y.; Jin, Y.; Sun, T.; Zhu, P.; Li, J.; Zhang, Q.; Wang, X.; Jiang, J.; Chen, G.; Zhao, X. p62/SQSTM1 accumulation due to degradation inhibition and transcriptional activation plays a critical role in silica nanoparticle-induced airway inflammation via NF-kappaB activation. J. Nanobiotechnol. 2020, 18, 77. [Google Scholar] [CrossRef]
  197. Guo, C.; Yang, M.; Jing, L.; Wang, J.; Yu, Y.; Li, Y.; Duan, J.; Zhou, X.; Li, Y.; Sun, Z. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling. Int. J. Nanomed. 2016, 11, 5257–5276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  198. Flores-Lopez, L.Z.; Espinoza-Gomez, H.; Somanathan, R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J. Appl. Toxicol. 2019, 39, 16–26. [Google Scholar] [CrossRef] [Green Version]
  199. Li, Y.; Qin, T.; Ingle, T.; Yan, J.; He, W.; Yin, J.J.; Chen, T. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch. Toxicol. 2017, 91, 509–519. [Google Scholar] [CrossRef]
  200. Mishra, A.R.; Zheng, J.; Tang, X.; Goering, P.L. Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-Dependent. Toxicol. Sci. 2016, 150, 473–487. [Google Scholar] [CrossRef]
  201. Miyayama, T.; Fujiki, K.; Matsuoka, M. Silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells. Toxicol. In Vitro 2018, 46, 148–154. [Google Scholar] [CrossRef]
  202. Skalska, J.; Dabrowska-Bouta, B.; Frontczak-Baniewicz, M.; Sulkowski, G.; Struzynska, L. A Low Dose of Nanoparticulate Silver Induces Mitochondrial Dysfunction and Autophagy in Adult Rat Brain. Neurotox Res. 2020, 38, 650–664. [Google Scholar] [CrossRef] [PubMed]
  203. Lee, Y.-H.; Fang, C.-Y.; Chiu, H.-W.; Cheng, F.-Y.; Tsai, J.-C.; Chen, C.-W.; Wang, Y.-J. Endoplasmic reticulum stress-triggered autophagy and lysosomal dysfunction contribute to the cytotoxicity of amine-modified silver nanoparticles in NIH 3T3 cells. J. Biomed. Nanotechnol. 2017, 13, 778–794. [Google Scholar] [CrossRef]
  204. Demoy, M.; Andreux, J.-P.; Weingarten, C.; Gouritin, B.; Guilloux, V.; Couvreur, P. Spleen capture of nanoparticles: Influence of animal species and surface characteristics. Pharm. Res. 1999, 16, 37–41. [Google Scholar] [CrossRef] [PubMed]
  205. Cataldi, M.; Vigliotti, C.; Mosca, T.; Cammarota, M.; Capone, D. Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes. Int. J. Mol. Sci. 2017, 18, 1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  206. Liu, Y.; Yu, H.; Zhang, X.; Wang, Y.; Song, Z.; Zhao, J.; Shi, H.; Li, R.; Wang, Y.; Zhang, L.W. The protective role of autophagy in nephrotoxicity induced by bismuth nanoparticles through AMPK/mTOR pathway. Nanotoxicology 2018, 12, 586–601. [Google Scholar] [CrossRef]
  207. Alamer, A.; Ali, D.; Alarifi, S.; Alkahtane, A.; Al-Zharani, M.; Abdel-Daim, M.M.; Albasher, G.; Almeer, R.; Al-Sultan, N.K.; Almalik, A.; et al. Bismuth oxide nanoparticles induce oxidative stress and apoptosis in human breast cancer cells. Environ. Sci. Pollut. Res. Int. 2021, 28, 7379–7389. [Google Scholar] [CrossRef]
  208. Hao, B.M.; Liu, Y.N.; Zhang, C.Y.; Li, G.Q.; Wang, W.N.; Xu, W.D.; Zha, Z.B.; Wang, F.; Li, C.; Miao, Z.H.; et al. Autophagic blockage by bismuth sulfide nanoparticles inhibits migration and invasion of HepG2 cells. Nanotechnology 2020, 31, 465102. [Google Scholar] [CrossRef] [PubMed]
  209. Liu, Y.; Zhuang, J.; Zhang, X.; Yue, C.; Zhu, N.; Yang, L.; Wang, Y.; Chen, T.; Wang, Y.; Zhang, L.W. Autophagy associated cytotoxicity and cellular uptake mechanisms of bismuth nanoparticles in human kidney cells. Toxicol. Lett. 2017, 275, 39–48. [Google Scholar] [CrossRef]
  210. Hong, F.; Zhou, Y.; Ye, L.; Ze, Y.; Ji, J.; Zhuang, J.; Wang, L. Wnt Pathway-Mediated Nano TiO2-Induced Toxic Effects on Rat Primary Cultured Sertoli Cells. J. Biomed. Nanotechnol. 2018, 14, 2124–2134. [Google Scholar] [CrossRef]
  211. Hong, F.; Ji, J.; Ze, X.; Zhou, Y.; Ze, Y. Liver Inflammation and Fibrosis Induced by Long-Term Exposure to Nano Titanium Dioxide (TiO2) Nanoparticles in Mice and Its Molecular Mechanism. J. Biomed. Nanotechnol. 2020, 16, 616–625. [Google Scholar] [CrossRef] [PubMed]
  212. Zhou, Y.; Ji, J.; Ji, L.; Wang, L.; Hong, F. Respiratory exposure to nano-TiO2 induces pulmonary toxicity in mice involving reactive free radical-activated TGF-beta/Smad/p38MAPK/Wnt pathways. J. Biomed. Mater. Res. A 2019, 107, 2567–2575. [Google Scholar] [CrossRef] [PubMed]
  213. Hong, F.; Wu, N.; Ge, Y.; Zhou, Y.; Shen, T.; Qiang, Q.; Zhang, Q.; Chen, M.; Wang, Y.; Wang, L.; et al. Nanosized titanium dioxide resulted in the activation of TGF-beta/Smads/p38MAPK pathway in renal inflammation and fibration of mice. J. Biomed. Mater. Res. A 2016, 104, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
  214. Zhang, X.; Yin, H.; Li, Z.; Zhang, T.; Yang, Z. Nano-TiO2 induces autophagy to protect against cell death through antioxidative mechanism in podocytes. Cell Biol. Toxicol. 2016, 32, 513–527. [Google Scholar] [CrossRef]
  215. Lopes, V.R.; Loitto, V.; Audinot, J.N.; Bayat, N.; Gutleb, A.C.; Cristobal, S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J. Nanobiotechnol. 2016, 14, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  216. Popp, L.; Tran, V.; Patel, R.; Segatori, L. Autophagic response to cellular exposure to titanium dioxide nanoparticles. Acta Biomater. 2018, 79, 354–363. [Google Scholar] [CrossRef]
  217. Zhang, Y.; Xu, B.; Yao, M.; Dong, T.; Mao, Z.; Hang, B.; Han, X.; Lin, Z.; Bian, Q.; Li, M.; et al. Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells. Chem. Biol. Interact. 2018, 296, 124–133. [Google Scholar] [CrossRef] [PubMed]
  218. Borisova, T. Nervous System Injury in Response to Contact with Environmental, Engineered and Planetary Micro- and Nano-Sized Particles. Front. Physiol. 2018, 9, 728. [Google Scholar] [CrossRef]
  219. Sun, T.; Yan, Y.; Zhao, Y.; Guo, F.; Jiang, C. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS ONE 2012, 7, e43442. [Google Scholar] [CrossRef]
  220. Zhang, Y.; Sha, R.; Zhang, L.; Zhang, W.; Jin, P.; Xu, W.; Ding, J.; Lin, J.; Qian, J.; Yao, G.; et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat. Commun. 2018, 9, 4236. [Google Scholar] [CrossRef] [Green Version]
  221. Shepard, M.N.; Brenner, S. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication. Ann. Occup. Hyg. 2014, 58, 251–265. [Google Scholar] [CrossRef]
  222. Debia, M.; Bakhiyi, B.; Ostiguy, C.; Verbeek, J.H.; Brouwer, D.H.; Murashov, V. A Systematic Review of Reported Exposure to Engineered Nanomaterials. Ann. Occup. Hyg. 2016, 60, 916–935. [Google Scholar] [CrossRef] [PubMed]
  223. Alimba, C.G.; Faggio, C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019, 68, 61–74. [Google Scholar] [CrossRef] [PubMed]
  224. Schmidt, C.; Krauth, T.; Wagner, S. Export of Plastic Debris by Rivers into the Sea. Environ. Sci. Technol. 2017, 51, 12246–12253. [Google Scholar] [CrossRef] [PubMed]
  225. Gigault, J.; Halle, A.T.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef]
  226. Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 2016, 113, 7–17. [Google Scholar] [CrossRef]
  227. Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
  228. Jin, Y.; Lu, L.; Tu, W.; Luo, T.; Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 2019, 649, 308–317. [Google Scholar] [CrossRef] [PubMed]
  229. Lim, S.L.; Ng, C.T.; Zou, L.; Lu, Y.; Chen, J.; Bay, B.H.; Shen, H.M.; Ong, C.N. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 2019, 13, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
  230. Qiu, Y.; Liu, Y.; Li, Y.; Li, G.; Wang, D. Effect of chronic exposure to nanopolystyrene on nematode Caenorhabditis elegans. Chemosphere 2020, 256, 127172. [Google Scholar] [CrossRef] [PubMed]
  231. Han, S.W.; Choi, J.; Ryu, K.Y. Stress Response of Mouse Embryonic Fibroblasts Exposed to Polystyrene Nanoplastics. Int. J. Mol. Sci. 2021, 22, 2094. [Google Scholar] [CrossRef] [PubMed]
  232. Chiu, H.W.; Xia, T.; Lee, Y.H.; Chen, C.W.; Tsai, J.C.; Wang, Y.J. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 2015, 7, 736–746. [Google Scholar] [CrossRef]
  233. Huang, N.C.; Wann, S.R.; Chang, H.T.; Lin, S.L.; Wang, J.S.; Guo, H.R. Arsenic, vinyl chloride, viral hepatitis, and hepatic angiosarcoma: A hospital-based study and review of literature in Taiwan. BMC Gastroenterol. 2011, 11, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. Hsu, Y.H.; Chuang, H.C.; Lee, Y.H.; Lin, Y.F.; Chiu, Y.J.; Wang, Y.L.; Wu, M.S.; Chiu, H.W. Induction of Fibrosis and Autophagy in Kidney Cells by Vinyl Chloride. Cells 2019, 8, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  235. Hours, M.; Fevotte, J.; Lafont, S.; Bergeret, A. Cancer mortality in a synthetic spinning plant in Besancon, France. Occup. Environ. Med. 2007, 64, 575–581. [Google Scholar] [CrossRef] [Green Version]
  236. Ates, I.; Yucesoy, B.; Yucel, A.; Suzen, S.H.; Karakas, Y.; Karakaya, A. Possible effect of gene polymorphisms on the release of TNFα and IL1 cytokines in coal workers’ pneumoconiosis. Exp. Toxicol. Pathol. 2011, 63, 175–179. [Google Scholar] [CrossRef]
  237. Landrigan, P.J.; Cherniack, M.G.; Lewis, F.A.; Catlett, L.R.; Hornung, R.W. Silicosis in a grey iron foundry: The persistence of an ancient disease. Scand. J. Work Environ. Health 1986, 12, 32–39. [Google Scholar] [CrossRef] [Green Version]
  238. Lauridsen, H.L.; Bonlokke, J.H.; Davidsen, J.R.; Eldahl, F.; Huremovic, J.; Kruger, K.; Omland, O.; Shaker, S.B.; Sherson, D. [Asbestosis and pleural plaques]. Ugeskr. Laeger 2018, 180, V10170773. [Google Scholar] [PubMed]
  239. Yang, H.; Rivera, Z.; Jube, S.; Nasu, M.; Bertino, P.; Goparaju, C.; Franzoso, G.; Lotze, M.T.; Krausz, T.; Pass, H.I. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 12611–12616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  240. Xue, J.; Patergnani, S.; Giorgi, C.; Suarez, J.; Goto, K.; Bononi, A.; Tanji, M.; Novelli, F.; Pastorino, S.; Xu, R. Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proc. Natl. Acad. Sci. USA 2020, 117, 25543–25552. [Google Scholar] [CrossRef]
  241. Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. Int. 2017, 24, 20360–20371. [Google Scholar] [CrossRef]
  242. Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef] [Green Version]
  243. Su, L.; Nan, B.; Craig, N.J.; Pettigrove, V. Temporal and spatial variations of microplastics in roadside dust from rural and urban Victoria, Australia: Implications for diffuse pollution. Chemosphere 2020, 252, 126567. [Google Scholar] [CrossRef]
  244. Chung, Y.-S.; Kim, S.-H.; Jong-Hwa, M.; Kim, Y.-J.; Lim, J.-M.; Lee, J.-H. Analysis of urban dust (PM2/PM10-2) in Daejeon city by instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 2005, 267, 95–107. [Google Scholar] [CrossRef]
  245. Kirwale, S.; Pooladanda, V.; Thatikonda, S.; Murugappan, S.; Khurana, A.; Godugu, C. Selenium nanoparticles induce autophagy mediated cell death in human keratinocytes. Nanomedicine 2019, 14, 1991–2010. [Google Scholar] [CrossRef] [PubMed]
  246. Liu, K.K.; Qiu, W.R.; Naveen Raj, E.; Liu, H.F.; Huang, H.S.; Lin, Y.W.; Chang, C.J.; Chen, T.H.; Chen, C.; Chang, H.C.; et al. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway. Autophagy 2017, 13, 187–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  247. Lin, J.; Liu, Y.; Wu, H.; Huang, Z.; Ma, J.; Guo, C.; Gao, F.; Jin, P.; Wei, P.; Zhang, Y.; et al. Key Role of TFEB Nucleus Translocation for Silver Nanoparticle-Induced Cytoprotective Autophagy. Small 2018, 14, e1703711. [Google Scholar] [CrossRef] [PubMed]
  248. Lorente, J.; Velandia, C.; Leal, J.A.; Garcia-Mayea, Y.; Lyakhovich, A.; Kondoh, H.; ME, L.L. The interplay between autophagy and tumorigenesis: Exploiting autophagy as a means of anticancer therapy. Biol. Rev. Camb. Philos. Soc. 2018, 93, 152–165. [Google Scholar] [CrossRef]
  249. Kisen, G.O.; Tessitore, L.; Costelli, P.; Gordon, P.B.; Schwarze, P.E.; Baccino, F.M.; Seglen, P.O. Reduced autophagic activity in primary rat hepatocellular carcinoma and ascites hepatoma cells. Carcinogenesis 1993, 14, 2501–2505. [Google Scholar] [CrossRef] [PubMed]
  250. Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364. [Google Scholar] [CrossRef] [PubMed]
  251. Nassour, J.; Radford, R.; Correia, A.; Fuste, J.M.; Schoell, B.; Jauch, A.; Shaw, R.J.; Karlseder, J. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 2019, 565, 659–663. [Google Scholar] [CrossRef] [PubMed]
  252. Takamura, A.; Komatsu, M.; Hara, T.; Sakamoto, A.; Kishi, C.; Waguri, S.; Eishi, Y.; Hino, O.; Tanaka, K.; Mizushima, N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011, 25, 795–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  253. Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Investig. 2003, 112, 1809–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  254. Kim, M.S.; Jeong, E.G.; Ahn, C.H.; Kim, S.S.; Lee, S.H.; Yoo, N.J. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum. Pathol. 2008, 39, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
  255. Marino, G.; Salvador-Montoliu, N.; Fueyo, A.; Knecht, E.; Mizushima, N.; Lopez-Otin, C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem. 2007, 282, 18573–18583. [Google Scholar] [CrossRef] [Green Version]
  256. Komata, T.; Kanzawa, T.; Nashimoto, T.; Aoki, H.; Endo, S.; Nameta, M.; Takahashi, H.; Yamamoto, T.; Kondo, S.; Tanaka, R. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J. Neurooncol. 2004, 68, 101–111. [Google Scholar] [CrossRef] [PubMed]
  257. Maiuri, M.C.; Tasdemir, E.; Criollo, A.; Morselli, E.; Vicencio, J.M.; Carnuccio, R.; Kroemer, G. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009, 16, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  258. Bialik, S.; Kimchi, A. Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy. Curr. Opin. Cell Biol. 2010, 22, 199–205. [Google Scholar] [CrossRef]
  259. Rusten, T.E.; Lindmo, K.; Juhasz, G.; Sass, M.; Seglen, P.O.; Brech, A.; Stenmark, H. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev. Cell 2004, 7, 179–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  260. Kung, C.P.; Budina, A.; Balaburski, G.; Bergenstock, M.K.; Murphy, M. Autophagy in tumor suppression and cancer therapy. Crit. Rev. Eukaryot. Gene Expr. 2011, 21, 71–100. [Google Scholar] [CrossRef] [PubMed]
  261. Silva, V.R.; Neves, S.P.; Santos, L.S.; Dias, R.B.; Bezerra, D.P. Challenges and Therapeutic Opportunities of Autophagy in Cancer Therapy. Cancers 2020, 12, 3461. [Google Scholar] [CrossRef]
  262. Park, S.M.; Ou, J.; Chamberlain, L.; Simone, T.M.; Yang, H.; Virbasius, C.M.; Ali, A.M.; Zhu, L.J.; Mukherjee, S.; Raza, A.; et al. U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3’ End Formation. Mol. Cell 2016, 62, 479–490. [Google Scholar] [CrossRef] [Green Version]
  263. Nazio, F.; Bordi, M.; Cianfanelli, V.; Locatelli, F.; Cecconi, F. Autophagy and cancer stem cells: Molecular mechanisms and therapeutic applications. Cell Death Differ. 2019, 26, 690–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  264. Li, X.; Zhou, Y.; Li, Y.; Yang, L.; Ma, Y.; Peng, X.; Yang, S.; Liu, J.; Li, H. Autophagy: A novel mechanism of chemoresistance in cancers. Biomed. Pharmacother. 2019, 119, 109415. [Google Scholar] [CrossRef] [PubMed]
  265. Sanchez Galan, L. Asbestos. Laryngeal cancer. Acta Otorrinolaringol. Esp. 2017, 68, 250. [Google Scholar] [CrossRef] [PubMed]
  266. Muzammil, A.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M. Remediation of wastewater using various nanomaterials. Arab. J. Chem. 2016, 12, 4897–4919. [Google Scholar]
  267. Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
  268. Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
  269. Gies, E.A.; LeNoble, J.L.; Noel, M.; Etemadifar, A.; Bishay, F.; Hall, E.R.; Ross, P.S. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull. 2018, 133, 553–561. [Google Scholar] [CrossRef]
  270. Gundogdu, S.; Cevik, C.; Guzel, E.; Kilercioglu, S. Microplastics in municipal wastewater treatment plants in Turkey: A comparison of the influent and secondary effluent concentrations. Environ. Monit. Assess. 2018, 190, 626. [Google Scholar] [CrossRef]
  271. Enfrin, M.; Dumee, L.F.; Lee, J. Nano/microplastics in water and wastewater treatment processes—Origin, impact and potential solutions. Water Res. 2019, 161, 621–638. [Google Scholar] [CrossRef]
  272. Masia, P.; Sol, D.; Ardura, A.; Laca, A.; Borrell, Y.J.; Dopico, E.; Laca, A.; Machado-Schiaffino, G.; Diaz, M.; Garcia-Vazquez, E. Bioremediation as a promising strategy for microplastics removal in wastewater treatment plants. Mar. Pollut. Bull. 2020, 156, 111252. [Google Scholar] [CrossRef] [PubMed]
  273. Wang, Y.; Guo, L.; Qi, P.; Liu, X.; Wei, G. Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review. Nanomaterials 2019, 9, 1123. [Google Scholar] [CrossRef] [Green Version]
  274. Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  275. Poerio, T.; Piacentini, E.; Mazzei, R. Membrane Processes for Microplastic Removal. Molecules 2019, 24, 4148. [Google Scholar] [CrossRef] [Green Version]
  276. Urbanek, A.K.; Rymowicz, W.; Mironczuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef] [Green Version]
  277. Brandon, A.M.; Gao, S.H.; Tian, R.; Ning, D.; Yang, S.S.; Zhou, J.; Wu, W.M.; Criddle, C.S. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environ. Sci. Technol. 2018, 52, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
  278. Papadopoulou, A.; Hecht, K.; Buller, R. Enzymatic PET Degradation. Chimia 2019, 73, 743–749. [Google Scholar] [CrossRef]
  279. Gambarini, V.; Pantos, O.; Kingsbury, J.M.; Weaver, L.; Handley, K.M.; Lear, G. Phylogenetic Distribution of Plastic-Degrading Microorganisms. mSystems 2021, 6. [Google Scholar] [CrossRef] [PubMed]
  280. Satti, S.M.; Shah, A.A. Polyester-based biodegradable plastics: An approach towards sustainable development. Lett. Appl. Microbiol. 2020, 70, 413–430. [Google Scholar] [CrossRef] [PubMed]
  281. Zhu, J.; Wang, C. Biodegradable plastics: Green hope or greenwashing? Mar. Pollut. Bull. 2020, 161, 111774. [Google Scholar] [CrossRef] [PubMed]
  282. Senturk, G.; Dumludag, D. An evaluation of the effect of plastic bag fee on consumer behavior: Case of Turkey. Waste Manag. 2021, 120, 748–754. [Google Scholar] [CrossRef]
  283. Martinho, G.; Balaia, N.; Pires, A. The Portuguese plastic carrier bag tax: The effects on consumers’ behavior. Waste Manag. 2017, 61, 3–12. [Google Scholar] [CrossRef] [PubMed]
  284. Wagner, T.P. Reducing single-use plastic shopping bags in the USA. Waste Manag. 2017, 70, 3–12. [Google Scholar] [CrossRef]
  285. Clayton, C.A.; Walker, T.R.; Bezerra, J.C.; Adam, I. Policy responses to reduce single-use plastic marine pollution in the Caribbean. Mar. Pollut. Bull. 2021, 162, 111833. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Schematic picture of several major endocytosis pathways for micro- and nanosized substances (MSs and NSs). MSs and NSs employ one or multiple endocytosis pathways to enter cells. The main endocytosis pathways of MSs or NSs include clathrin-mediated endocytosis, caveolae/lipid raft-mediated endocytosis, clathrin- and caveolin-independent endocytosis, macropinocytosis and phagocytosis. The possible mechanisms by which MSs and NSs modulate several cell responses, such as ER-stress, mitochondrial damage, lysosome dysfunction, ROS production, and autophagy, are summarized. MSs: Micro-sized substances; NSs: Nanosized substances.
Figure 1. Schematic picture of several major endocytosis pathways for micro- and nanosized substances (MSs and NSs). MSs and NSs employ one or multiple endocytosis pathways to enter cells. The main endocytosis pathways of MSs or NSs include clathrin-mediated endocytosis, caveolae/lipid raft-mediated endocytosis, clathrin- and caveolin-independent endocytosis, macropinocytosis and phagocytosis. The possible mechanisms by which MSs and NSs modulate several cell responses, such as ER-stress, mitochondrial damage, lysosome dysfunction, ROS production, and autophagy, are summarized. MSs: Micro-sized substances; NSs: Nanosized substances.
Ijms 22 04787 g001
Figure 2. Schematic picture of the macroautophagy process. MNs and NSs, including protein aggregates, damaged organs, plastics particles, dust, and silica are shown. LC3-II, Beclin 1, and p62 conjugate enzymes generate the phagophore form and then the surrounding MNs and NSs during the elongation stage. At the end of the elongation stage, the membrane is sealed to form a double-membrane vesicle, called the autophagosome, which contains degraded cellular enzymes. The autophagosome fuses with a lysosome, forming an autolysosome in which lysosomal enzymes degrade the cargo and release the degraded products into the cytoplasm. Undecomposed MSs and NSs, such as dust and silica, have carcinogenic potential.
Figure 2. Schematic picture of the macroautophagy process. MNs and NSs, including protein aggregates, damaged organs, plastics particles, dust, and silica are shown. LC3-II, Beclin 1, and p62 conjugate enzymes generate the phagophore form and then the surrounding MNs and NSs during the elongation stage. At the end of the elongation stage, the membrane is sealed to form a double-membrane vesicle, called the autophagosome, which contains degraded cellular enzymes. The autophagosome fuses with a lysosome, forming an autolysosome in which lysosomal enzymes degrade the cargo and release the degraded products into the cytoplasm. Undecomposed MSs and NSs, such as dust and silica, have carcinogenic potential.
Ijms 22 04787 g002
Figure 3. Schematic picture of undecomposed MSs and NSs causing diseases. MSs and NSs can cause obstruction, inflammation, and accumulation in organs. MSs and NSs, such as dust, silica, asbestos, plastics MSs, and PM2.5, have been found to be related to diseases in previous studies.
Figure 3. Schematic picture of undecomposed MSs and NSs causing diseases. MSs and NSs can cause obstruction, inflammation, and accumulation in organs. MSs and NSs, such as dust, silica, asbestos, plastics MSs, and PM2.5, have been found to be related to diseases in previous studies.
Ijms 22 04787 g003
Table 1. MSs & NSs of autophagy-related responses in cells or tissues.
Table 1. MSs & NSs of autophagy-related responses in cells or tissues.
MSs & NSsAutophagy-Related Responses
or Increasing Markers
Cells or TissuesReference
Magnetic nanoparticlesAutophagy markers: Atg5, Atg12, and LC3In vitro: Human lung adenocarcinoma cells
(A549) and human lung fibroblast cells (IMR-90)
[154]
Manganese nanoparticlesAutophagy markers: Beclin 1, and LC3In vitro: Rat mesencephalic dopaminergic cells
(N27)
[158]
Quantum dotsAutophagy markers: p62 and LC3In vitro: Rat adrenal medulla
pheochromocytoma cells (PC12)
[161]
Autophagy marker: LC3In vitro: Porcine renal proximal cell line
(LLC-PK1)
[162]
Graphene oxide quantum dotsAutophagy markers: p62 and LC3In vitro: Mouse reproductive cells
(GC-2 and TM4 cells)
[163]
Graphene oxideAutophagy markers: p62 and LC3In vitro: Rat glioblastoma cells
(F98)
[164]
Particulate matter 2.5
(PM2.5)
Autophagy markers: Beclin 1, ULK-1, and LC3In vitro: Human bronchial epithelial cells (BEAS-2B)[167]
Autophagy markers: Beclin 1, ATG5,ULK-1, and LC3In vitro: Monocytic leukemia cells (THP-1)[168]
Autophagy-mediated cell deathIn vitro: Human bronchial epithelium cells
(BEAS-2B)
[170]
Autophagy markers: p62 and LC3In vivo: Liver of C57BL/6 mice[173]
Autophagy markers: ATG5, VSP34, Beclin 1, and LC3In vivo: Spleen of Sprague Dawley (SD) rats[174]
Autophagy markers: p62, Beclin 1, and LC3In vitro: Human kidney tubular epithelial cells
(HK-2)
[175]
In vivo: Kidney of SD rat
Diesel exhaust particles (DEP)Autophagy markers: p62, Beclin 1, and LC3In vitro: Human kidney tubular epithelial cells (HK-2)[179]
In vivo: Kidney of SD rat
Zinc oxide (ZnO)
nanoparticles
Autophagy markers: p62 and LC3In vitro: Human cervical cancer cells (HeLa cells)[180]
Autophagy marker: LC3[181]
Autophagy marker: LC3In vitro: Human ovarian cancer cells (SKOV3)[182]
Autophagy markers: p62 and LC3In vitro: Human epidermal keratinocytes (HEKn)[183]
Autophagy marker LC3A
and autophagic cell death
In vitro: Human T lymphoblast cells (SupT1 and Jurkat cells), C57BL/6 mouse primary splenocytes and primary human T-cells[184]
Autophagic cell deathIn vitro: Rat adrenal medulla
pheochromocytoma cells (PC12 cells)
[185]
Autophagy marker: LC3In vitro: Primary murine astrocytes[186]
Silica nanoparticlesAutophagy marker: LC3
and autophagic cell death
In vitro: Human liver cancer cells (HepG2 cells)[193]
Autophagy marker: P62In vitro: Human bronchial epithelial cells
(BEAS-2B)
[196]
In vivo: Lung of Bltw:CD1 (ICR) mice
Autophagy markers: p62 and LC3Human umbilical vein endothelial cells (HUVECs)[197]
Silver nanoparticlesAutophagy markers: LC3In vitro: Human liver cancer cells (HepG2 cells)[200]
Autophagy markers: p62 and LC3In vitro: Human lung adenocarcinoma cells
(A549)
[201]
Autophagy markers: Beclin 1 and LC3In vivo: Adult brain of Wistar rat[202]
Autophagy markers: P62 and LC3In vitro: Mouse embryonic fibroblast cells
(NIH 3T3 cells)
[203]
Bismuth nanoparticlesAutophagy markers: Atg12, Beclin 1, and LC3In vitro: Human embryonic kidney 293 cells (HEK293)[204]
In vivo: Kidney of BALB/c mice
Autophagy marker: p62In vitro: Human liver cancer cells (HepG2 cells)[208]
Autophagy associated cytotoxicityIn vitro: Human embryonic kidney 293 cells (HEK293)[209]
Nanosized titanium dioxide(Nano TiO2)Autophagy markers: Beclin 1, p62, and LC3In vitro: Mouse podocyte cells (MPCs)[214]
Autophagy marker: LC3In vitro: Human keratinocytes (HaCaT cells)[215]
Autophagy marker: LC3In vitro: Human cervical cancer cells (HeLa cells)[216]
Autophagy markers: p62, LC3
and autophagic cell death
In vitro: Human trophoblast cells
(HTR-8/SVneo cells)
[217]
Copper oxide nanoparticlesAutophagic cell deathIn vitro: Human lung adenocarcinoma cells
(A549)
[219]
Polystyrene (PS) nanoplasticsEndoplasmic Reticulum(ER) stress-mediated
autophagy marker: LC3
In vitro: Human bronchial epithelial cells
(BEAS-2B)
[229]
Autophagic marker: LC3BIn vitro: Mouse embryonic fibroblasts (MEFs)[231]
Autophagy markers: p62, Beclin 1, and LC3In vitro: Mouse macrophage-like cells (RAW 264.7) and human bronchial epithelial cells (BEAS-2B)[232]
Vinyl chloride (VC)Autophagy markers: Beclin 1 and LC3In vitro: Human kidney tubular epithelial cells (HK-2)[234]
In vivo: Kidney of C57BL/6 mice
AsbestosAutophagy markers: ATG5, p62,
Beclin 1, and LC3
In vitro: Primary human mesothelial cells (HM)[240]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wang, Y.-L.; Zheng, C.-M.; Lee, Y.-H.; Cheng, Y.-Y.; Lin, Y.-F.; Chiu, H.-W. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int. J. Mol. Sci. 2021, 22, 4787. https://doi.org/10.3390/ijms22094787

AMA Style

Wang Y-L, Zheng C-M, Lee Y-H, Cheng Y-Y, Lin Y-F, Chiu H-W. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. International Journal of Molecular Sciences. 2021; 22(9):4787. https://doi.org/10.3390/ijms22094787

Chicago/Turabian Style

Wang, Yung-Li, Cai-Mei Zheng, Yu-Hsuan Lee, Ya-Yun Cheng, Yuh-Feng Lin, and Hui-Wen Chiu. 2021. "Micro- and Nanosized Substances Cause Different Autophagy-Related Responses" International Journal of Molecular Sciences 22, no. 9: 4787. https://doi.org/10.3390/ijms22094787

APA Style

Wang, Y. -L., Zheng, C. -M., Lee, Y. -H., Cheng, Y. -Y., Lin, Y. -F., & Chiu, H. -W. (2021). Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. International Journal of Molecular Sciences, 22(9), 4787. https://doi.org/10.3390/ijms22094787

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop