Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes
Abstract
:1. Introduction
2. Results
2.1. General Structure of the Human Oviduct and Myometrial Tissue
2.2. Expression of Proangiogenic Markers
2.3. Expression of NOS in the Human Oviduct
2.4. Expression of Tubal and Uterine Telocytes
2.5. Expression of Oestrogen and Progesterone Receptors
2.6. Biochemical Parameters
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Ethical Approval
4.3. Tissue Processing
4.4. Routine Histology
4.5. Immunofluorescence
4.6. Microscopic Examination
4.7. Biochemical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maclntyre, N.R. Tissue hypoxia: Implications for the respiratory clinician. Respir. Care 2014, 59, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int. J. Cancer 2016, 138, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- McGarry, T.; Biniecka, M.; Veale, D.J.; Fearon, U. Hypoxia, oxidative stress and inflammation. Free Radic. Biol. Med. 2018, 125, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Xu, L.; Sone, K.; Kobayashi, T.; Wang, G.; Shozu, M. Hypoxia Induces Hypoxia-Inducible Factor 1α and Potential HIF-Responsive Gene Expression in Uterine Leiomyoma. Reprod. Sci. 2019, 26, 428–435. [Google Scholar] [CrossRef]
- Darby, I.A.; Hewitson, T.D. Hypoxia in tissue repair and fibrosis. Cell Tissue Res. 2016, 365, 553–562. [Google Scholar] [CrossRef]
- Colgan, S.P.; Campbell, E.L.; Kominsky, D.J. Hypoxia and Mucosal Inflammation. Annu. Rev. Pathol. 2016, 11, 77–100. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.T.; Colgan, S.P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 2017, 17, 774–785. [Google Scholar] [CrossRef]
- Quante, M.; Wang, T.C. Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology 2008, 23, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Dorayappan, K.D.P.; Wanner, R.; Wallbillich, J.J.; Saini, U.; Zingarelli, R.; Suarez, A.A.; Cohn, D.E.; Selvendiran, K. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins. Oncogene 2018, 37, 3806–3821. [Google Scholar] [CrossRef]
- Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Murata, M. Crosstalk between DNA Damage and Inflammation in the Multiple Steps of Carcinogenesis. Int. J. Mol. Sci. 2017, 18, 1808. [Google Scholar] [CrossRef] [Green Version]
- Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 2006, 70, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Simon, M.C. Hypoxia-inducible factors: Key regulators of myeloid cells during inflammation. J. Clin. Investig. 2016, 126, 3661–3671. [Google Scholar] [CrossRef] [PubMed]
- Wobben, R.; Hüsecken, Y.; Lodewick, C.; Gibbert, K.; Joachim Fandrey, J.; Winning, S. Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells. Biol. Chem. 2013, 394, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Tyrakis, P.A.; Palazon, A.; Macias, D.; Lee, K.L.; Phan, A.T.; Veliça, P.; You, J.; Chia, G.S.; Sim, J.; Doedens, A.; et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 2016, 540, 236–241. [Google Scholar] [CrossRef]
- Cho, S.H.; Raybuck, A.L.; Stengel, K.; Wei, M.; Beck, T.C.; Volanakis, E.; Thomas, J.W.; Hiebert, S.; Haase, V.H.; Boothby, M.R. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 2016, 537, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Cappello, P.; Principe, M.; Bulfamante, S.; Novelli, F. Alpha-Enolase (ENO1), a potential target in novel immunotherapies. Front. Biosci. 2017, 22, 944–959. [Google Scholar]
- Marech, I.; Leporini, C.; Ammendola, M.; Porcelli, M.; Gadaleta, C.D.; Russo, E.; De Sarro, G.; Ranieri, G. Classical and non-classical proangiogenic factors as a target of antiangiogenic therapy in tumor microenvironment. Cancer Lett. 2016, 380, 216–226. [Google Scholar] [CrossRef]
- Zarezade, N.; Saboori Darabi, S.; Ramezanali, F.; Amirchaghmaghi, E.; Khalili, G.; Moini, A.; Aflatoonian, R. mRNA expression of VEGF and its receptors in fallopian tubes of women with ectopic pregnancies. Int. J. Fertil. Steril. 2015, 9, 55–64. [Google Scholar]
- López Albors, O.; Olsson, F.; Llinares, A.B.; Gutiérrez, H.; Latorre, R.; Candanosa, E.; Guillén-Martínez, A.; Izquierdo-Rico, M.J. Expression of the vascular endothelial growth factor system (VEGF) in the porcine oviduct during the estrous cycle. Theriogenology 2017, 93, 46–54. [Google Scholar] [CrossRef]
- Aleksandrovych, V.; Bereza, T.; Ulatowska-Białas, M.; Pasternak, A.; Walocha, J.A.; Pityński, K.; Gil, K. Identification of PDGFRα + cells in uterine fibroids–link between angiogenesis and uterine telocytes. Arch. Med. Sci. 2022, 18. [Google Scholar] [CrossRef]
- Aleksandrovych, V.; Gil, K. Telocytes in the Tumor Microenvironment. In Tumor Microenvironment. Advances in Experimental Medicine and Biology; Birbrair, A., Ed.; Springer: Cham, Germany, 2021; Volume 1329. [Google Scholar] [CrossRef]
- Yang, X.J.; Yang, J.; Liu, Z.; Yang, G.; Shen, Z.J. Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility. J. Cell Mol. Med. 2015, 19, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrovych, V.; Wrona, A.; Bereza, T.; Pityński, K.; Gil, K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines 2021, 9, 1060. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrovych, V.; Gil, A.; Wrona, A. Sex steroid hormone receptors of telocytes-potential key role in leiomyoma development. Folia Med. Cracov. 2020, 60, 81–95. [Google Scholar] [PubMed]
- Yang, X.J. Telocytes in Inflammatory Gynaecologic Diseases and Infertility. Adv. Exp. Med. Biol. 2016, 913, 263–285. [Google Scholar]
- Walocha, J.A.; Litwin, J.A.; Miodoński, A.J. Vascular system of intramural leiomyomata revealed by corrosion casting and scanning electron microscopy. Hum. Reprod. 2003, 18, 1088–1093. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, X. Roles of Telocytes in the Development of Angiogenesis. Adv. Exp. Med. Biol. 2016, 913, 253–261. [Google Scholar]
- Aleksandrovych, V.; Pasternak, A.; Basta, P.; Sajewicz, M.; Walocha, J.A.; Gil, K. Telocytes: Facts, speculations and myths (Review article). Folia Med. Cracov. 2017, 57, 5–22. [Google Scholar]
- Cretoiu, S.M. Immunohistochemistry of Telocytes in the Uterus and Fallopian Tubes. Adv. Exp. Med. Biol. 2016, 913, 335–357. [Google Scholar]
- Konarska, M.; Wrona, A.N.; Aleksandrovych, V.; Bereza, T.; Sajewicz, M.; Gach-Kuniewicz, B.; Lis, M.; Komnata, K.; Paziewski, M.; Maleszka, A.; et al. Angiogenesis and pro-angiogenic factors in uterine fibroids-facts and myths. Folia Med. Cracov. 2016, 56, 37–43. [Google Scholar]
- Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2000–2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6482/ (accessed on 20 December 2021).
- Hyder, S.M.; Huang, J.C.; Nawaz, Z.; Boettger-Tong, H.; Makela, S.; Chiapetta, C.; Stancel, G.M. Regulation of Vascular Endothelial Growth Factor Expression by Estrogens and Progestins. Environ. Health Perspect. 2000, 108, 785–790. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Ye, S.; Zhang, Y.; Li, P.; Wang, L.; Wang, T.-h. Oestrogen Inhibits VEGF Expression and Angiogenesis In Triple-Negative Breast Cancer By Activating GPER-1. J. Cancer 2018, 9, 3802–3811. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.O.; Trau, H.A.; Duffy, D.M. Vascular endothelial growth factors C and D may promote angiogenesis in the primate ovulatory follicle. Biol. Reprod. 2017, 96, 389–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brązert, M.; Kranc, W.; Nawrocki, M.J.; Sujka-Kordowska, P.; Konwerska, A.; Jankowski, M.; Kocherova, I.; Celichowski, P.; Jeseta, M.; Ożegowska, K.; et al. New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation. Mol. Med. Rep. 2020, 21, 1537–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Seager, M.; Osman, A.; Castle-Miller, J.; Bevan, H.; Tortonese, D.J.; Murphy, D.; Harper, S.J.; Fraser, H.M.; Donaldson, L.F.; et al. Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility. Reproduction 2012, 143, 501–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Wu, P.; Shi, Q.; Song, D.; Fang, H. Telocytes promote VEGF expression and alleviate ventilator-induced lung injury in mice. Acta Biochim. Biophys. Sin. 2018, 50, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Aschacher, T.; Schmidt, K.; Aschacher, O.; Eichmair, E.; Baranyi, U.; Winkler, B.; Grabenwoeger, M.; Spittler, A.; Enzmann, F.; Messner, B.; et al. Telocytes in the human ascending aorta: Characterization and exosome-related KLF-4/VEGF-A expression. J. Cell Mol. Med. 2021, 25, 9697–9709. [Google Scholar] [CrossRef]
- Itoh, H.; Nasu, K.; Matsumoto, H.; Kawano, Y.; Yoshimatsu, J.; Narahara, H. Hypoxia regulates vascular endothelial growth factor and soluble fms-like tyrosine kinase-1 secretion by human oviductal epithelial cells and stromal fibroblasts. Fertil. Steril. 2006, 85 (Suppl. S1), 1097–1102. [Google Scholar] [CrossRef]
- Waza, A.A.; Hamid, Z.; Ali, S.; Bhat, S.A.; Bhat, M.A. A review on heme oxygenase-1 induction: Is it a necessary evil. Inflamm. Res. 2018, 67, 579–588. [Google Scholar] [CrossRef]
- Yachie, A. Heme Oxygenase-1 Deficiency and Oxidative Stress: A Review of 9 Independent Human Cases and Animal Models. Int. J. Mol. Sci. 2021, 22, 1514. [Google Scholar] [CrossRef]
- Liong, S.; Lappas, M. The Stress-responsive Heme Oxygenase (HO)-1 Isoenzyme is Increased in Labouring Myometrium where it Regulates Contraction-associated Proteins. Am. J. Reprod. Immunol. 2015, 74, 62–76. [Google Scholar] [CrossRef]
- Ilicic, M.; Zakar, T.; Paul, J.W. Modulation of Progesterone Receptor Isoform Expression in Pregnant Human Myometrium. Biomed. Res. Int. 2017, 2017, 4589214. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrovych, V.; Walocha, J.A.; Gil, K. Telocytes in female reproductive system (human and animal). J. Cell Mol. Med. 2016, 20, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Salama, N.M. Immunohistochemical characterization of telocytes in rat uterus in different reproductive stages. Egypt. J. Histol. 2013, 36, 185–194. [Google Scholar] [CrossRef]
- Aleksandrovych, V.; Kurnik-Łucka, M.; Bereza, T.; Białas, M.; Pasternak, A.; Cretoiu, D.; Walocha, J.A.; Gil, K. The Autonomic Innervation and Uterine Telocyte Interplay in Leiomyoma Formation. Cell Transplant. 2019, 28, 619–629. [Google Scholar] [CrossRef]
- Horn, L.C.; Meinel, A.; Hentscel, B. c-kit/CD 117 positive cells in the myometrium of pregnant women and those with uterine endometriosis. Arch. Gynecol. Obstet. 2012, 286, 105–107. [Google Scholar] [CrossRef]
- Yang, J.; Yan, J.; Liu, B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front. Immunol. 2018, 9, 978. [Google Scholar] [CrossRef] [Green Version]
- McGettrick, A.F.; O'Neill, L.A.J. The Role of HIF in Immunity and Inflammation. Cell Metab. 2020, 32, 524–536. [Google Scholar] [CrossRef]
- Domènech, M.; Hernández, A.; Plaja, A.; Martínez-Balibrea, E.; Balañà, C. Hypoxia: The Cornerstone of Glioblastoma. Int. J. Mol. Sci. 2021, 22, 12608. [Google Scholar] [CrossRef]
- Gillies, R.M.; Robinson, S.P.; McPhail, L.D.; Carter, N.D.; Murray, J.F. Immunohistochemical assessment of intrinsic and extrinsic markers of hypoxiain reproductive tissue: Differential expression of HIF1α and HIF2α in rat oviduct and endometrium. J. Mol. Histol. 2011, 42, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Kimura, K.; Aoki, M.; Hirako, M. Effect of vascular endothelial growth factor on maturation, fertilization and developmental competence of bovine oocytes. J. Vet. Med. Sci. 2002, 64, 803–806. [Google Scholar] [CrossRef] [Green Version]
- He, X.D.; Xia, Y.; Jige, M.T.; Wang, H.; Zi, X.D. Adaptive response of reproduction to high-altitude hypoxic stress by altering mRNA expression of hypoxia-inducible factors in female yaks (Bos grunniens). Anim. Biotechnol. 2020, 31, 373–375. [Google Scholar] [CrossRef] [PubMed]
Uterus without Myoma | Uterus with Myoma | ||||
---|---|---|---|---|---|
Myometrium | Oviduct | Myoma | Adjacent Myometrium | Oviduct | |
VEGF | ++ | ++ | (+)/+ | +++ | + |
VEGFR (sFlt-1) | + | +++ | ++ | ++ | ++ |
HIF-1 | ++ | + | (+) | +++ | ++ |
HO-1 | +++ | ++ | + | ++ | + |
Parameter | Control Group | Study Group |
---|---|---|
AMH (pmol/L) | 23.49 ± 14.84 | 6.48 ± 3.63 |
sflt (pg/mL) | 87.31 ± 14.03 | 82.44 ± 6.47 |
FSH (mIU/mL) | 57.63 ± 29.3 | 62.4 ± 39.63 |
LH (mIU/mL) | 29.62 ± 15.15 | 33.83 ± 23.25 |
Oestradiol (pmol/L) | 141.1 ± 253.86 | 96.68 ± 126.8 |
Progesterone (nmol/L) | 0.32 ± 0.16 | 10.00 ± 14 |
Antibody | Catalog Number and Company | Dilution |
---|---|---|
Primary Antibodies | ||
Polyclonal goat anti-PDGFR alpha | AF-307-NA, R&D Systems, Minneapolis, Minnesota, USA | 1:100 |
Polyclonal goat VEGFR1/FLT-1 | AF 321, R&D Systems, Minneapolis, Minnesota, USA | 10 µg/mL |
Monoclonal mouse anti-human VEGF | Clone VG1, M7273, Dako, Glostrup, Denmark | 1:100 |
Polyclonal rabbit anti-VEGFR-1 | orb127531, Biorbyt, UK | 1:100 |
Polyclonal rabbit anti-c-kit | A4502, Dako, Glostrup, Denmark | 1:100 |
Monoclonal mouse anti-CD31 | C70A, Dako, Glostrup, Denmark | 1:100 |
Monoclonal mouse anti-CD34 | M7165, Dako, Glostrup, Denmark | 1:100 |
Monoclonal mouse anti-HIF-1 | ab16066, Abcam, Cambridge, UK | 1:100 |
Polyclonal rabbit anti-heme oxygenase 1 | ab13243, Abcam, Cambridge, UK | 5 µg/mL |
Monoclonal mouse estrogen receptor | NCL-L-ER-6F11, Leica Biosystems, Newcastle upon Tyne, UK | 1:50 |
Monoclonal mouse progesterone receptor | Clone PgR636, Dako, Glostrup, Denmark | 1:100 |
Polyclonal mouse anti-NOS | sc-7271, Santa Cruz, Dallas, Texas, USA | 1:100 |
Monoclonal rabbit anti-CD34 | ab81289, Abcam, Cambridge, UK | 1:200 |
Monoclonal mouse anti-vimentin | Clone V9, Dako, Glostrup, Denmark | 1:50 |
Secondary antibodies | ||
Alexa Fluor 594 Donkey Anti-Goat | 705-585-003, Jackson ImmunoResearch, Ely, UK | 1:400 |
Alexa Fluor 594 Goat Anti-Mouse | 115-585-146, Jackson ImmunoResearch, Ely, UK | 1:400 |
Alexa Fluor 488 Goat Anti-Rabbit | 111-545-144, Jackson ImmunoResearch, Ely, UK | 1:400 |
Polyclonal Swine Anti-Rabbit FITC | F0205, Dako, Glostrup, Denmark | 1:40 |
Alexa Fluor 488 Goat Anti-Mouse | 115-545-146, Jackson ImmunoResearch, Ely, UK | 1:400 |
Alexa Fluor 488 Donkey Anti-Goat | 705-545-003, Jackson ImmunoResearch, Ely, UK | 1:400 |
Alexa Fluor 488 Rabbit Anti-Mouse | 315-545-045, Jackson ImmunoResearch, Ely, UK | 1:400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrona, A.; Aleksandrovych, V.; Bereza, T.; Basta, P.; Gil, A.; Ulatowska-Białas, M.; Mazur-Laskowska, M.; Pityński, K.; Gil, K. Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes. Int. J. Mol. Sci. 2022, 23, 6155. https://doi.org/10.3390/ijms23116155
Wrona A, Aleksandrovych V, Bereza T, Basta P, Gil A, Ulatowska-Białas M, Mazur-Laskowska M, Pityński K, Gil K. Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes. International Journal of Molecular Sciences. 2022; 23(11):6155. https://doi.org/10.3390/ijms23116155
Chicago/Turabian StyleWrona, Anna, Veronika Aleksandrovych, Tomasz Bereza, Paweł Basta, Anna Gil, Magdalena Ulatowska-Białas, Małgorzata Mazur-Laskowska, Kazimierz Pityński, and Krzysztof Gil. 2022. "Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes" International Journal of Molecular Sciences 23, no. 11: 6155. https://doi.org/10.3390/ijms23116155
APA StyleWrona, A., Aleksandrovych, V., Bereza, T., Basta, P., Gil, A., Ulatowska-Białas, M., Mazur-Laskowska, M., Pityński, K., & Gil, K. (2022). Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes. International Journal of Molecular Sciences, 23(11), 6155. https://doi.org/10.3390/ijms23116155