“Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites
Abstract
:1. Introduction
2. Chemicals and Experiments
2.1. Chemicals
2.2. Instruments
2.3. Preparation of NPCDs
2.4. Synthesis of NPCD–AuNP Composites
2.5. Fluorescence Sensing of GSH
2.6. Detection of GSH in Human Serum
2.7. Selectivity
3. Results and Discussion
3.1. Characterization of NPCDs-AuNPs Composites
3.2. Detection of GSH
3.2.1. Mechanism of Sensing
3.2.2. GSH Sensing
3.2.3. Sensing in Serum
3.2.4. Selectivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saydam, N.; Kirb, A.; Demir, O.; Hazan, E.; Oto, O.; Saydam, O.; Guner, G. Determination of glutathione, glutathione reductase, glutathione peroxidase and glutathione S-transferase levels in human lung cancer tissues. Cancer Lett. 1997, 119, 13–19. [Google Scholar] [CrossRef]
- Tsiasioti, A.; Tzanavaras, P.D. Determination of glutathione and glutathione disulfide using zone fluidics and fluorimetric detection. Talanta 2021, 222, 121559. [Google Scholar] [CrossRef]
- Sen, C.K. Nutritional biochemistry of cellular glutathione. J. Nutr. Biochem. 1997, 8, 660–672. [Google Scholar] [CrossRef]
- Torres, S.; Matías, N.; Baulies, A.; Nuñez, S.; Alarcon-Vila, C.; Martinez, L.; Nuño, N.; Fernandez, A.; Caballeria, J.; Levade, T.; et al. Mitochondrial GSH replenishment as a potential therapeutic approach for niemann pick type C disease. Redox Biol. 2017, 11, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Liang, Z.; Luan, D.; Liu, X.; Xu, K.; Tang, B. A glutathione (GSH)-responsive near-infrared (NIR) theranostic prodrug for cancer therapy and imaging. Anal. Chem. 2016, 88, 6450–6456. [Google Scholar] [CrossRef]
- Giustarini, D.; Dalle-Donne, I.; Colombo, R.; Milzani, A.; Rossi, R. An improved HPLC measurement for GSH and GSSG in human blood. Free Radic. Biol. Med. 2003, 35, 1365–1372. [Google Scholar] [CrossRef]
- Noh, H.-B.; Chandra, P.; Moon, J.O.; Shim, Y.-B. In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials 2012, 33, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Deng, W.; Liu, H.; Ge, S.; Yan, M. Turn-on fluorescence sensor for glutathione in aqueous solutions using carbon dots–MnO2 nanocomposites. Sens. Actuators B 2015, 216, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.-J.; Zhu, R.-H.; Cosnier, S.; Zhang, X.-J.; Shan, D. Ferrocyanide-ferricyanide redox couple induced electrochemiluminescence amplification of carbon dots for ultrasensitive sensing of glutathione. Anal. Chem. 2015, 87, 11150–11156. [Google Scholar] [CrossRef]
- Saha, A.; Jana, N.R. Detection of cellular glutathione and oxidized glutathione using magnetic—Plasmonic nanocomposite-based “turn-off” surface enhanced raman scattering. Anal. Chem. 2013, 85, 9221–9228. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yokoyama, K. Development of functional fluorescent molecular probes for the detection of biological substances. Biosensors 2015, 5, 337–363. [Google Scholar] [CrossRef] [Green Version]
- Sauer, M. Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew. Chem. Int. Ed. 2003, 42, 1790–1793. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Pandzic, E.; Nicovich, P.R.; Yamamoto, Y.; Kwiatek, J.; Pageon, S.V.; Benda, A.; Rossy, J.; Gaus, K. An intermolecular FRET sensor detects the dynamics of T cell receptor clustering. Nat. Commun. 2017, 8, 15100. [Google Scholar] [CrossRef] [Green Version]
- Al-Hashimi, B.; Omer, K.M.; Rahman, H.S. Inner filter effect (IFE) as a simple and selective sensing platform for detection of tetracycline using milk-based nitrogen-doped carbon nanodots as fluorescence probe. Arab. J. Chem. 2020, 13, 5151–5159. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Mishra, A.K. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photochem. Photobiol. C Photochem. Rev. 2019, 41, 100318. [Google Scholar] [CrossRef]
- Chang, H.C.; Ho, J.A.A. Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal. Chem. 2015, 87, 10362–10367. [Google Scholar] [CrossRef]
- Yan, X.; Li, H.X.; Han, X.S.; Su, X.G. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens. Bioelectron. 2015, 74, 277–283. [Google Scholar] [CrossRef]
- He, H.R.; Li, H.; Mohr, G.; Kovacs, B.; Werner, T.; Wolfbeis, O.S. Novel type of ion-selective fluorosensor based on the inner filter effect—An optrode for potassium. Anal. Chem. 1993, 65, 123–127. [Google Scholar] [CrossRef]
- Le, T.H.; Lee, H.J.; Kim, J.H.; Park, S.J. Detection of ferric ions and catecholamine neurotransmitters via highly fluorescent heteroatom co-doped carbon dots. Sensors 2020, 20, 3470. [Google Scholar] [CrossRef]
- Ming, F.L.; Hou, J.Z.; Hou, C.J.; Yang, M.; Wang, X.F.; Li, J.W.; Huo, D.Q.; He, Q. One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water. Spectroc. Acta Part A-Molec. Biomolec. Spectr. 2019, 222, 117165. [Google Scholar] [CrossRef]
- Vilela, D.; González, M.C.; Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal. Chim. Acta 2012, 751, 24–43. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Koduru, J.R.; Desai, M.L.; Park, T.J.; Singhal, R.K.; Basu, H. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. TrAC Trends Anal. Chem. 2018, 105, 106–120. [Google Scholar] [CrossRef]
- Kateshiya, M.R.; George, G.; Rohit, J.V.; Malek, N.I.; Kumar Kailasa, S. Ractopamine as a novel reagent for the fabrication of gold nanoparticles: Colorimetric sensing of cysteine and Hg2+ ion with different spectral characteristics. Microchem. J. 2020, 158, 105212. [Google Scholar] [CrossRef]
- Qin, X.; Yuan, C.; Chen, Y.; Wang, Y. A fluorescein—Gold nanoparticles probe based on inner filter effect and aggregation for sensing of biothiols. J. Photochem. Photobiol. B 2020, 210, 111986. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Y.-L.; Wang, J.-H. Inner filter effect-based fluorescent sensing systems: A review. Anal. Chim. Acta 2018, 999, 13–26. [Google Scholar] [CrossRef]
- Lu, H.Z.; Quan, S.; Xu, S.F. Highly sensitive ratiometric fluorescent sensor for trinitrotoluene based on the inner filter effect between gold nanoparticles and fluorescent nanoparticles. J. Agric. Food. Chem. 2017, 65, 9807–9814. [Google Scholar] [CrossRef] [PubMed]
- Sajwan, R.K.; Lakshmi, G.; Solanki, P.R. Fluorescence tuning behavior of carbon quantum dots with gold nanoparticles via novel intercalation effect of aldicarb. Food Chem. 2021, 340, 127835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q.; Zhang, X.Y.; Luo, Y.X.; Li, Y.S.; Zhao, Y.; Gao, X.F. A flow injection fluorescence “turn-on” sensor for the determination of metformin hydrochloride based on the inner filter effect of nitrogen-doped carbon dots/gold nanoparticles double-probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 250, 119384. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, L.; Yu, S.H. A selective sensor for cyanide ion (CN-) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore. Sci. Bull. 2015, 60, 785–791. [Google Scholar] [CrossRef]
- Singh, I.; Arora, R.; Dhiman, H.; Pahwa, R. Carbon quantum dots: Synthesis, characterization and biomedical applications. Turkish J. Pharm. Sci. 2018, 15, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; Chen, T.; Gooding, J.J.; Liu, J.Q. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef]
- Ma, J.L.; Yin, B.C.; Wu, X.; Ye, B.C. Simple and cost-effective glucose detection based on carbon nanodots supported on silver nanoparticles. Anal. Chem. 2017, 89, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Seth, R.; Kumar, H. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Anal. Biochem. 2014, 456, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zheng, Y.; Song, C.; Lu, L.Q.; Tian, X.K.; Xu, A.W. Selective and sensitive colorimetric detection of copper ions based on anti-aggregation of the glutathione-induced aggregated gold nanoparticles and its application for determining sulfide anions. RSC Adv. 2013, 3, 21424–21430. [Google Scholar] [CrossRef]
- Amjadi, M.; Hallaj, T.; Manzoori, J.L.; Shahbazsaghir, T. An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 223–228. [Google Scholar] [CrossRef]
- Wang, W.J.; Peng, J.W.; Li, F.M.; Su, B.Y.; Chen, X.; Chen, X.M. Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions. Microchim. Acta 2019, 186, 32. [Google Scholar] [CrossRef] [PubMed]
- Borse, V.; Konwar, A.N. Synthesis and characterization of gold nanoparticles as a sensing tool for the lateral flow immunoassay development. Sens. Int. 2020, 1, 100051. [Google Scholar] [CrossRef]
- Xu, Q.; Li, B.F.; Ye, Y.C.; Cai, W.; Li, W.J.; Yang, C.Y.; Chen, Y.S.; Xu, M.; Li, N.; Zheng, X.S.; et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res. 2018, 11, 3691–3701. [Google Scholar] [CrossRef]
- Basu, S.; Pal, T. Glutathione-induced aggregation of gold nanoparticles: Electromagnetic interactions in a closely packed assembly. J. Nanosci. Nanotechnol. 2007, 7, 1904–1910. [Google Scholar] [CrossRef] [PubMed]
- Vobornikova, I.; Pohanka, M. Smartphone-based colorimetric detection of glutathione. Neuro Endocrinol. Lett. 2016, 37, 139–143. [Google Scholar]
- Wang, Q.; Li, L.F.; Wang, X.D.; Dong, C.; Shuang, S.M. Graphene quantum dots wrapped square-plate-like MnO2 nanocomposite as a fluorescent turn-on sensor for glutathione. Talanta 2020, 219, 121180. [Google Scholar] [CrossRef]
- Zheng, C.; Ding, L.; Wu, Y.N.; Tan, X.H.; Zeng, Y.Y.; Zhang, X.L.; Liu, X.L.; Liu, J.F. A near-infrared turn-on fluorescence probe for glutathione detection based on nanocomposites of semiconducting polymer dots and MnO2 nanosheets. Anal. Bioanal. Chem. 2020, 412, 8167–8176. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.Y.; Wang, H.Q.; Du, Y.X.; Yang, F.; Yang, L.; Jiang, C.L. Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: Visual monitoring of glutathione in human serum for health prognosis. ACS Sustain. Chem. Eng. 2020, 8, 8175–8183. [Google Scholar] [CrossRef]
- Anik, U.; Cubukcu, M.; Ertas, F.N. An effective electrochemical biosensing platform for the detection of reduced glutathione. Artif. Cells Nanomed. Biotechnol. 2016, 44, 971–977. [Google Scholar] [CrossRef]
- Rawat, B.; Mishra, K.K.; Barman, U.; Arora, L.; Pal, D.; Paily, R.P. Two-dimensional MoS2-based electrochemical biosensor for highly selective detection of glutathione. IEEE Sens. J. 2020, 20, 6937–6944. [Google Scholar] [CrossRef]
- Barman, U.; Mukhopadhyay, G.; Goswami, N.; Ghosh, S.S.; Paily, R.P. Detection of glutathione by glutathione-S-transferase-nanoconjugate ensemble electrochemical device. IEEE Trans. Nanobiosci. 2017, 16, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhao, P.; Zhang, S.S.; Huo, G.A.; Suo, Z.C.; Yue, Z.; Zhang, S.M.; Huang, W.P.; Zhu, B.L. Platinum and iridium oxide Co-modified TiO2 nanotubes array based photoelectrochemical sensors for glutathione. Nanomaterials 2020, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, P.; Xu, H.; Zhang, H.; Zhong, X.H. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Analyst 2011, 136, 196–200. [Google Scholar] [CrossRef]
- Díaz-Cruz, M.S.; Mendieta, J.; Tauler, R.; Esteban, M. Cadmium-binding properties of glutathione: A chemometrical analysis of voltammetric data. J. Inorg. Biochem. 1997, 66, 29–36. [Google Scholar] [CrossRef]
- Han, B.; Yuan, J.; Wang, E. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the cdte quantum dots−Hg(II) system. Anal. Chem. 2009, 81, 5569–5573. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.F.; Dong, C.Q.; Weng, J.F.; Ren, J.C. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small 2006, 2, 747–751. [Google Scholar] [CrossRef] [PubMed]
Method | Linear Range | LOD | Reference |
---|---|---|---|
Colorimetric | 0.03 mM | [40] | |
Fluorescence | 0.07–70 µM | 48 nM | [41] |
Fluorescence | 0.5–300 µM | 0.26 µM | [42] |
Fluorescence | 0–50 µM | 0.19 µM | [43] |
Electrochemical | 10–250 µM | 25 µM | [44] |
Electrochemical | 10 µM–500 mM | 703 nM | [45] |
Electrochemical | 100 nM–10 mM | 41.9 nM | [46] |
Photoelectrochemical | 1–10 µM | 0.8 µM | [47] |
Fluorescence | 10–20 µM | 0.1 µM | Our method |
Sample | Added (µM) | Founded (µM) | Recovery (%) | RSD (n = 3) | |
1 | 10 | 9.07 | 90.74 | 2.27 | |
2 | 30 | 31.49 | 104.96 | 4.54 | |
3 | 80 | 78.19 | 97.73 | 2.75 | |
4 | 100 | 95.43 | 95.43 | 4.35 | |
5 | 120 | 128.45 | 107.04 | 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.-H.; Kim, J.-H.; Park, S.-J. “Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites. Int. J. Mol. Sci. 2022, 23, 190. https://doi.org/10.3390/ijms23010190
Le T-H, Kim J-H, Park S-J. “Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites. International Journal of Molecular Sciences. 2022; 23(1):190. https://doi.org/10.3390/ijms23010190
Chicago/Turabian StyleLe, Thi-Hoa, Ji-Hyeon Kim, and Sang-Joon Park. 2022. "“Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites" International Journal of Molecular Sciences 23, no. 1: 190. https://doi.org/10.3390/ijms23010190
APA StyleLe, T.-H., Kim, J.-H., & Park, S.-J. (2022). “Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites. International Journal of Molecular Sciences, 23(1), 190. https://doi.org/10.3390/ijms23010190