Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis
Abstract
:1. Introduction
2. Results
2.1. An Increase in HMGA1 mRNA Expression Level and HMGA1 Protein Amount Is Common in Multiple Carcinomas
2.2. HMGA1 Is Overexpressed in Lung Cancer in Comparison to Both Adjacent and Unpaired Normal Lung Tissue
2.3. HMGA1 Is Widely Overexpressed in Different Histological Types of Lung Tumour
2.4. HMGA1 Expression Level in Lung Cancer Could Be Connected with Methylation Status but Not with DNA Alterations of the HMGA1 Gene
2.5. HMGA1 Expression Level Is Connected with Selected Clinical Parameters in Lung Cancer
2.6. High HMGA1 Expression Is Related to a Poor Prognosis in Lung Cancer
2.7. HMGA1 Protein Interacts with Proteins Involved in Cellular Senescence and Ageing, Cell Cycle Control, Transcription Regulation, Chromatin Assembly/Remodelling, and Cholesterol and Isoprene Biosynthesis
3. Discussion
4. Materials and Methods
4.1. Gene Expression Analysis
4.1.1. Oncomine
4.1.2. TIMER2.0
4.1.3. TMNplot
4.2. Prognosis and Survival Analysis
4.2.1. Ualcan
4.2.2. Kaplan–Meier Plotter
4.2.3. PrognoScan
4.3. DNA Alteration and Methylation of the HMGA1 Gene
4.3.1. cBioPortal
4.3.2. Oncomine
4.3.3. UALCAN
4.4. Protein Analysis
cBioPortal
4.5. Interaction Network Analysis
4.5.1. STRING
4.5.2. GEPIA
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Global Cancer Observatory; International Agency for Research on Cancer; W.H.O. Lung Cancer-Fact Sheet. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf (accessed on 1 May 2022).
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S.; Barsouk, A. Epidemiology of lung cancer. Contemp. Oncol. 2021, 25, 45–52. [Google Scholar]
- Pinton, G.; Manzotti, B.; Balzano, C.; Moro, L. Expression and clinical implications of estrogen receptors in thoracic malignancies: A narrative review. J. Thorac. Dis. 2021, 13, 1851–1863. [Google Scholar] [CrossRef] [PubMed]
- Sumter, T.; Xian, L.; Huso, T.; Koo, M.; Chang, Y.-T.; Almasri, T.; Chia, L.; Inglis, C.; Reid, D.; Resar, L. The high mobility group A1 (HMGA1) transcriptome in cancer and development. Curr. Mol. Med. 2016, 16, 353–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benecke, A.G.; Eilebrecht, S. RNA-mediated regulation of HMGA1 function. Biomolecules 2015, 5, 943–957. [Google Scholar] [CrossRef] [PubMed]
- Vignali, R.; Marracci, S. HMGA genes and proteins in development and evolution. Int. J. Mol. Sci. 2020, 21, 654. [Google Scholar] [CrossRef] [Green Version]
- Pallante, P.; Sepe, R.; Puca, F.; Fusco, A. High mobility group A proteins as tumor markers. Front. Med. 2015, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, L.; Zheng, Y.; Guo, L. HMGA1 in cancer: Cancer classification by location. J. Cell. Mol. Med. 2019, 23, 2293–2302. [Google Scholar] [CrossRef] [Green Version]
- Fusco, A.; Esposito, F. HMGA and cancer: A review on patent literatures. Recent Pat. Anti-Cancer Drug Discov. 2019, 14, 258–267. [Google Scholar] [CrossRef]
- Hillion, J.; Wood, L.J.; Mukherjee, M.; Bhattacharya, R.; Di Cello, F.; Kowalski, J.; Elbahloul, O.; Segal, J.; Poirier, J.; Rudin, C.M.; et al. Upregulation of MMP-2 by HMGA1 promotes transformation in undifferentiated, large-cell lung cancer. Mol. Cancer Res. 2009, 7, 1803–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Li, X.-N.; Chen, S.; Du, B.-L.; Li, Y.-M. MicroRNA-4458 suppresses migration and epithelial–mesenchymal transition via targeting HMGA1 in non-small-cell lung cancer cells. Cancer Manag. Res. 2019, 11, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Barh, D.; Jain, N.; Tiwari, S.; Field, J.K.; Padin-Iruegas, E.; Ruibal, A.; López, R.; Herranz, M.; Bhattacharya, A.; Juneja, L.; et al. A novel in silico reverse-transcriptomics-based identification and blood-based validation of a panel of sub-type specific biomarkers in lung cancer. BMC Genom. 2013, 14, S5. [Google Scholar] [CrossRef] [Green Version]
- Sarhadi, V.K.; Wikman, H.; Salmenkivi, K.; Kuosma, E.; Sioris, T.; Salo, J.; Karjalainen, A.; Knuutila, S.; Anttila, S. Increased expression of high mobility group A proteins in lung cancer. J. Pathol. 2006, 209, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Q.; Chen, F.; Liu, J. Elevated expression of HMGA1 correlates with the malignant status and prognosis of non-small cell lung cancer. Tumor Biol. 2014, 36, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tao, F.; Ruan, S.; Hu, M.; Hu, Y.; Fang, Z.; Mei, L.; Gong, C. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am. J. Transl. Res. 2019, 11, 6860–6876. [Google Scholar]
- Lin, S.-Y.; Peng, F. Association of SIRT1 and HMGA1 expression in non-small cell lung cancer. Oncol. Lett. 2015, 11, 782–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, T.; Holtlund, J.; Fredriksen, M.; Laland, S.G. On the presence of two new high mobility group-like proteins in HeLa S3 cells. FEBS Lett. 1983, 152, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Cao, J.; Li, M.; Liang, C.; He, Y.; Li, Y.; Li, J.; Zheng, X.; Wang, L.; Wei, B.; et al. HMGA1 Overexpression is associated with the malignant status and progression of breast cancer. Anat. Rec. 2018, 301, 1061–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, K.H.; Jung, J.H.; Choi, H.J.; Shin, E.Y.; Chin, H.M. HMGA1/HMGA2 protein expression and prognostic implications in gastric cancer. Int. J. Surg. 2015, 24, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Kettunen, E.; Anttila, S.; Seppänen, J.K.; Karjalainen, A.; Edgren, H.; Lindström, I.; Salovaara, R.; Nissén, A.M.; Salo, J.; Mattson, K.; et al. Differentially expressed genes in non-small cell lung cancer: Expression profiling of cancer-related genes in squamous cell lung cancer. Cancer Genet. Cytogenet. 2004, 149, 98–106. [Google Scholar] [CrossRef]
- Colamaio, M.; Tosti, N.; Puca, F.; Mari, A.; Gattordo, R.; Kuzay, Y.; Federico, A.; Pepe, A.; Sarnataro, D.; Ragozzino, E.; et al. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells. Expert Opin. Ther. Targets 2016, 20, 1169–1179. [Google Scholar] [CrossRef]
- Czyż, W.; Balcerczak, E.; Jakubiak, M.; Pasieka, Z.; Kuzdak, K.; Mirowski, M. HMGI(Y) gene expression as a potential marker of thyroid follicular carcinoma. Langenbeck’s Arch. Surg. 2004, 389, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Pujals, M.; Resar, L.; Villanueva, J. HMGA1, moonlighting protein function, and cellular real estate: Location, location, location! Biomolecules 2021, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Méndez, O.; Peg, V.; Salvans, C.; Pujals, M.; Fernández, Y.; Abasolo, I.; Pérez, J.; Matres, A.; Valeri, M.; Gregori, J.; et al. Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer. Clin. Cancer Res. 2018, 24, 6367–6382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-T.; Pan, S.-H.; Tsai, C.-F.; Kuo, T.-C.; Hsu, Y.-L.; Yen, H.-Y.; Choong, W.-K.; Wu, H.-Y.; Liao, Y.-C.; Hong, T.-M.; et al. Phosphoproteomics reveals HMGA1, a CK2 substrate, as a drug-resistant target in non-small cell lung cancer. Sci. Rep. 2017, 7, 44021. [Google Scholar] [CrossRef] [Green Version]
- Klett, H.; Balavarca, Y.; Toth, R.; Gigic, B.; Habermann, N.; Scherer, D.; Schrotz-King, P.; Ulrich, A.; Schirmacher, P.; Herpel, E.; et al. Robust prediction of gene regulation in colorectal cancer tissues from DNA methylation profiles. Epigenetics 2018, 13, 386–397. [Google Scholar] [CrossRef]
- Kim, M.; Park, Y.-K.; Kang, T.-W.; Lee, S.-H.; Rhee, Y.-H.; Park, J.-L.; Kim, H.-J.; Lee, D.; Lee, D.; Kim, S.-Y.; et al. Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage. Hum. Mol. Genet. 2013, 23, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, X.; Zhao, Y.; Wang, Y.; Li, Y.; Xiang, C. Genome-wide DNA methylation and hydroxymethylation analysis reveal human menstrual blood-derived stem cells inhibit hepatocellular carcinoma growth through oncogenic pathway suppression via regulating 5-hmC in enhancer elements. Stem Cell Res. Ther. 2019, 10, 151. [Google Scholar] [CrossRef]
- Siegfried, J.M. Sex and gender differences in lung cancer and chronic obstructive lung disease. Endocrinology 2022, 163, bqab254. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lara, V.; Avila-Costa, M.R. An overview of lung cancer in women and the impact of estrogen in lung carcinogenesis and lung cancer treatment. Front. Med. 2021, 8, 600121. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Lee, J.; Park, Y.S.; Lee, C.-H.; Lee, S.-M.; Yim, J.-J.; Yoo, C.-G.; Han, S.K.; Kim, Y.W. Impact of smoking on mortality of patients with non-small cell lung cancer. Thorac. Cancer 2013, 5, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Lee, Y.J.; Kim, C.H.; Ahn, S. Landscape of epigenetically regulated lncRNAs and DNA methylation in smokers with lung adenocarcinoma. PLoS ONE 2021, 16, e0247928. [Google Scholar] [CrossRef] [PubMed]
- Langevin, S.; Kratzke, R.A.; Kelsey, K.T. Epigenetics of lung cancer. Transl. Res. 2014, 165, 74–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, D.; Liu, X.; Li, J.; Ouyang, R.; Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019, 12, 65. [Google Scholar] [CrossRef] [Green Version]
- Sekimoto, N.; Suzuki, A.; Suzuki, Y.; Sugano, S. Expression of miR-26a exhibits a negative correlation with HMGA1 and regulates cancer progression by targeting HMGA1 in lung adenocarcinoma cells. Mol. Med. Rep. 2016, 15, 534–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Tian, W.; Zhang, H.; Li, W.; Ji, C.; Wang, Y.; Li, Y. MicroRNA-486-5p suppresses lung cancer via downregulating mTOR signaling in vitro and in vivo. Front. Oncol. 2021, 11, 655236. [Google Scholar] [CrossRef]
- Lu, T.; Li, M.; Zhao, M.; Huang, Y.; Bi, G.; Liang, J.; Chen, Z.; Zheng, Y.; Xi, J.; Lin, Z.; et al. Metformin inhibits human non-small cell lung cancer by regulating AMPK–CEBPB–PDL1 signaling pathway. Cancer Immunol. Immunother. 2021, 71, 1733–1746. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Li, M.; Yang, P.; Wang, X.; Li, L.; Yang, B. Lamin B1 overexpresses in lung adenocarcinoma and promotes proliferation in lung cancer cells via AKT pathway. OncoTargets Ther. 2020, 13, 3129–3139. [Google Scholar] [CrossRef] [Green Version]
- Flinterman, M.B.; Mymryk, J.S.; Klanrit, P.; Yousef, A.F.; Lowe, S.W.; Caldas, C.; Gäken, J.; Farzaneh, F.; Tavassoli, M. p400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing. Oncogene 2007, 26, 6863–6874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zhang, Z.; Liang, X. Regulatory network analysis to reveal important miRNAs and genes in non-small cell lung cancer. Cell J. (Yakhteh) 2019, 21, 459–466. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, G.; Gao, J. CDK1 promotes the stemness of lung cancer cells through interacting with Sox2. Clin. Transl. Oncol. 2021, 23, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, B.; Ma, Y.; Kuang, J.; Liang, J.; Yuan, Y. NUCKS1 promotes proliferation, invasion and migration of non-small cell lung cancer by upregulating CDK1 expression. Cancer Manag. Res. 2020, 12, 13311–13323. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Augert, A.; Kim, D.-W.; Eastwood, E.; Wu, N.; Ibrahim, A.H.; Kim, K.-B.; Dunn, C.T.; Pillai, S.P.; Gazdar, A.F.; et al. Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discov. 2018, 8, 1422–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Yu, G.; Huang, B.; Mi, Y.; Kang, Y.; Simon, J.P. PPARG could work as a valid therapeutic strategy for the treatment of lung squamous cell carcinoma. PPAR Res. 2020, 2020, 2510951. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.; Agalioti, T.; Lomvardas, S.; Merika, M.; Chen, G.; Thanos, D. Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 2001, 293, 1133–1136. [Google Scholar] [CrossRef]
- Melillo, R.M.; Pierantoni, G.M.; Scala, S.; Battista, S.; Fedele, M.; Stella, A.; De Biasio, M.C.; Chiappetta, G.; Fidanza, V.; Condorelli, G.; et al. Critical role of the HMGI(Y) proteins in adipocytic cell growth and differentiation. Mol. Cell. Biol. 2001, 21, 2485–2495. [Google Scholar] [CrossRef] [Green Version]
- Arce-Cerezo, A.; Garcia, M.; Rodríguez-Nuevo, A.; Crosa-Bonell, M.; Enguix, N.; Pero, A.; Muñoz, S.; Roca, C.; Ramos, D.; Franckhauser, S.; et al. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci. Rep. 2015, 5, 14487. [Google Scholar] [CrossRef] [Green Version]
- Chiefari, E.; Tanyolaç, S.; Iiritano, S.; Sciacqua, A.; Capula, C.; Arcidiacono, B.; Nocera, A.; Possidente, K.; Baudi, F.; Ventura, V.; et al. A polymorphism of HMGA1 is associated with increased risk of metabolic syn-drome and related components. Sci. Rep. 2013, 3, 1491. [Google Scholar] [CrossRef] [PubMed]
- Pullinger, C.R.; Goldfine, I.D.; Tanyolaç, S.; Movsesyan, I.; Faynboym, M.; Durlach, V.; Chiefari, E.; Foti, D.P.; Frost, P.H.; Mal-loy, M.J.; et al. Evidence that an HMGA1 gene variant associates with type 2 diabetes, body mass index, and high-density lipoprotein cholesterol in a Hispanic-American population. Metab. Syndr. Relat. Disord. 2014, 12, 25–30. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Chiefari, E.; Salerno, N.; Ventura, V.; D’Ascoli, G.L.; Arcidiacono, B.; Ambrosio, G.; Bilotta, F.L.; Torella, D.; Foti, D.; et al. HMGA1 is a novel candidate gene for myocardial infarction susceptibility. Int. J. Cardiol. 2017, 227, 331–334. [Google Scholar] [CrossRef]
- Treff, N.R.; Pouchnik, D.; Dement, G.A.; Britt, R.L.; Reeves, R. High-mobility group A1a protein regulates Ras/ERK signaling in MCF-7 human breast cancer cells. Oncogene 2004, 23, 777–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capo, A.; Sepe, R.; Pellino, G.; Milone, M.; Malapelle, U.; Pellecchia, S.; Pepe, F.; Cacciola, N.A.; Manigrasso, M.; Bruzzaniti, S.; et al. Setting up and exploitation of a nano/technological platform for the evaluation of HMGA1b protein in peripheral blood of cancer patients. Nanomed. Nanotechnol. Biol. Med. 2018, 15, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpandez, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandeyb, A.; Chinnaiyan, A.M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020, 48, W509–W514. [Google Scholar] [CrossRef] [PubMed]
- Bartha, Á.; Győrffy, B. TNMplot.com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 2021, 22, 2622. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Gyorffy, B.; Surowiak, P.; Budczies, J.; Lánczky, A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 2013, 8, e82241. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, H.; Kitada, K.; Nakai, K.; Sarai, A. PrognoScan: A new database for meta-analysis of the prognostic value of genes. BMC Med. Genom. 2009, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional character-ization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [Green Version]
Variable | Overall Survival | First Progression Survival | ||||
---|---|---|---|---|---|---|
N | Hazard Ratio | p-Value | N | Hazard Ratio | p-Value | |
Non-restricted analysis | 1925 | 1.78 (1.57–2.03) | <1 × 10−16 | 982 | 1.60 (1.32–1.94) | 1.7 × 10−6 |
Grade | ||||||
I | 201 | 1.34 (0.93–1.92) | 0.1101 | 140 | 1.21 (0.78–1.87) | 0.4016 |
II | 310 | 1.70 (1.24–2.34) | 0.0009 | 165 | 1.33 (0.88–2.02) | 0.1729 |
III | 77 | 1.59 (0.82–3.07) | 0.1676 | 51 | 0.68 (0.30–1.54) | 0.3572 |
Histology | ||||||
adenocarcinoma | 719 | 1.93 (1.52–2.45) | 4.7 × 10−8 | 461 | 1.79 (1.30–2.46) | 0.0003 |
squamous cell carcinoma | 524 | 1.15 (0.91–1.46) | 0.2403 | 141 | 1.24 (0.74–2.07) | 0.4168 |
Stage | ||||||
I | 577 | 3.01 (2.24–4.05) | 2.3 × 10−14 | 325 | 1.48 (0.95–2.29) | 0.0810 |
II | 244 | 1.33 (0.92–1.92) | 0.1239 | 130 | 0.91 (0.54–1.52) | 0.7062 |
III | 70 | 1.00 (0.57–1.74) | 0.9962 | 19 | NA | NA |
IV | 4 | NA | NA | 0 | NA | NA |
AJCC stage T | ||||||
1 | 437 | 1.66 (1.24–2.22) | 0.0005 | 177 | 1.75 (1.04–2.93) | 0.0318 |
2 | 589 | 1.33 (1.07–1.67) | 0.0108 | 351 | 1.19 (0.88–1.60) | 0.2636 |
3 | 81 | 1.15 (0.70–1.89) | 0.5938 | 21 | 1.89 (0.71–5.07) | 0.1968 |
4 | 46 | 1.47 (0.78–2.77) | 0.2355 | 7 | NA | NA |
AJCC stage N | ||||||
0 | 781 | 1.39 (1.12–1.71) | 0.0023 | 374 | 1.31 (0.95–1.81) | 0.1046 |
1 | 252 | 1.38 (1.01–1.88) | 0.0455 | 130 | 1.53 (0.97–2.42) | 0.0640 |
2 | 111 | 1.23 (0.82–1.84) | 0.3076 | 51 | 2.47 (1.20–5.08) | 0.0110 |
0 | 781 | 1.39 (1.12–1.71) | 0.0023 | 374 | 1.31 (0.95–1.81) | 0.1046 |
AJCC stage M | ||||||
0 | 681 | 1.46 (1.18–1.79) | 0.0004 | 195 | 1.35 (0.82–2.25) | 0.2375 |
1 | 10 | NA | NA | 0 | NA | NA |
Sex | ||||||
female | 714 | 2.08 (1.63–2.64) | 1.1 × 10−9 | 468 | 1.40 (1.05–1.86) | 0.0218 |
male | 1100 | 1.59 (1.36–1.87) | 7.6 × 10−9 | 514 | 1.61 (1.24–2.09) | 0.0003 |
Smoking history | ||||||
never-smokers | 205 | 2.20 (1.22–3.69) | 0.0071 | 193 | 1.73 (1.06–2.82) | 0.0255 |
present or reformed smokers | 820 | 1.71 (1.38–2.11) | 4.9 × 10−7 | 603 | 1.53 (1.20–1.96) | 0.0006 |
Dataset | Subtype | End-Point * | Probe ID | N | Cut-Point | Cox p-Value | HR [95% CI] |
---|---|---|---|---|---|---|---|
jacob-00182-CANDF | LUAD | OS | 210457_x_at | 82 | 0.32 | 0.1758 | 1.25 [0.90–1.73] |
jacob-00182-CANDF | LUAD | OS | 206074_s_at | 82 | 0.48 | 0.0547 | 1.99 [0.99–4.03] |
HARVARD-LC | LUAD | OS | 39704_s_at | 84 | 0.88 | 0.0073 | 1.67 [1.15–2.42] |
jacob-00182-HLM | LUAD | OS | 210457_x_at | 79 | 0.80 | 0.5391 | 0.89 [0.60–1.30] |
jacob-00182-HLM | LUAD | OS | 206074_s_at | 79 | 0.23 | 0.9811 | 1.00 [0.67–1.51] |
MICHIGAN-LC | LUAD | OS | L17131_rna1_at | 86 | 0.20 | 0.0998 | 1.48 [0.93–2.35] |
jacob-00182-MSK | LUAD | OS | 206074_s_at | 104 | 0.81 | 0.0235 | 1.83 [1.08–3.08] |
jacob-00182-MSK | LUAD | OS | 210457_x_at | 104 | 0.83 | 0.0138 | 1.62 [1.10–2.37] |
GSE13213 | LUAD | OS | A_23_P42331 | 117 | 0.11 | 0.0606 | 0.34 [0.11–1.05] |
GSE13213 | LUAD | OS | A_24_P222043 | 117 | 0.81 | 0.0151 | 1.35 [1.06–1.73] |
GSE31210 | LUAD | OS | 210457_x_at | 204 | 0.68 | 0.1824 | 0.74 [0.48–1.15] |
GSE31210 | LUAD | OS | 206074_s_at | 204 | 0.61 | 0.0056 | 2.01 [1.23–3.29] |
jacob-00182-UM | LUAD | OS | 210457_x_at | 178 | 0.60 | 0.6309 | 1.06 [0.83–1.35] |
jacob-00182-UM | LUAD | OS | 206074_s_at | 178 | 0.66 | 0.0627 | 1.39 [0.98–1.96] |
GSE31210 | LUAD | RFS | 210457_x_at | 204 | 0.35 | 0.5440 | 0.90 [0.63–1.27] |
GSE31210 | LUAD | RFS | 206074_s_at | 204 | 0.78 | 0.0000 | 2.34 [1.62–3.37] |
GSE4573 | LUSC | OS | 206074_s_at | 129 | 0.37 | 0.1601 | 1.45 [0.86–2.45] |
GSE4573 | LUSC | OS | 210457_x_at | 129 | 0.20 | 0.4697 | 1.13 [0.81–1.59] |
GSE17710 | LUSC | OS | 32619 | 56 | 0.84 | 0.8742 | 1.06 [0.53–2.09] |
GSE17710 | LUSC | OS | 29455 | 56 | 0.73 | 0.6085 | 0.80 [0.35–1.85] |
GSE17710 | LUSC | OS | 39302 | 56 | 0.55 | 0.6607 | 1.10 [0.72–1.66] |
GSE17710 | LUSC | RFS | 39302 | 56 | 0.55 | 0.6389 | 1.10 [0.74–1.64] |
GSE17710 | LUSC | RFS | 32619 | 56 | 0.79 | 0.8784 | 0.95 [0.48–1.89] |
GSE17710 | LUSC | RFS | 29455 | 56 | 0.11 | 0.6048 | 0.82 [0.38–1.77] |
Lung Adenocarcinoma | Lung Squamous Cell Carcinoma | Normal Lung Tissue | ||||
---|---|---|---|---|---|---|
R Spearman | p-Value | R Spearman | p-Value | R Spearman | p-Value | |
C6orf1 | 0.02 | 0.72 | 0.21 | 3.30 × 10−6 | 0.21 | 0.00027 |
CEBPB | 0.17 | 1.8 × 10−4 | −0.21 | 2.4 × 10−6 | 0.27 | 3.9 × 10−6 |
EP400 | 0.21 | 2.2 × 10−6 | 0.26 | 3.10 × 10−9 | −0.09 | 0.13 |
HMGB2 | 0.39 | 1.10 × 10−18 | 0.25 | 4.20 × 10−8 | −0.06 | 0.33 |
LMNB1 | 0.54 | 8.70 × 10−38 | 0.38 | 6.10 × 10−18 | 0.43 | 2.10 × 10−14 |
RPS6KB1 | 0.31 | 3.90 × 10−12 | 0.26 | 8.90 × 10−9 | 0.10 | 0.081 |
CDK1 | 0.61 | 3.00 × 10−50 | 0.27 | 2.80 × 10−9 | 0.06 | 0.35 |
CREBBP | 0.08 | 0.073 | 0.18 | 5.00 × 10−5 | −0.27 | 3.30 × 10−6 |
HMGA2 | 0.31 | 2.00 × 10−12 | 0.24 | 8.70 × 10−8 | 0.18 | 0.002 |
PPARG | 0.20 | 6.00 × 10−6 | 0.15 | 8.00 × 10−4 | −0.02 | 0.062 |
RB1 | 0.03 | 0.54 | −0.04 | 0.41 | −0.07 | 0.25 |
TP53 | 0.01 | 0.77 | 0.18 | 6.90 × 10−4 | 0.08 | 0.19 |
INSIG1 | 0.12 | 9.40 × 10−3 | 0.13 | 5.20 × 10−3 | 0.29 | 8.2 × 10−7 |
FDFT1 | 0.01 | 0.81 | 0.22 | 5.60 × 10−7 | 0.28 | 1.40 × 10−6 |
FDPS | 0.30 | 1.30 × 10−11 | 0.25 | 2.90 × 10−8 | 0.2 | 5.00 × 10−4 |
GGPS1 | 0.10 | 0.029 | 0.04 | 0.44 | −0.01 | 0.9 |
HMGCR | 0.23 | 2.00 × 10−7 | 0.22 | 1.50 × 10−6 | 0.25 | 2.10 × 10−5 |
MVD | 0.19 | 2.60 × 10−5 | 0.18 | 7.20 × 10−5 | 0.37 | 5.00 × 10−11 |
MVK | 0.12 | 0.0083 | 0.19 | 1.50 × 10−5 | −0.01 | 0.88 |
PMVK | −0.09 | 0.042 | 0.00 | 0.98 | −0.01 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saed, L.; Jeleń, A.; Mirowski, M.; Sałagacka-Kubiak, A. Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis. Int. J. Mol. Sci. 2022, 23, 6933. https://doi.org/10.3390/ijms23136933
Saed L, Jeleń A, Mirowski M, Sałagacka-Kubiak A. Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis. International Journal of Molecular Sciences. 2022; 23(13):6933. https://doi.org/10.3390/ijms23136933
Chicago/Turabian StyleSaed, Lias, Agnieszka Jeleń, Marek Mirowski, and Aleksandra Sałagacka-Kubiak. 2022. "Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis" International Journal of Molecular Sciences 23, no. 13: 6933. https://doi.org/10.3390/ijms23136933
APA StyleSaed, L., Jeleń, A., Mirowski, M., & Sałagacka-Kubiak, A. (2022). Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis. International Journal of Molecular Sciences, 23(13), 6933. https://doi.org/10.3390/ijms23136933