Adhesion Molecule Targeted Therapy for Non-Infectious Uveitis
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Role of Cell Adhesion Molecules in Experimental Autoimmune Uveitis
3.2. Role of Adhesion Molecules in NIU
3.3. Clinical Trials of Anti-Adhesion Molecule Therapy for NIU
3.4. Efficacy of Adhesion Molecule-Based Therapy in Other Retinal Disorders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caspi, R.R. A look at autoimmunity and inflammation in the eye. J. Clin. Investig. 2010, 120, 3073–3083. [Google Scholar] [CrossRef] [Green Version]
- Forrester, J.V.; Kuffova, L.; Dick, A.D. Autoimmunity, Autoinflammation, and Infection in Uveitis. Am. J. Ophthalmol. 2018, 189, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.S.; Johnson, S.J.; Mallya, U.G.; Davis, M.R.; Sorg, R.A.; Duh, M.S. Healthcare costs and utilization for privately insured patients treated for non-infectious uveitis in the USA. J. Ophthalmic Inflamm. Infect. 2013, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- García-Aparicio, Á.; García de Yébenes, M.J.; Otón, T.; Muñoz-Fernández, S. Prevalence and Incidence of Uveitis: A Systematic Review and Meta-analysis. Ophthalmic Epidemiol. 2021, 28, 461–468. [Google Scholar] [CrossRef]
- Egwuagu, C.E.; Alhakeem, S.A.; Mbanefo, E.C. Uveitis: Molecular Pathogenesis and Emerging Therapies. Front. Immunol. 2021, 12, 623725. [Google Scholar] [CrossRef] [PubMed]
- Hyun, Y.M.; Lefort, C.T.; Kim, M. Leukocyte integrins and their ligand interactions. Immunol. Res. 2009, 45, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, T.A.; Stanford, M.R.; Graham, E.M.; Dumonde, D.C.; Brown, K.A. A new method for studying the selective adherence of blood lymphocytes to the microvasculature of human retina. Investig. Ophthalmol. Vis. Sci. 1997, 38, 2608–2618. [Google Scholar]
- Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front. Immunol. 2019, 10, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Forrester, J.V.; Liversidge, J.; Crane, I.J. Leukocyte trafficking in experimental autoimmune uveitis: Breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Investig. Ophthalmol. Vis. Sci. 2003, 44, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Dustin, M.L. Integrins and Their Role in Immune Cell Adhesion. Cell 2019, 177, 499–501. [Google Scholar] [CrossRef] [Green Version]
- Butzkueven, H.; Kappos, L.; Wiendl, H.; Trojano, M.; Spelman, T.; Chang, I.; Kasliwal, R.; Jaitly, S.; Campbell, N.; Ho, P.R.; et al. Long-term safety and effectiveness of natalizumab treatment in clinical practice: 10 years of real-world data from the Tysabri Observational Program (TOP). J. Neurol. Neurosurg. Psychiatry 2020, 91, 660–668. [Google Scholar] [CrossRef]
- Engelhardt, B.; Laschinger, M.; Schulz, M.; Samulowitz, U.; Vestweber, D.; Hoch, G. The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J. Clin. Investig. 1998, 102, 2096–2105. [Google Scholar] [CrossRef] [Green Version]
- Döring, A.; Pfeiffer, F.; Meier, M.; Dehouck, B.; Tauber, S.; Deutsch, U.; Engelhardt, B. TET inducible expression of the α4β7-integrin ligand MAdCAM-1 on the blood-brain barrier does not influence the immunopathogenesis of experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2011, 41, 813–821. [Google Scholar] [CrossRef]
- Takatsu, N.; Hisabe, T.; Higashi, D.; Ueki, T.; Matsui, T. Vedolizumab in the Treatment of Ulcerative Colitis: An Evidence-Based Review of Safety, Efficacy, and Place of Therapy. Core Evid. 2020, 15, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luzentales-Simpson, M.; Pang, Y.C.F.; Zhang, A.; Sousa, J.A.; Sly, L.M. Vedolizumab: Potential Mechanisms of Action for Reducing Pathological Inflammation in Inflammatory Bowel Diseases. Front. Cell Dev. Biol. 2021, 9, 612830. [Google Scholar] [CrossRef] [PubMed]
- Jelcic, I.; Jelcic, I.; Faigle, W.; Sospedra, M.; Martin, R. Immunology of progressive multifocal leukoencephalopathy. J. Neurovirol. 2015, 21, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Damle, N.K.; Klussman, K.; Linsley, P.S.; Aruffo, A. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J. Immunol. 1992, 148, 1985–1992. [Google Scholar]
- Wakefield, D.; McCluskey, P.; Palladinetti, P. Distribution of lymphocytes and cell adhesion molecules in iris biopsy specimens from patients with uveitis. Arch. Ophthalmol. 1992, 110, 121–125. [Google Scholar] [CrossRef]
- Whitcup, S.M.; Chan, C.C.; Li, Q.; Nussenblatt, R.B. Expression of cell adhesion molecules in posterior uveitis. Arch. Ophthalmol. 1992, 110, 662–666. [Google Scholar] [CrossRef]
- Kuppner, M.C.; Liversidge, J.; McKillop-Smith, S.; Lumsden, L.; Forrester, J.V. Adhesion molecule expression in acute and fibrotic sympathetic ophthalmia. Curr. Eye Res. 1993, 12, 923–934. [Google Scholar] [CrossRef]
- Qasem, A.R.; Bucolo, C.; Baiula, M.; Spartà, A.; Govoni, P.; Bedini, A.; Fascì, D.; Spampinato, S. Contribution of alpha4beta1 integrin to the antiallergic effect of levocabastine. Biochem. Pharmacol. 2008, 76, 751–762. [Google Scholar] [CrossRef]
- Haber, S.L.; Benson, V.; Buckway, C.J.; Gonzales, J.M.; Romanet, D.; Scholes, B. Lifitegrast: A novel drug for patients with dry eye disease. Ther. Adv. Ophthalmol. 2019, 11, 70366. [Google Scholar] [CrossRef] [Green Version]
- White, D.E.; Zhao, Y.; Ogundele, A.; Fulcher, N.; Acs, A.; Moore-Schiltz, L.; Karpecki, P.M. Real-World Treatment Patterns of Cyclosporine Ophthalmic Emulsion And Lifitegrast Ophthalmic Solution Among Patients With Dry Eye. Clin. Ophthalmol. 2019, 13, 2285–2292. [Google Scholar] [CrossRef] [Green Version]
- Parnaby-Price, A.; Stanford, M.R.; Biggerstaff, J.; Howe, L.; Whiston, R.A.; Marshall, J.; Wallace, G.R. Leukocyte trafficking in experimental autoimmune uveitis in vivo. J. Leukoc. Biol. 1998, 64, 434–440. [Google Scholar] [CrossRef]
- Devine, L.; Lightman, S.L.; Greenwood, J. Role of LFA-1, ICAM-1, VLA-4 and VCAM-1 in lymphocyte migration across retinal pigment epithelial monolayers in vitro. Immunology 1996, 88, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.; Wang, Y.; Calder, V.L. Lymphocyte adhesion and transendothelial migration in the central nervous system: The role of LFA-1, ICAM-1, VLA-4 and VCAM-1. off. Immunology 1995, 86, 408–415. [Google Scholar] [PubMed]
- Platts, K.E.; Benson, M.T.; Rennie, I.G.; Sharrard, R.M.; Rees, R.C. Cytokine modulation of adhesion molecule expression on human retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 1995, 36, 2262–2269. [Google Scholar]
- Dewispelaere, R.; Lipski, D.; Foucart, V.; Bruyns, C.; Frère, A.; Caspers, L.; Willermain, F. ICAM-1 and VCAM-1 are differentially expressed on blood-retinal barrier cells during experimental autoimmune uveitis. Exp. Eye Res. 2015, 137, 94–102. [Google Scholar] [CrossRef]
- Whitcup, S.M.; DeBarge, L.R.; Caspi, R.R.; Harning, R.; Nussenblatt, R.B.; Chan, C.C. Monoclonal antibodies against ICAM-1 (CD54) and LFA-1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin. Immunol. Immunopathol. 1993, 67, 143–150. [Google Scholar] [CrossRef]
- Tamatani, T.; Kitamura, F.; Kuida, K.; Shirao, M.; Mochizuki, M.; Suematsu, M.; Schmid-Schönbein, G.W.; Watanabe, K.; Tsurufuji, S.; Miyasaka, M. Characterization of rat LECAM-1 (L-selectin) by the use of monoclonal antibodies and evidence for the presence of soluble LECAM-1 in rat sera. Eur. J. Immunol. 1993, 23, 2181–2188. [Google Scholar] [CrossRef]
- Ke, Y.; Sun, D.; Zhang, P.; Jiang, G.; Kaplan, H.J.; Shao, H. Suppression of established experimental autoimmune uveitis by anti-LFA-1alpha Ab. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2667–2675. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, A.S.; Schewitz-Bowers, L.P.; Wei, L.; Lee, R.W.; Smith, J.R. Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6917–6925. [Google Scholar] [CrossRef] [Green Version]
- Ishida, W.; Harada, Y.; Fukuda, K.; Taguchi, O.; Yagita, H.; Fukushima, A. Inhibition of very late antigen-4 and leukocyte function-associated antigen-1 in experimental autoimmune uveoretinitis. Clin. Immunol. 2014, 153, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimaraes de Souza, R.; Yu, Z.; Stern, M.E.; Pflugfelder, S.C.; de Paiva, C.S. Suppression of Th1-Mediated Keratoconjunctivitis Sicca by Lifitegrast. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2018, 34, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Eskandarpour, M.; Zhang, X.; Galatowicz, G.; Greenwood, J.; Lightman, S.; Calder, V. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis. J. Neuroinflamm. 2021, 18, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, S.; Manczak, M.; Sugden, B.; Adamus, G. Phenotypes of T cells infiltrating the eyes in autoimmune anterior uveitis associated with EAE. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1499–1508. [Google Scholar]
- Chawla, R.; Nath, M.; Moksha, L.; Nag, T.C.; Velpandian, T. An experimental study to evaluate safety/toxicity of intravitreal natalizumab. Indian J. Ophthalmol. 2018, 66, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, J.T.; Boney, R.S. Efficacy of antibodies to adhesion molecules, CD11a or CD18, in rabbit models of uveitis. Curr. Eye Res. 1993, 12, 827–831. [Google Scholar] [CrossRef]
- Uchio, E.; Kijima, M.; Tanaka, S.; Ohno, S. Suppression of experimental uveitis with monoclonal antibodies to ICAM-1 and LFA-1. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2626–2631. [Google Scholar]
- Martin, A.P.; de Moraes, L.V.; Tadokoro, C.E.; Commodaro, A.G.; Urrets-Zavalia, E.; Rabinovich, G.A.; Urrets-Zavalia, J.; Rizzo, L.V.; Serra, H.M. Administration of a peptide inhibitor of alpha4-integrin inhibits the development of experimental autoimmune uveitis. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2056–2063. [Google Scholar] [CrossRef]
- Smith, J.R.; O’Rourke, L.M.; Becker, M.D.; Cao, M.; Williams, K.A.; Planck, S.R.; Rosenbaum, J.T. Anti-rat ICAM-1 antibody does not influence the course of experimental melanin-induced uveitis. Curr. Eye Res. 2000, 21, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Manivannan, A.; Jiang, H.R.; Liversidge, J.; Sharp, P.F.; Forrester, J.V.; Crane, I.J. Recruitment of IFN-gamma-producing (Th1-like) cells into the inflamed retina in vivo is preferentially regulated by P-selectin glycoprotein ligand 1:P/E-selectin interactions. J. Immunol. 2004, 172, 3215–3224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitcup, S.M.; Kozhich, A.T.; Lobanoff, M.; Wolitzky, B.A.; Chan, C.C. Blocking both E-selectin and P-selectin inhibits endotoxin-induced leukocyte infiltration into the eye. Clin. Immunol. Immunopathol. 1997, 83, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Ogura, Y.; Hamada, M.; Nishiwaki, H.; Hiroshiba, N.; Tsujikawa, A.; Mandai, M.; Suzuma, K.; Tojo, S.J.; Honda, Y. In vivo neutralization of P-selectin inhibits leukocyte-endothelial interactions in retinal microcirculation during ocular inflammation. Microvasc. Res. 1998, 55, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Suzuma, I.; Mandai, M.; Suzuma, K.; Ishida, K.; Tojo, S.J.; Honda, Y. Contribution of E-selectin to cellular infiltration during endotoxin-induced uveitis. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1620–1630. [Google Scholar]
- La Heij, E.; Kuijpers, R.W.; Baarsma, S.G.; Kijlstra, A.; van der Weiden, M.; Mooy, C.M. Adhesion molecules in iris biopsy specimens from patients with uveitis. Br. J. Ophthalmol. 1998, 82, 432–437. [Google Scholar] [CrossRef]
- Zaman, A.G.; Edelsten, C.; Stanford, M.R.; Graham, E.M.; Ellis, B.A.; Direskeneli, H.; D’Cruz, D.P.; Hughes, G.R.; Dumonde, D.C.; Wallace, G.R. Soluble intercellular adhesion molecule-1 (sICAM-1) as a marker of disease relapse in idiopathic uveoretinitis. Clin. Exp. Immunol. 1994, 95, 60–65. [Google Scholar] [CrossRef]
- Arocker-Mettinger, E.; Steurer-Georgiew, L.; Steurer, M.; Huber-Spitzy, V.; Hoelzl, E.; Grabner, G.; Kuchar, A. Circulating ICAM-1 levels in serum of uveitis patients. Curr. Eye Res. 1992, 11, 161–166. [Google Scholar] [CrossRef]
- Pereira-Neves, L.; Palma-Carlos, M.L.; Soares, I.; Pereira-Santos, M.C.; Ganhao, F.; Palma-Carlos, A.G. Soluble ICAM-1 and VCAM-1 serum levels in uveitis. Allerg. Immunol. 1996, 28, 302–306. [Google Scholar]
- Klok, A.M.; Luyendijk, L.; Zaal, M.J.; Rothova, A.; Kijlstra, A. Soluble ICAM-1 serum levels in patients with intermediate uveitis. Br. J. Ophthalmol. 1999, 83, 847–851. [Google Scholar] [CrossRef]
- Uchio, E.; Matsumoto, T.; Tanaka, S.I.; Ohno, S. Soluble intercellular adhesion molecule-1 (ICAM-1), CD4, CD8 and interleukin-2 receptor in patients with Behçet’s disease and Vogt-Koyanagi-Harada’s disease. Clin. Exp. Rheumatol. 1999, 17, 179–184. [Google Scholar] [PubMed]
- Martin, C.M.; Lacomba, M.S.; Molina, C.I.; Chamond, R.R.; Galera, J.M.; Estevez, E.C. Levels of soluble ICAM-1 and soluble IL-2R in the serum and aqueous humor of uveitis patients. Curr. Eye Res. 2000, 20, 287–292. [Google Scholar] [CrossRef]
- Verity, D.H.; Wallace, G.R.; Seed, P.T.; Kanawati, C.A.; Ayesh, I.; Holland-Gladwish, J.; Stanford, M.R. Soluble adhesion molecules in Behcet’s disease. Ocul. Immunol. Inflamm. 1998, 6, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, S.; Park, C.; Seo, J.S.; Kim, J.I.; Yu, H.G. Targeted resequencing of candidate genes reveals novel variants associated with severe Behçet’s uveitis. Exp. Mol. Med. 2013, 45, 49. [Google Scholar] [CrossRef]
- Haznedaroglu, E.; Karaaslan, Y.; Büyükaşik, Y.; Koşar, A.; Ozcebe, O.; Haznedaroglu b, C.; Kirazli, E.; Dündar, S.V. Selectin adhesion molecules in Behçet’s disease. Ann. Rheum. Dis. 2000, 59, 61–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.T.; Hooper, L.C.; Kump, L.; Hayashi, K.; Nussenblatt, R.; Hooks, J.J.; Detrick, B. Interferon-beta and adhesion molecules (E-selectin and s-intracellular adhesion molecule-1) are detected in sera from patients with retinal vasculitis and are induced in retinal vascular endothelial cells by Toll-like receptor 3 signalling. Clin. Exp. Immunol. 2007, 147, 71–80. [Google Scholar] [CrossRef]
- Kaku, H.; Mizukawa, H.; Kishi, I.; Yanagida, T.; Inaba, G. Peripheral leukocyte adhesion molecules in patients of Behçet’s disease associated with active ocular lesions. Ryumachi 1994, 34, 608–615. [Google Scholar]
- Roemer, S.; Bissig, A.; Rocca, A.; Du Pasquier, R.; Guex-Crosier, Y. Efficacy of Natalizumab in Intermediate Uveitis Related to Multiple Sclerosis: A Case Report. Klin. Monbl. Augenheilkd. 2018, 235, 476–477. [Google Scholar] [CrossRef]
- Fleisher, M.; Marsal, J.; Lee, S.D.; Frado, L.E.; Parian, A.; Korelitz, B.I.; Feagan, B.G. Effects of Vedolizumab Therapy on Extraintestinal Manifestations in Inflammatory Bowel Disease. Dig. Dis. Sci. 2018, 63, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Faia, L.J.; Sen, H.N.; Li, Z.; Yeh, S.; Wroblewski, K.J.; Nussenblatt, R.B. Treatment of inflammatory macular edema with humanized anti-CD11a antibody therapy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6919–6924. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Kuppermann, B.D.; Bhaskar, V.; Wales, P.; Hagemann, L.F.; Marques, L.; Carvalho, R.P.d.; Wong, C.G.; Murray, R. F200, a Fab Derivative of M200 (Volociximab; Anti–A5ß1), Is a Potent Inhibitor of Angiogenesis in a Rabbit Model of Choroidal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2005, 46, 465. [Google Scholar]
- Ishikawa, M.; Jin, D.; Sawada, Y.; Abe, S.; Yoshitomi, T. Future therapies of wet age-related macular degeneration. J. Ophthalmol. 2015, 2015, 138070. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.C.; Regillo, C.D. The future of neovascular age-related macular degeneration. In Age-Related Macular Degeneration Diagnosis and Treatment, 1st ed.; Ho, A.C., Ed.; Springer: New York, NY, USA, 2011; pp. 135–153. [Google Scholar]
- Boyer, D.S.; Gonzalez, V.H.; Kunimoto, D.Y.; Maturi, R.K.; Roe, R.H.; Singer, M.A.; Xavier, S.; Kornfield, J.A.; Kuppermann, B.D.; Quiroz-Mercado, H.; et al. Safety and Efficacy of Intravitreal Risuteganib for Non-Exudative AMD: A Multicenter, Phase 2a, Randomized, Clinical Trial. Ophthalmic Surg. Lasers Imaging Retin. 2021, 52, 327–335. [Google Scholar] [CrossRef]
- Hu, T.T.; Vanhove, M.; Porcu, M.; Van Hove, I.; Van Bergen, T.; Jonckx, B.; Barbeaux, P.; Vermassen, E.; Feyen, J.H.M. The potent small molecule integrin antagonist THR-687 is a promising next-generation therapy for retinal vascular disorders. Exp. Eye Res. 2019, 180, 43–52. [Google Scholar] [CrossRef]
- Khanani, A.M.; Patel, S.S.; Gonzalez, V.H.; Moon, S.J.; Jaffe, G.J.; Wells, J.A.; Kozma, P.; Dugel, P.U.; Maturi, R.K. Phase 1 Study of THR-687, a Novel, Highly Potent Integrin Antagonist for the Treatment of Diabetic Macular Edema. Ophthalmol. Sci. 2021, 1, 100040. [Google Scholar] [CrossRef]
- Edwards, D.; Boyer, D.S.; Kaiser, P.K.; Heier, J.S.; Askew, B. First-in human study of SF0166 Topical Ophthalmic Solution in patients with diabetic macular edema. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1961. [Google Scholar]
- Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Salinas, R.; Hernandez-Zimbron, L.F.; Gulias-Canizo, R.; Sanchez-Vela, M.A.; Ochoa-De La Paz, L.; Zamora, R.; Quiroz-Mercado, H. Current Anti-Integrin Therapy for Ocular Disease. Semin. Ophthalmol. 2018, 33, 634–642. [Google Scholar] [CrossRef] [PubMed]
Studies | Molecule and Animal Model | Outcome |
---|---|---|
Rosenbaum et al. [38] | Ab to LFA-1 (CD11a/CD18) and ICAM-1 (iv) in rabbit model of uveitis. | Anti-CD18 Ab effectively reduced cellular infiltration if injected after 24 h of induction. Anti-CD11a Ab was effective only in the IL-1-induced model. Anti-ICAM-1 Ab was ineffective. |
Uchio et al. [39] | Anti-ICAM-1 Ab or anti-LFA-1 α chain Ab (iv) consecutively after EAU induction in rat. | The development of EAU could be completely prevented by anti-ICAM-1 Ab but partially by anti-LFA-1 α chain Ab. |
Martin et al. [40] | α4 active peptide inhibitor (ip) was administered to classical and adoptive transferred B10.RIII EAU mice serially at afferent and efferent phase of disease. | Treatment at afferent and efferent phase has a similar extent of disease downregulation, however; it did not ablate the disease fully. Repeated injections can reduce the disease scores further. |
Smith et al. [41] | Anti-ICAM-1 Ab (ip) sequentially after induction of EMIU. | Failed to suppress leukocyte infiltration. |
Clinical Trial | Receptor and Mechanism | Outcome |
---|---|---|
An open-label, prospective, noncomparative phase I/II clinical trial (ClinicalTrials.gov number, NCT00280826.) [60] | Weekly subcutaneous Efalizumab (a humanized form of a murine IgG1 antibody to CD11a, the α subunit of LFA-1, Raptiva; Genentech Inc., San Francisco, CA, USA) treatment for 16 weeks for patients with macular edema secondary to NIU. | Improvement in uveitis severity and macular edema. Upregulation of CD56bright regulatory NK cell population in the peripheral blood. Side effects: neutropenia (17%) and headache (50%), resolved without sequelae. Efalizumab was taken off the market due to side effect of progressive multifocal leukoencephalopathy (PML). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Lightman, S.; Eskandarpour, M.; Calder, V.L. Adhesion Molecule Targeted Therapy for Non-Infectious Uveitis. Int. J. Mol. Sci. 2022, 23, 503. https://doi.org/10.3390/ijms23010503
Chen Y-H, Lightman S, Eskandarpour M, Calder VL. Adhesion Molecule Targeted Therapy for Non-Infectious Uveitis. International Journal of Molecular Sciences. 2022; 23(1):503. https://doi.org/10.3390/ijms23010503
Chicago/Turabian StyleChen, Yi-Hsing, Sue Lightman, Malihe Eskandarpour, and Virginia L. Calder. 2022. "Adhesion Molecule Targeted Therapy for Non-Infectious Uveitis" International Journal of Molecular Sciences 23, no. 1: 503. https://doi.org/10.3390/ijms23010503
APA StyleChen, Y. -H., Lightman, S., Eskandarpour, M., & Calder, V. L. (2022). Adhesion Molecule Targeted Therapy for Non-Infectious Uveitis. International Journal of Molecular Sciences, 23(1), 503. https://doi.org/10.3390/ijms23010503