The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis
Abstract
:1. Introduction
2. PET
2.1. Demyelination
2.1.1. Specific Quantification of Myelin Is Feasible with Various PET Tracers
2.1.2. Sensitive Characterization of Myelin Kinetic with PET Tracers Helps to Assess Remyelination
2.1.3. Imaging Remyelination Outside of MS Lesions
2.1.4. Novel Myelin-PET Tracers
2.1.5. Tightening the Clinical–Pathological Correlation between Remyelination and Clinical Outcomes
2.2. Inflammation
2.2.1. PET Imaging of Activated Macrophages and Microglia
2.2.2. Characterization of Chronic Inflammation Inside and Outside MS Lesions
2.2.3. Reinforcing the Association of Chronic Neuroinflammation and Disease Progression
2.2.4. TSPO PET as a Biomarker for Novel Drug Development
2.2.5. Promising Novel PET-Tracers of Neuroinflammation in the Development
2.3. Neurodegeneration
2.3.1. Fluorodeoxyglucose (FDG)-PET Is a Robust but Nonspecific Marker of Neurodegeneration
2.3.2. Investigating Synapse Dynamics In Vivo
2.4. Summary
3. Sodium MRI (NaMRI)
3.1. NaMRI as a Molecular Biomarker of Neuroaxonal Integrity in MS and Other Diseases
3.2. Neuroinflammation and NaMRI
3.3. Dissecting Effect of Neuroinflammation and Neurodegeneration on NaMRI and Their Association to Meaningful Clinical Outcomes
3.4. Summary
4. MRS
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Popescu, B.F.G.; Lucchinetti, C.F. Pathology of Demyelinating Diseases. Annu. Rev. Pathol. Mech. Dis. 2012, 7, 185–217. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.; et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Ortiz, G.G.; Pacheco-Moisés, F.P.; Macías-Islas, M.Á.; Flores-Alvarado, L.J.; Mireles-Ramírez, M.A.; González-Renovato, E.D.; Hernández-Navarro, V.E.; Sánchez-López, A.L.; Alatorre-Jiménez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 2014, 45, 687–697. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Ludwin, S.; Prat, A.; Antel, J.; Brück, W.; Lassmann, H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017, 133, 13–24. [Google Scholar] [CrossRef]
- Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef] [Green Version]
- Lassmann, H. Multiple Sclerosis Pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [Google Scholar] [CrossRef] [Green Version]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Vollmer, T.L.; Nair, K.V.; Williams, I.M.; Alvarez, E. Multiple Sclerosis Phenotypes as a Continuum: The Role of Neurologic Reserve. Neurology 2021, 11, 342–351. [Google Scholar] [CrossRef]
- Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res. 2014, 79, 1–12. [Google Scholar] [CrossRef]
- Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015, 14, 183–193. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Ranzenberger, L.R.; Snyder, T. Diffusion Tensor Imaging. StatPearls 2019. [Google Scholar]
- Mancini, M.; Karakuzu, A.; Cohen-Adad, J.; Cercignani, M.; Nichols, T.E.; Stikov, N. An interactive meta-analysis of MRI biomarkers of Myelin. Elife 2020, 9, e61523. [Google Scholar] [CrossRef]
- Kuhle, J.; Kropshofer, H.; Haering, D.A.; Kundu, U.; Meinert, R.; Barro, C.; Dahlke, F.; Tomic, D.; Leppert, D.; Kappos, L. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 2019, 92, e1007–e1015. [Google Scholar] [CrossRef]
- Stankoff, B.; Wang, Y.; Bottlaender, M.; Aigrot, M.-S.; Dolle, F.; Wu, C.; Feinstein, D.; Huang, G.-F.; Semah, F.; Mathis, C.A.; et al. Imaging of CNS myelin by positron-emission tomography. Proc. Natl. Acad. Sci. USA 2006, 103, 9304–9309. [Google Scholar] [CrossRef] [Green Version]
- Stankoff, B.; Poirion, E.; Tonietto, M.; Bodini, B. Exploring the heterogeneity of MS lesions using positron emission tomography: A reappraisal of their contribution to disability. Brain Pathol. 2018, 28, 723–734. [Google Scholar] [CrossRef]
- Klunk, W.E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D.P.; Bergström, M.; Savitcheva, I.; Huang, G.-F.; Estrada, S.; et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004, 55, 306–319. [Google Scholar] [CrossRef]
- Stankoff, B.; Freeman, L.; Aigrot, M.S.; Chardain, A.; Dollé, F.; Williams, A.; Galanaud, D.; Armand, L.; Lehericy, S.; Lubetzki, C.; et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4-methylaminophenyl)- 6-hydroxybenzothiazole. Ann. Neurol. 2011, 69, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Bodini, B.; Veronese, M.; García-Lorenzo, D.; Battaglini, M.; Poirion, E.; Chardain, A.; Freeman, L.; Louapre, C.; Tchikviladze, M.; Papeix, C.; et al. Dynamic Imaging of Individual Remyelination Profiles in Multiple Sclerosis. Ann. Neurol. 2016, 79, 726–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeydan, B.; Lowe, V.J.; Schwarz, C.G.; Przybelski, S.A.; Tosakulwong, N.; Zuk, S.M.; Senjem, M.L.; Gunter, J.L.; Roberts, R.O.; Mielke, M.M.; et al. Pittsburgh compound-B PET white matter imaging and cognitive function in late multiple sclerosis. Mult. Scler. J. 2018, 24, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, A.; Giordano, B.; Dervenoulas, G.; Wilson, H.; Veronese, M.; Chappell, Z.; Polychronis, S.; Pagano, G.; Mackewn, J.; Turkheimer, F.E.; et al. [18F]Florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matías-Guiu, J.A.; Cabrera-Martín, M.N.; Matías-Guiu, J.; Oreja-Guevara, C.; Riola-Parada, C.; Moreno-Ramos, T.; Arrazola, J.; Carreras, J.L. Amyloid PET imaging in multiple sclerosis: An 18F-florbetaben study. BMC Neurol. 2015, 15, 243. [Google Scholar] [CrossRef] [Green Version]
- de Paula Faria, D.; Copray, S.; Sijbesma, J.W.A.; Willemsen, A.T.M.; Buchpiguel, C.A.; Dierckx, R.A.J.O.; de Vries, E.F.J. PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: Comparison of [11C]MeDAS, [11C]CIC and [11C]PIB. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 995–1003. [Google Scholar] [CrossRef]
- de Paula Faria, D.; de Vries, E.F.; Sijbesma, J.W.; Dierckx, R.A.; Buchpiguel, C.A.; Copray, S. PET imaging of demyelination and remyelination in the cuprizone mouse model for multiple sclerosis: A comparison between [11C]CIC and [11C]MeDAS. Neuroimage 2013, 87, 395–402. [Google Scholar] [CrossRef]
- Zeydan, B.; Lowe, V.J.; Reichard, R.R.; Przybelski, S.A.; Lesnick, T.G.; Schwarz, C.G.; Senjem, M.L.; Gunter, J.L.; Parisi, J.E.; Machulda, M.M.; et al. Imaging Biomarkers of Alzheimer Disease in Multiple Sclerosis. Ann. Neurol. 2020, 87, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Zeydan, B.; Lowe, V.J.; Reichard, R.R.; Przybelski, S.A.; Lesnick, T.G.; Schwarz, C.G.; Senjem, M.L.; Gunter, J.L.; Parisi, J.E.; Machulda, M.M.; et al. Multiple sclerosis is associated with lower amyloid but normal tau burden on PET. Alzheimer’s Dement. 2020, 16, e039179. [Google Scholar] [CrossRef]
- Zeydan, B.; Schwarz, C.G.; Lowe, V.J.; Reid, R.I.; Przybelski, S.A.; Lesnick, T.G.; Kremers, W.K.; Senjem, M.L.; Gunter, J.L.; Min, H.K.; et al. Investigation of white matter PiB uptake as a marker of white matter integrity. Ann. Clin. Transl. Neurol. 2019, 6, 678–688. [Google Scholar] [CrossRef]
- Schubert, J.J.; Veronese, M.; Marchitelli, L.; Bodini, B.; Tonietto, M.; Stankoff, B.; Brooks, D.J.; Bertoldo, A.; Edison, P.; Turkheimer, F.E. Dynamic 11 C-PiB PET Shows Cerebrospinal Fluid Flow Alterations in Alzheimer Disease and Multiple Sclerosis. J. Nucl. Med. 2019, 60, 1452–1460. [Google Scholar] [CrossRef] [Green Version]
- Auvity, S.; Tonietto, M.; Caillé, F.; Bodini, B.; Bottlaender, M.; Tournier, N.; Kuhnast, B.; Stankoff, B. Repurposing radiotracers for myelin imaging: A study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 490–501. [Google Scholar] [CrossRef]
- Zhang, M.; Ni, Y.; Zhou, Q.; He, L.; Meng, H.; Gao, Y.; Huang, X.; Meng, H.; Li, P.; Chen, M.; et al. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: A longitudinal study. EClinicalMedicine 2021, 37, 100982. [Google Scholar] [CrossRef]
- Boccardi, M.; Altomare, D.; Ferrari, C.; Festari, C.; Guerra, U.P.; Paghera, B.; Pizzocaro, C.; Lussignoli, G.; Geroldi, C.; Zanetti, O.; et al. Assessment of the Incremental Diagnostic Value of Florbetapir F 18 Imaging in Patients With Cognitive Impairment: The Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Study. JAMA Neurol. 2016, 73, 1417–1424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, J.; Li, B.; Chen, S. 18F-florbetapir PET/MRI for quantitatively monitoring demyelination and remyelination in acute disseminated encephalomyelitis. EJNMMI Res. 2019, 9, 96. [Google Scholar] [CrossRef]
- Glodzik, L.; Rusinek, H.; Li, J.; Zhou, C.; Tsui, W.; Mosconi, L.; Li, Y.; Osorio, R.; Williams, S.; Randall, C.; et al. Reduced retention of Pittsburgh compound B in white matter lesions. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 97. [Google Scholar] [CrossRef] [Green Version]
- Serafini, B.; Rosicarelli, B.; Magliozzi, R.; Stigliano, E.; Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004, 14, 164–174. [Google Scholar] [CrossRef]
- Howell, O.W.; Reeves, C.A.; Nicholas, R.; Carassiti, D.; Radotra, B.; Gentleman, S.M.; Serafini, B.; Aloisi, F.; Roncaroli, F.; Magliozzi, R.; et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011, 134, 2755–2771. [Google Scholar] [CrossRef]
- Campbell, G.R.; Worrall, J.T.; Mahad, D.J. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult. Scler. 2014, 20, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Brück, W. Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J. Neurol. 2005, 252 (Suppl. S5), v10–v15. [Google Scholar] [CrossRef]
- Lassmann, H.; Van Horssen, J.; Mahad, D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol. 2012, 8, 647–656. [Google Scholar] [CrossRef]
- Braestrup, C.; Albrechtsen, R.; Squires, R.F. High densities of benzodiazepine receptors in human cortical areas. Nature 1977, 269, 702–704. [Google Scholar] [CrossRef]
- Kim, T.; Pae, A.N. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: A patent review (2010–2015; part 1). Expert Opin. Ther. Pat. 2016, 26, 1325–1351. [Google Scholar] [CrossRef]
- Karlstetter, M.; Nothdurfter, C.; Aslanidis, A.; Moeller, K.; Horn, F.; Scholz, R.; Neumann, H.; Weber, B.H.F.; Rupprecht, R.; Langmann, T. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J. NeuroInflamm. 2014, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Veenman, L.; Gavish, M. The Role of 18 kDa Mitochondrial Translocator Protein (TSPO) in Programmed Cell Death, and Effects of Steroids on TSPO Expression. Curr. Mol. Med. 2012, 12, 398–412. [Google Scholar]
- Veenman, L.; Vainshtein, A.; Gavish, M. TSPO as a target for treatments of diseases, including neuropathological disorders. Cell Death Dis. 2015, 6, e1911. [Google Scholar] [CrossRef] [Green Version]
- Singhal, T.; O’Connor, K.; Dubey, S.; Belanger, A.P.; Hurwitz, S.; Chu, R.; Tauhid, S.; Kijewski, M.F.; Dicarli, M.F.; Weiner, H.L.; et al. 18F-PBR06 versus 11C-PBR28 PET for assessing white matter translocator protein binding in multiple sclerosis. Clin. Nucl. Med. 2018, 43, e289–e295. [Google Scholar] [CrossRef]
- Singhal, T.; O’Connor, K.; Dubey, S.; Pan, H.; Chu, R.; Hurwitz, S.; Cicero, S.; Tauhid, S.; Silbersweig, D.; Stern, E.; et al. Gray matter microglial activation in relapsing vs progressive MS. Neurol.-Neuroimmunol. NeuroInflamm. 2019, 6, 587. [Google Scholar] [CrossRef] [Green Version]
- Datta, G.; Colasanti, A.; Rabiner, E.A.; Gunn, R.N.; Malik, O.; Ciccarelli, O.; Nicholas, R.; Van Vlierberghe, E.; Van Hecke, W.; Searle, G.; et al. Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 2017, 140, 2927–2938. [Google Scholar] [CrossRef]
- Hagens, M.H.J.; Golla, S.V.; Wijburg, M.T.; Yaqub, M.; Heijtel, D.; Steenwijk, M.D.; Schober, P.; Brevé, J.J.P.; Schuit, R.C.; Reekie, T.A.; et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: A proof of concept study with [18F]DPA714 PET. J. NeuroInflamm. 2018, 15, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Giannetti, P.; Politis, M.; Su, P.; Turkheimer, F.E.; Malik, O.; Keihaninejad, S.; Wu, K.; Waldman, A.; Reynolds, R.; Nicholas, R.; et al. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain 2015, 138, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rissanen, E.; Tuisku, J.; Rokka, J.; Paavilainen, T.; Parkkola, R.; Rinne, J.O.; Airas, L. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand 11C-PK11195. J. Nucl. Med. 2014, 55, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politis, M.; Giannetti, P.; Su, P.; Turkheimer, F.; Keihaninejad, S.; Wu, K.; Waldman, A.; Malik, O.; Matthews, P.M.; Reynolds, R.; et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 2012, 79, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucksdorff, M.; Tuisku, J.; Matilainen, M.; Vuorimaa, A.; Smith, S.; Keitilä, J.; Rokka, J.; Parkkola, R.; Nylund, M.; Rinne, J.; et al. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. Neurol.-Neuroimmunol. NeuroInflamm. 2019, 6, 574. [Google Scholar] [CrossRef] [Green Version]
- Banati, R.B.; Newcombe, J.; Gunn, R.N.; Cagnin, A.; Turkheimer, F.; Heppner, F.; Price, G.; Wegner, F.; Giovannoni, G.; Miller, D.H.; et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Brain 2000, 123, 2321–2337. [Google Scholar] [CrossRef] [Green Version]
- Bodini, B.; Poirion, E.; Tonietto, M.; Benoit, C.; Palladino, R.; Maillart, E.; Portera, E.; Battaglini, M.; Bera, G.; Kuhnast, B.; et al. Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of worsening disability in multiple sclerosis. J. Nucl. Med. 2020, 61, 1043–1049. [Google Scholar] [CrossRef]
- Datta, G.; Colasanti, A.; Kalk, N.; Owen, D.; Scott, G.; Rabiner, E.A.; Gunn, R.N.; Lingford-Hughes, A.; Malik, O.; Ciccarelli, O.; et al. 11C-PBR28 and 18F-PBR111 Detect White Matter Inflammatory Heterogeneity in Multiple Sclerosis. J. Nucl. Med. 2017, 58, 1477–1482. [Google Scholar] [CrossRef] [Green Version]
- Giannetti, P.; Politis, M.; Su, P.; Turkheimer, F.; Malik, O.; Keihaninejad, S.; Wu, K.; Reynolds, R.; Nicholas, R.; Piccini, P. Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: An in vivo [(11)C](R)-PK11195-PET pilot study. Neurobiol. Dis. 2014, 65, 203–210. [Google Scholar] [CrossRef]
- Sucksdorff, M.; Matilainen, M.; Tuisku, J.; Polvinen, E.; Vuorimaa, A.; Rokka, J.; Nylund, M.; Rissanen, E.; Airas, L. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 2020, 143, 3318–3330. [Google Scholar] [CrossRef]
- Bezukladova, S.; Tuisku, J.; Matilainen, M.; Vuorimaa, A.; Nylund, M.; Smith, S.; Sucksdorff, M.; Mohammadian, M.; Saunavaara, V.; Laaksonen, S.; et al. Insights into disseminated MS brain pathology with multimodal diffusion tensor and PET imaging. Neurol.-Neuroimmunol. NeuroInflamm. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Sucksdorff, M.; Rissanen, E.; Tuisku, J.; Nuutinen, S.; Paavilainen, T.; Rokka, J.; Rinne, J.; Airas, L. Evaluation of the effect of fingolimod treatment on microglial activation using serial PET imaging in multiple sclerosis. J. Nucl. Med. 2017, 58, 1646–1651. [Google Scholar] [CrossRef] [Green Version]
- Bodini, B.; Tonietto, M.; Airas, L.; Stankoff, B. Positron emission tomography in multiple sclerosis—Straight to the target. Nat. Rev. Neurol. 2021, 17, 663–675. [Google Scholar] [CrossRef]
- James, M.L.; Hoehne, A.; Mayer, A.T.; Lechtenberg, K.; Moreno, M.; Gowrishankar, G.; Ilovich, O.; Natarajan, A.; Johnson, E.M.; Nguyen, J.; et al. Imaging B cells in a mouse model of multiple sclerosis using 64Cu-rituximab PET. J. Nucl. Med. 2017, 58, 1845–1851. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Rúa, S.M.H.; Kaunzner, U.W.; Perumal, J.; Nealon, N.; Qu, W.; Kothari, P.J.; Vartanian, T.; Kuceyeski, A.; Gauthier, S.A. A Multi-Ligand Imaging Study Exploring GABAergic Receptor Expression and Inflammation in Multiple Sclerosis. Mol. Imaging Biol. 2020, 22, 1600–1608. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Keliher, E.; Panizzi, P.; Zhang, H.; Hembrador, S.; Figueiredo, J.L.; Aikawa, E.; Kelly, K.; Libby, P.; Weissleder, R. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging 2009, 2, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Syvänen, S.; Eriksson, J. Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier. ACS Chem. Neurosci. 2012, 4, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Lassmann, H.; Van Horssen, J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011, 585, 3715–3723. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, C.J.; Overton, E.; Khadka, S.; Buckley, J.; Liu, S.; Sampat, M.; Kantarci, O.; Frenay, C.L.; Siva, A.; Okuda, D.T.; et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol. Neuroimmunol. NeuroInflamm. 2015, 2, e102. [Google Scholar] [CrossRef] [Green Version]
- Roelcke, U.; Kappos, L.; Lechner-Scott, J.; Brunnschweiler, H.; Huber, S.; Ammann, W.; Plohmann, A.; Dellas, S.; Maguire, R.P.; Missimer, J.; et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue. Neurology 1997, 48, 1566–1571. [Google Scholar] [CrossRef]
- Yoshimuta, H.; Nakamura, M.; Kanda, E.; Fujita, S.; Takeuchi, K.; Fujimoto, T.; Nakabeppu, Y.; Akasaki, Y.; Sano, A. The effects of olanzapine treatment on brain regional glucose metabolism in neuroleptic-naive first-episode schizophrenic patients. Hum. Psychopharmacol. Clin. Exp. 2016, 31, 419–426. [Google Scholar] [CrossRef]
- Auffret, M.; Le Jeune, F.; Maurus, A.; Drapier, S.; Houvenaghel, J.F.; Robert, G.H.; Sauleau, P.; Vérin, M. Apomorphine pump in advanced Parkinson’s disease: Effects on motor and nonmotor symptoms with brain metabolism correlations. J. Neurol. Sci. 2017, 372, 279–287. [Google Scholar] [CrossRef]
- Tzimopoulou, S.; Cunningham, V.J.; Nichols, T.E.; Searle, G.; Bird, N.P.; Mistry, P.; Dixon, I.J.; Hallett, W.A.; Whitcher, B.; Brown, A.P.; et al. A Multi-Center Randomized Proof-of-Concept Clinical Trial Applying [18F]FDG-PET for Evaluation of Metabolic Therapy with Rosiglitazone XR in Mild to Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2010, 22, 1241–1256. [Google Scholar] [CrossRef]
- Bennett, J.; Burns, J.; Welch, P.; Bothwell, R. Safety and Tolerability of R(+) Pramipexole in Mild-to-Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 49, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- Squitieri, F.; Orobello, S.; Cannella, M.; Martino, T.; Romanelli, P.; Giovacchini, G.; Frati, L.; Mansi, L.; Ciarmiello, A. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1113–1120. [Google Scholar] [CrossRef]
- Bakshi, R.; Miletrch, R.S.; Kinkel, P.R.; Emmet, M.L.; Kinkel, W.R. High-Resolution Fluorodeoxyglucose Positron Emission Tomography Shows Both Global and Regional Cerebral Hypometabolism in Multiple Sclerosis. J. Neuroimaging 1998, 8, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Blinkenberg, M.; Rune, K.; Jensen, C.V.; Ravnborg, M.; Kyllingsbæk, S.; Holm, S.; Paulson, O.B.; Sørensen, P.S. Cortical cerebral metabolism correlates with MRI lesion load and cognitive dysfunction in MS. Neurology 2000, 54, 558. [Google Scholar] [CrossRef] [PubMed]
- Bartholome, O.; Van Den Ackerveken, P.; Gil, J.S.; Bonardeaux, O.d.l.B.; Leprince, P.; Franzen, R.; Rogister, B. Puzzling out synaptic vesicle 2 family members functions. Front. Mol. Neurosci. 2017, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Mercier, J.; Provins, L.; Valade, A. Technologies Drug Discovery Discovery and development of SV2A PET tracers: Potential for imaging synaptic density and clinical applications. Drug Discov. Today Technol. 2017, 25, 45–52. [Google Scholar]
- Chen, M.K.; Mecca, A.P.; Naganawa, M.; Finnema, S.J.; Toyonaga, T.; Lin, S.F.; Najafzadeh, S.; Ropchan, J.; Lu, Y.; McDonald, J.W.; et al. Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging. JAMA Neurol. 2018, 75, 1215–1224. [Google Scholar] [CrossRef]
- Matuskey, D.; Tinaz, S.; Wilcox, K.C.; Naganawa, M.; Toyonaga, T.; Dias, M.; Henry, S.; Pittman, B.; Ropchan, J.; Nabulsi, N.; et al. Synaptic Changes in Parkinson Disease Assessed with in vivo Imaging. Ann. Neurol. 2020, 87, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Finnema, S.J.; Toyonaga, T.; Detyniecki, K.; Chen, M.K.; Dias, M.; Wang, Q.; Lin, S.F.; Naganawa, M.; Gallezot, J.D.; Lu, Y.; et al. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [11 C]UCB-J positron emission tomography study. Epilepsia 2020, 61, 2183–2193. [Google Scholar] [CrossRef]
- Holmes, S.E.; Scheinost, D.; Finnema, S.J.; Naganawa, M.; Davis, M.T.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Angarita, G.A.; Pietrzak, R.H.; et al. Lower synaptic density is associated with depression severity and network alterations. Nat. Commun. 2019, 10, 1529. [Google Scholar] [CrossRef] [Green Version]
- Onwordi, E.C.; Halff, E.F.; Whitehurst, T.; Mansur, A.; Cotel, M.C.; Wells, L.; Creeney, H.; Bonsall, D.; Rogdaki, M.; Shatalina, E.; et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 2020, 11, 246. [Google Scholar] [CrossRef]
- Boecker, H.; Weindl, A.; Brooks, D.J.; Ceballos-Baumann, A.O.; Liedtke, C.; Miederer, M.; Sprenger, T.; Wagner, K.J.; Miederer, I. GABAergic Dysfunction in Essential Tremor: An 11C-Flumazenil PET Study. J. Nucl. Med. 2010, 51, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
- Koepp, M.J.; Hammers, A.; Labbé, C.; Woermann, F.G.; Brooks, D.J.; Duncan, J.S. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI. Neurology 2000, 54, 332. [Google Scholar] [CrossRef]
- Lloyd, C.M.; Richardson, M.P.; Brooks, D.J.; Al-Chalabi, A.; Leigh, P.N. Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain 2000, 123 Pt 11, 2289–2296. [Google Scholar] [CrossRef] [Green Version]
- Murai, H.; Kiyosawa, M.; Suzuki, Y.; Mizoguchi, S.; Ishii, K.; Ishikawa, K.; Akashi, T. A case of multiple sclerosis with homonymous hemianopia examined by positron emission tomography. Jpn. J. Ophthalmol. 2004, 48, 591–593. [Google Scholar] [CrossRef]
- Freeman, L.; Garcia-Lorenzo, D.; Bottin, L.; Leroy, C.; Louapre, C.; Bodini, B.; Papeix, C.; Assouad, R.; Granger, B.; Tourbah, A.; et al. The neuronal component of gray matter damage in multiple sclerosis: A [11C]flumazenil positron emission tomography study. Ann. Neurol. 2015, 78, 554–567. [Google Scholar] [CrossRef]
- Grecchi, E.; Veronese, M.; Bodini, B.; García-Lorenzo, D.; Battaglini, M.; Stankoff, B.; Turkheimer, F.E. Multimodal partial volume correction: Application to [11C]PIB PET/MRI myelin imaging in multiple sclerosis. J. Cereb. Blood Flow Metab. 2017, 37, 3803. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Poirion, E.; Bodini, B.; Tonietto, M.; Durrleman, S.; Colliot, O.; Stankoff, B.; Ayache, N. Predicting PET-derived myelin content from multisequence MRI for individual longitudinal analysis in multiple sclerosis. Neuroimage 2020, 223, 117308. [Google Scholar] [CrossRef]
- Wei, W.; Poirion, E.; Bodini, B.; Durrleman, S.; Ayache, N.; Stankoff, B.; Colliot, O. Learning Myelin Content in Multiple Sclerosis from Multimodal MRI through Adversarial Training. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2018, 11072 LNCS, 514–522. [Google Scholar]
- Hilal, S.K.; Maudsley, A.A.; Simon, H.E.; Perman, W.H.; Bonn, J.; Mawad, M.E.; Silver, A.J.; Ganti, S.R.; Sane, P.; Chien, I.C. In vivo NMR Imaging of Tissue Sodium in the Intact Cat before and after Acute Cerebral Stroke. Am. J. Neuroradiol. 1983, 4, 245–249. [Google Scholar]
- Madelin, G.; Lee, J.S.; Regatte, R.R.; Jerschow, A. Sodium MRI: Methods and applications. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 14. [Google Scholar] [CrossRef] [Green Version]
- Ouwerkerk, R.; Morgan, R.H. 23Na MRI: From Research to Clinical Use. J. Am. Coll. Radiol. 2007, 4, 739. [Google Scholar] [CrossRef] [Green Version]
- Shrimanker, I.; Bhattarai, S. Electrolytes. [Updated 26 July 2021]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541123/ (accessed on 25 November 2021).
- Young, E.A.; Fowler, C.D.; Kidd, G.J.; Chang, A.; Rudick, R.; Fisher, E.; Trapp, B.D. Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions. Wiley Online Libr. 2008, 63, 428–435. [Google Scholar] [CrossRef]
- Waxman, S.G.; Craner, M.J.; Black, J.A. Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol. Sci. 2004, 25, 584–591. [Google Scholar] [CrossRef]
- Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014, 10, 225–238. [Google Scholar] [CrossRef]
- Thulborn, K.R.; Lu, A.; Atkinson, I.C.; Damen, F.; Villano, J.L. Quantitative Sodium MR Imaging and Sodium Bioscales for the Management of Brain Tumors. Neuroimaging Clin. N. Am. 2009, 19, 615–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilal, S.K.; Maudsley, A.A.; Ra, J.B.; Simon, H.E.; Roschmann, P.; Wittekoek, S.; Cho, Z.H.; Mun, S.K. In Vivo NMR Imaging of Sodium-23 in the Human Head. J. Comput. Assist. Tomogr. 1985, 9, 1–7. Available online: europepmc.org (accessed on 29 November 2021). [CrossRef] [PubMed]
- Zaric, O.; Juras, V.; Szomolanyi, P.; Schreiner, M.; Raudner, M.; Giraudo, C.; Trattnig, S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J. Magn. Reson. Imaging 2021, 54, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Grapperon, A.M.; Ridley, B.; Verschueren, A.; Maarouf, A.; Confort-Gouny, S.; Fortanier, E.; Schad, L.; Guye, M.; Ranjeva, J.P.; Attarian, S.; et al. Quantitative brain sodium MRI depicts corticospinal impairment in amyotrophic lateral sclerosis. Radiology 2019, 292, 422–428. [Google Scholar] [CrossRef]
- Ridley, B.; Marchi, A.; Wirsich, J.; Soulier, E.; Confort-Gouny, S.; Schad, L.; Bartolomei, F.; Ranjeva, J.P.; Guye, M.; Zaaraoui, W. Brain sodium MRI in human epilepsy: Disturbances of ionic homeostasis reflect the organization of pathological regions. Neuroimage 2017, 157, 173–183. [Google Scholar] [CrossRef]
- Inglese, M.; Madelin, G.; Oesingmann, N.; Babb, J.S.; Wu, W.; Stoeckel, B.; Herbert, J.; Johnson, G. Brain tissue sodium concentration in multiple sclerosis: A sodium imaging study at 3 tesla. Brain 2010, 133, 847–857. [Google Scholar] [CrossRef]
- Petracca, M.; Vancea, R.O.; Fleysher, L.; Jonkman, L.E.; Oesingmann, N.; Inglese, M. Brain intra- and extracellular sodium concentration in multiple sclerosis: A 7 T MRI study. Brain 2016, 139, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Paling, D.; Solanky, B.S.; Riemer, F.; Tozer, D.J.; Wheeler-Kingshott, C.A.; Kapoor, R.; Golay, X.; Miller, D.H. Sodium Accumulation Is Associated with Disability and a Progressive Course in Multiple Sclerosis. Brain 2013, 136, 2305–2317. Available online: academic.oup.com (accessed on 29 November 2021). [CrossRef]
- Solanky, B.S.; Prados, F.; Tur, C.; Yiannakas, M.C.; Kanber, B.; Cawley, N.; Brownlee, W.; Ourselin, S.; Golay, X.; Ciccarelli, O.; et al. Sodium in the Relapsing–Remitting Multiple Sclerosis Spinal Cord: Increased Concentrations and Associations With Microstructural Tissue Anisotropy. J. Magn. Reson. Imaging 2020, 52, 1429–1438. [Google Scholar] [CrossRef]
- Maarouf, A.; Audoin, B.; Konstandin, S.; Rico, A.; Soulier, E.; Reuter, F.; Le Troter, A.; Confort-Gouny, S.; Cozzone, P.J.; Guye, M.; et al. Topography of brain sodium accumulation in progressive multiple sclerosis. Magn. Reson. Mater. Phys. Biol. Med. 2014, 27, 53–62. [Google Scholar] [CrossRef]
- Zaaraoui, W.; Konstandin, S.; Audoin, B.; Nagel, A.M.; Rico, A.; Malikova, I.; Soulier, E.; Viout, P.; Confort-Gouny, S.; Cozzone, P.J.; et al. Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: A cross-sectional23Na MR imaging study. Radiology 2012, 264, 859–867. [Google Scholar] [CrossRef]
- Eisele, P.; Konstandin, S.; Griebe, M.; Szabo, K.; Wolf, M.E.; Alonso, A.; Ebert, A.; Serwane, J.; Rossmanith, C.; Hennerici, M.G.; et al. Heterogeneity of acute multiple sclerosis lesions on sodium (23Na) MRI. Mult. Scler. 2016, 22, 1040–1047. [Google Scholar] [CrossRef]
- Weber, C.E.; Nagel, K.; Ebert, A.; Roßmanith, C.; Paschke, N.; Adlung, A.; Platten, M.; Schad, L.R.; Gass, A.; Eisele, P. Diffusely appearing white matter in multiple sclerosis: Insights from sodium (23Na) MRI. Mult. Scler. Relat. Disord. 2021, 49, 102752. [Google Scholar] [CrossRef]
- Eisele, P.; Kraemer, M.; Dabringhaus, A.; Weber, C.E.; Ebert, A.; Platten, M.; Schad, L.R.; Gass, A. Characterization of chronic active multiple sclerosis lesions with sodium (23Na) magnetic resonance imaging—Preliminary observations. Eur. J. Neurol. 2021, 28, 2392–2395. [Google Scholar] [CrossRef]
- Absinta, M.; Sati, P.; Gaitán, M.I.; Maggi, P.; Cortese, I.C.M.; Filippi, M.; Reich, D.S. Seven-tesla phase imaging of acute multiple sclerosis lesions: A new window into the inflammatory process. Ann. Neurol. 2013, 74, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Eisele, P.; Konstandin, S.; Szabo, K.; Ebert, A.; Roßmanith, C.; Paschke, N.; Kerschensteiner, M.; Platten, M.; Schoenberg, S.O.; Schad, L.R.; et al. Temporal evolution of acute multiple sclerosis lesions on serial sodium (23Na) MRI. Mult. Scler. Relat. Disord. 2019, 29, 48–54. [Google Scholar] [CrossRef]
- Mennecke, A.B.; Nagel, A.M.; Huhn, K.; Linker, R.A.; Schmidt, M.; Rothhammer, V.; Wilferth, T.; Linz, P.; Wegmann, J.; Eisenhut, F.; et al. Longitudinal Sodium MRI of Multiple Sclerosis Lesions: Is there Added Value of Sodium Inversion Recovery MRI. J. Magn. Reson. Imaging 2021, 55. [Google Scholar] [CrossRef]
- Huhn, K.; Linz, P.; Pemsel, F.; Michalke, B.; Seyferth, S.; Kopp, C.; Chaudri, M.A.; Rothhammer, V.; Dörfler, A.; Uder, M.; et al. Skin sodium is increased in male patients with multiple sclerosis and related animal models. Proc. Natl. Acad. Sci. USA 2021, 118, e2102549118. [Google Scholar] [CrossRef]
- Linz, P.; Santoro, D.; Renz, W.; Rieger, J.; Ruehle, A.; Ruff, J.; Deimling, M.; Rakova, N.; Muller, D.N.; Luft, F.C.; et al. Skin sodium measured with 23Na MRI at 7.0 T. NMR Biomed. 2015, 28, 54–62. [Google Scholar]
- Stobbe, R.W.; Beaulieu, C. Calculating potential error in sodium MRI with respect to the analysis of small objects. Magn. Reson. Med. 2018, 79, 2968–2977. [Google Scholar] [CrossRef]
- Tognarelli, J.M.; Dawood, M.; Shariff, M.I.F.; Grover, V.P.B.; Crossey, M.M.E.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J.W. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 320. [Google Scholar] [CrossRef] [Green Version]
- Matthews, P.M.; Francis, G.; Antel, J.; Arnold, D.L. Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis. Neurology 1991, 41, 1251–1256. [Google Scholar] [CrossRef]
- Arm, J.; Oeltzschner, G.; Al-iedani, O.; Lea, R.; Lechner-Scott, J.; Ramadan, S. Altered in vivo brain GABA and glutamate levels are associated with multiple sclerosis central fatigue. Eur. J. Radiol. 2021, 137, 109610. [Google Scholar] [CrossRef]
- Srinivasan, R.; Sailasuta, N.; Hurd, R.; Nelson, S.; Pelletier, D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005, 128, 1016–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinsen, H.; de Graaf, R.A.; Mason, G.F.; Pelletier, D.; Juchem, C. Reproducibility measurement of glutathione, GABA, and glutamate: Towards in vivo neurochemical profiling of multiple sclerosis with MR spectroscopy at 7T. J. Magn. Reson. Imaging 2017, 45, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonen, O.M.; Moffat, B.A.; Kwan, P.; O’Brien, T.J.; Desmond, P.M.; Lui, E. Reproducibility of Glutamate, Glutathione, and GABA Measurements in vivo by Single-Voxel STEAM Magnetic Resonance Spectroscopy at 7-Tesla in Healthy Individuals. Front. Neurosci. 2020, 14, 968. [Google Scholar] [CrossRef] [PubMed]
- Anik, Y.; Demirci, A.; Efendi, H.; Bulut, S.S.D.; Celebi, I.; Komsuoglu, S. Evaluation of normal appearing white matter in multiple sclerosis: Comparison of diffusion magnetic resonance, magnetization transfer imaging and multivoxel magnetic resonance spectroscopy findings with expanded disability status scale. Clin. Neuroradiol. 2011, 21, 207–215. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Inglese, M.; Li, B.S.Y.; Babb, J.S.; Grossman, R.I.; Gonen, O. Relapsing-remitting multiple sclerosis: Metabolic abnormality in nonenhancing lesions and normal-appearing white matter at MR imaging: Initial experience. Radiology 2005, 234, 211–217. [Google Scholar] [CrossRef]
- Sajja, B.R.; Wolinsky, J.S.; Narayana, P.A. Proton Magnetic Resonance Spectroscopy in Multiple Sclerosis. Neuroimaging Clin. N. Am. 2009, 19, 45. [Google Scholar] [CrossRef] [Green Version]
- Kirov, I.I.; Patil, V.; Babb, J.S.; Rusinek, H.; Herbert, J.; Gonen, O. MR spectroscopy indicates diffuse multiple sclerosis activity during remission. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1330–1336. [Google Scholar] [CrossRef] [Green Version]
- Swanberg, K.M.; Landheer, K.; Pitt, D.; Juchem, C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker. Front. Neurol. 2019, 10, 1173. [Google Scholar] [CrossRef]
- Wilson, M.; Andronesi, O.; Barker, P.B.; Bartha, R.; Bizzi, A.; Bolan, P.J.; Brindle, K.M.; Choi, I.Y.; Cudalbu, C.; Dydak, U.; et al. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magn. Reson. Med. 2019, 82, 527–550. [Google Scholar] [CrossRef] [Green Version]
- Klauser, A.M.; Wiebenga, O.T.; Eijlers, A.J.; Schoonheim, M.M.; Uitdehaag, B.M.; Barkhof, F.; Pouwels, P.J.; Geurts, J.J. Metabolites predict lesion formation and severity in relapsing-remitting multiple sclerosis. Mult. Scler. 2018, 24, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Yarraguntla, K.; Bao, F.; Lichtman-Mikol, S.; Razmjou, S.; Santiago-Martinez, C.; Seraji-Bozorgzad, N.; Sriwastava, S.; Bernitsas, E. Characterizing Fatigue-Related White Matter Changes in MS: A Proton Magnetic Resonance Spectroscopy Study. Brain Sci. 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Ostojic, S.M. Brain creatine for predicting clinical course in white matter disorders. Mult. Scler. Relat. Disord. 2020, 45, 102441. [Google Scholar] [CrossRef]
- Yang, S.; Hu, J.; Kou, Z.; Yang, Y. Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4T. Magn. Reson. Med. 2008, 59, 236–244. [Google Scholar] [CrossRef]
- Ladd, M.E.; Bachert, P.; Meyerspeer, M.; Moser, E.; Nagel, A.M.; Norris, D.G.; Schmitter, S.; Speck, O.; Straub, S.; Zaiss, M. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 1–50. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben-Shalom, I.; Karni, A.; Kolb, H. The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 474. https://doi.org/10.3390/ijms23010474
Ben-Shalom I, Karni A, Kolb H. The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. International Journal of Molecular Sciences. 2022; 23(1):474. https://doi.org/10.3390/ijms23010474
Chicago/Turabian StyleBen-Shalom, Ido, Arnon Karni, and Hadar Kolb. 2022. "The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis" International Journal of Molecular Sciences 23, no. 1: 474. https://doi.org/10.3390/ijms23010474
APA StyleBen-Shalom, I., Karni, A., & Kolb, H. (2022). The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. International Journal of Molecular Sciences, 23(1), 474. https://doi.org/10.3390/ijms23010474