Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review
Abstract
:1. Introduction
2. The Definitions: Morphological Diagnostic Criteria of Parathyroid Tumours by WHO Classification (2022)
- Trabecular or sheet-like architecture;
- Band-like fibrosis in the absence of history of fine needle aspiration (FNA) that might induce scarring via needle track or at the site of FNA-induced necrosis. Secondary or tertiary hyperparathyroidism are also associated with fibrotic bands and should be considered clinically;
- Cytological atypia, enlarged nucleoli;
- Mitotic activity exceeding 5 mitoses/50 high power fields;
- Atypical mitoses;
- Coagulation necrosis in the absence of history of FNA;
- Adherence to the surrounding tissues but not frank invasion into these tissues;
- Tumour cells located within the capsule, but lacking full-thickness penetration through the capsule [12].
- Angioinvasion in a blood vessel located either outside the tumour or in the capsule; the tumour growth through vascular wall and/or carcinoma cells within thrombus must be visible. Considering the fenestrated endothelium, a mere presence of neoplastic cells in an intratumoural vessel does not qualifies for true invasion. Vascular invasion must also be distinguished from artificial displacement (“seeding”) of tumour cells into blood vessel lumen, that can happen during grossing. True vascular invasion is recognised by verified tumour penetration through vessel’s wall or by presence of the tumour cells in a thrombus, showing a biological reaction to invasion;
- Invasion in lymphatics provided that retraction phenomenon is excluded. Immunohistochemistry for endothelial markers is highly recommended for this;
- Perineural or intraneural invasion;
- Invasion into surrounding soft tissues, thyroid, oesophagus, skeletal muscle. Presence of neoplastic cells within the tumour capsule does not qualify for the diagnosis of carcinoma. The mere presence of parathyroid tissues within the thyroid also is not sufficient to justify the diagnosis of parathyroid carcinoma, because ectopic location of a parathyroid gland, adenoma or carcinoma is a well-known phenomenon [44,45]. Invasion must also be distinguished from parathyromatosis—a rare condition characterised by a presence of multiple microscopic islets of benign parathyroid tissue scattered throughout the soft tissues of neck and/or superior mediastinum [46,47,48,49,50];
- Metastases in lymph nodes or distant organs [12]. However, considering the indolent course of parathyroid carcinoma, metastatic spread is not always present. In a recently published large, SEER-based study, evaluating 609 cases of parathyroid carcinoma (1975–2016), lymph node metastases were found in 25.2% of all patients and 29.2% of cases where lymph node status was reported. Distant metastases were present in 2.2% of all patients and 3.8% of cases with a known stage [17].
3. Immunohistochemical Profile of Parathyroid Tumours
3.1. Parafibromin
3.2. Proliferation Activity by Ki-67
3.3. Cell Cycle Regulation
3.3.1. p27 Protein
3.3.2. p21 Protein
3.3.3. Cyclin D1
Pattern | Absolute Numbers of Pattern-Showing/Investigated Cases; Proportion of Positive Cases (%) or Fraction of Positive Cells (%) | |||||
---|---|---|---|---|---|---|
Parathyroid Carcinoma | Atypical Parathyroid Tumour | Adenoma | Multiglandular Parathyroid Disease | Normal Gland | Reference | |
Mean value of strong nuclear expression | 31.5% | 12.0% | 24.8% PPH 1 | 10.1% | Uljanovs et al., 2021 [38] | |
Highest (hotspot) value of strong nuclear expression | 41.8% | 22.8% | 42.5% PPH 1 | 11.9% | Uljanovs et al., 2021 [38] | |
Nuclear expression exceeding 5% | 7/10; 70.0% | 10/14 AA 2; 71.4% | 5/21; 23.8% | Sungu et al., 2018 [79] | ||
Lack of expression considered as the carcinoma-associated pattern | 2/24; 8.3% | Truran et al., 2014 [57] | ||||
Nuclear expression exceeding 5% | 2/11; 18.2% | 1/8 AA 2; 12.5% | 4/44; 9.1% | Stojadinovic et al., 2003 [92] | ||
Strong nuclear expression exceeding 20% | 2/2; 100.0% | 11/17; 64.7% | 0/10; 0.0% | Thomopoulou et al., 2003 [81] | ||
Mean value of strong nuclear expression | 27.4% in joint group of carcinoma and adenoma | 27.4% in joint group of carcinoma and adenoma | 14.5% in PPH 1 3.7% in SPH 3 | <1% | Thomopoulou et al., 2003 [81] | |
Nuclear expression | 41/46; 89.1% | 9/10; 90.0% | Cristobal et al., 2000 [104] | |||
Mean value of nuclear expression | 25.8% | 27.1% | Cristobal et al., 2000 [104] | |||
More than 10% of cells in adenoma stained more intensively than non-tumour cells | 9/24 (7, nuclear; 2, cytoplasmic); 37.5% | Ikeda et al., 2002 [105] |
3.3.4. p53 Protein
3.4. APC Protein
3.5. Intermediary Filaments
3.5.1. Cytokeratin 19
3.5.2. Vimentin
3.6. CD44
3.7. Neuroendocrine and Hormone Markers: Chromogranin A, Synaptophysin, CD56, PTH and TTF-1
3.8. Immunohistochemical Profile of Parathyroid Disease in MEN Syndromes: Menin
3.9. Calcium-Sensing Receptor (CaSR) and the Associated Molecular Pathways
3.10. Intratumoural Heterogeneity
4. Tumour Microenvironment
- immunotype (IT) I s. adaptive resistance: TILs are present, and PD-L1 is expressed;
- IT II s. immunologic ignorance: both TIL s and PD-L1 are absent;
- IT III s. intrinsic induction: TILs are absent, but PD-L1 is expressed;
- IT IV s. tolerance: TILs are present, but PD-L1 is negative.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oberger Marques, J.V.; Moreira, C.A. Primary hyperparathyroidism. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101514. [Google Scholar] [CrossRef] [PubMed]
- Tournis, S.; Makris, K.; Cavalier, E.; Trovas, G. Cardiovascular risk in patients with primary hyperparathyroidism. Curr. Pharm. Des. 2020, 26, 5628–5636. [Google Scholar] [CrossRef] [PubMed]
- Yanevskaya, L.G.; Karonova, T.; Sleptsov, I.V.; Boriskova, M.E.; Bakhtiyarova, A.R.; Chernikov, R.A.; Pogosian, K.A.; Andreeva, A.T.; Lebedev, D.A.; Grineva, E.N.; et al. Clinical phenotypes of primary hyperparathyroidism in hospitalized patients who underwent parathyroidectomy. Endocr. Connect. 2021, 10, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Tonon, C.R.; Silva, T.A.A.L.; Pereira, F.W.L.; Queiroz, D.A.R.; Junior, E.L.F.; Martins, D.; Azevedo, P.S.; Okoshi, M.P.; Zornoff, L.A.M.; de Paiva, S.A.R.; et al. A review of current clinical concepts in the pathophysiology, etiology, diagnosis, and management of hypercalcemia. Med. Sci. Monit. 2022, 28, e935821. [Google Scholar] [CrossRef] [PubMed]
- Adami, S.; Marcocci, C.; Gatti, D. Epidemiology of primary hyperparathyroidism in Europe. J. Bone Miner. Res. 2002, 17 (Suppl. 2), N18–N23. [Google Scholar]
- Fraser, W.D. Hyperparathyroidism. Lancet 2009, 374, 145–158. [Google Scholar] [CrossRef]
- Griebeler, M.L.; Kearns, A.E.; Ryu, E.; Hathcock, M.A.; Melton, L.J., 3rd; Wermers, R.A. Secular trends in the incidence of primary hyperparathyroidism over five decades (1965–2010). Bone 2015, 73, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mossinelli, C.; Saibene, A.M.; De Pasquale, L.; Maccari, A. Challenging neck mass: Non-functional giant parathyroid adenoma. BMJ Case Rep. 2016, 2016, bcr2016215973. [Google Scholar] [CrossRef]
- Khalil, M.; Zafereo, M.; Gule-Monroe, M.; Sherman, S.I.; Bell, D. Non-functional water clear cell parathyroid carcinoma masquerading as medullary thyroid carcinoma. Ann. Diagn. Pathol. 2021, 54, 151791. [Google Scholar] [CrossRef]
- Sen, M.; Nagaoka, R.; Kazusaka, H.; Matsui, M.; Saitou, M.; Sugitani, I.; Sakatani, T.; Kameyama, K. Non-functioning oxyphilic parathyroid carcinoma: A case report. Surg. Case Rep. 2021, 7, 119. [Google Scholar] [CrossRef]
- Duan, K.; Gomez Hernandez, K.; Mete, O. Clinicopathological correlates of hyperparathyroidism. J. Clin. Pathol. 2015, 68, 771–787. [Google Scholar] [CrossRef] [PubMed]
- Erickson, L.A.; Mete, O.; Juhlin, C.C.; Perren, A.; Gill, A.J. Overview of the 2022 WHO classification of parathyroid tumors. Endocr. Pathol. 2022, 33, 64–89. [Google Scholar] [CrossRef]
- Fernandes, J.M.P.; Paiva, C.; Correia, R.; Polónia, J.; Moreira da Costa, A. Parathyroid carcinoma: From a case report to a review of the literature. Int. J. Surg. Case Rep. 2018, 42, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Favia, G.; Lumachi, F.; Polistina, F.; D’Amico, D.F. Parathyroid carcinoma: Sixteen new cases and suggestions for correct management. World J. Surg. 1998, 22, 1225–1230. [Google Scholar] [CrossRef]
- Ozolins, A.; Narbuts, Z.; Vanags, A.; Simtniece, Z.; Visnevska, Z.; Akca, A.; Wirowski, D.; Gardovskis, J.; Strumfa, I.; Goretzki, P.E. Evaluation of malignant parathyroid tumours in two European cohorts of patients with sporadic primary hyperparathyroidism. Langenbecks Arch. Surg. 2016, 401, 943–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Fan, Y.; Zhang, Z.; Yue, H. Clinical characteristics of primary hyperparathyroidism: 15-year experience of 457 patients in a single center in China. Front. Endocrinol. 2021, 12, 602221. [Google Scholar] [CrossRef]
- Ullah, A.; Khan, J.; Waheed, A.; Sharma, N.; Pryor, E.K.; Stumpe, T.R.; Velasquez Zarate, L.; Cason, F.D.; Kumar, S.; Misra, S.; et al. Parathyroid carcinoma: Incidence, survival analysis, and management: A study from the SEER database and insights into future therapeutic perspectives. Cancers 2022, 14, 1426. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, J.H.; Park, M.Y.; Kim, S.W.; Shin, C.S. Epidemiology and prognosis of parathyroid carcinoma: Real-world data using nationwide cohort. J. Cancer Res. Clin. Oncol. 2021, 147, 3091–3097. [Google Scholar] [CrossRef]
- Spence, H.M. The life and death of Captain Charles Martell and kidney stone disease. J. Urol. 1984, 132, 1204–1207. [Google Scholar] [CrossRef]
- Khan, A.A.; Hanley, D.A.; Rizzoli, R.; Bollerslev, J.; Young, J.E.; Rejnmark, L.; Thakker, R.; D’Amour, P.; Paul, T.; Van Uum, S.; et al. Primary hyperparathyroidism: Review and recommendations on evaluation, diagnosis, and management. A Canadian and international consensus. Osteoporos. Int. 2017, 28, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Slattery, L.; Hunt, J.P. Contemporary management of primary hyperparathyroidism. Surg. Clin. N. Am. 2022, 102, 251–265. [Google Scholar] [CrossRef]
- Milat, F.; Ramchand, S.K.; Herath, M.; Gundara, J.; Harper, S.; Farrell, S.; Girgis, C.M.; Clifton-Bligh, R.; Schneider, H.G.; De Sousa, S.M.C.; et al. Primary hyperparathyroidism in adults—(Part I) assessment and medical management: Position statement of the endocrine society of Australia, the Australian & New Zealand endocrine surgeons, and the Australian & New Zealand bone and mineral society. Clin. Endocrinol. 2021. [Google Scholar] [CrossRef]
- Verdelli, C.; Corbetta, S. Epigenetic alterations in parathyroid cancers. Int. J. Mol. Sci. 2017, 18, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, F.; Giusti, F.; Iantomasi, T.; Brandi, M.L. Parathyroid tumors: Molecular signatures. Int. J. Mol. Sci. 2021, 22, 11206. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Giusti, F.; Palmini, G.; Perigli, G.; Santoro, R.; Brandi, M.L. Genetics and epigenetics of parathyroid carcinoma. Front. Endocrinol. 2022, 13, 834362. [Google Scholar] [CrossRef]
- Abolins, A.; Vanags, A.; Trofimovics, G.; Miklasevics, E.; Gardovskis, J.; Strumfa, I. Molecular subtype shift in breast cancer upon trastuzumab treatment: A case report. Pol. J. Pathol. 2011, 62, 65–68. [Google Scholar]
- Tang, P.; Tse, G.M. Immunohistochemical aurrogates for molecular classification of breast carcinoma: A 2015 update. Arch. Pathol. Lab. Med. 2016, 140, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, I.; Hussainzada, A.; Berger, S.; Fietze, E.; Linke, J.; Siedentopf, F.; Schoenegg, W. The St. Gallen surrogate classification for breast cancer subtypes successfully predicts tumor presenting features, nodal involvement, recurrence patterns and disease free survival. Breast 2016, 29, 181–185. [Google Scholar] [CrossRef]
- Jakovlevs, A.; Vanags, A.; Gardovskis, J.; Strumfa, I. Molecular classification of diffuse gliomas. Pol. J. Pathol. 2019, 70, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Orzan, F.; Pagani, F.; Cominelli, M.; Triggiani, L.; Calza, S.; De Bacco, F.; Medicina, D.; Balzarini, P.; Panciani, P.P.; Liserre, R.; et al. A simplified integrated molecular and immunohistochemistry-based algorithm allows high accuracy prediction of glioblastoma transcriptional subtypes. Lab. Investig. 2020, 100, 1330–1344. [Google Scholar] [CrossRef]
- Agarwal, S.; Bychkov, A.; Jung, C.K. Emerging biomarkers in thyroid practice and research. Cancers 2021, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Madkhali, T.; Alhefdhi, A.; Chen, H.; Elfenbein, D. Primary hyperparathyroidism. Ulus. Cerrahi Derg. 2016, 32, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Quaglino, F.; Manfrino, L.; Cestino, L.; Giusti, M.; Mazza, E.; Piovesan, A.; Palestini, N.; Lauro, C.; Castellano, E. Parathyroid carcinoma: An up-to-date retrospective multicentric analysis. Int. J. Endocrinol. 2020, 2020, 7048185. [Google Scholar] [CrossRef] [PubMed]
- Mizamtsidi, M.; Nastos, C.; Mastorakos, G.; Dina, R.; Vassiliou, I.; Gazouli, M.; Palazzo, F. Diagnosis, management, histology and genetics of sporadic primary hyperparathyroidism: Old knowledge with new tricks. Endocr. Connect. 2018, 7, R56–R68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, D. Parathyroid pathology: Hyperparathyroidism and parathyroid tumors. Arch. Pathol. Lab. Med. 2010, 134, 1639–1644. [Google Scholar] [CrossRef]
- Fendrich, V.; Waldmann, J.; Feldmann, G.; Schlosser, K.; König, A.; Ramaswamy, A.; Bartsch, D.K.; Karakas, E. Unique expression pattern of the EMT markers Snail, Twist and E-cadherin in benign and malignant parathyroid neoplasia. Eur. J. Endocrinol. 2009, 160, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Giordano, T.J. Parathyroid Glands. In Rosai and Ackerman’s Surgical Pathology, 11th ed.; Goldblum, J.R., Lamps, L.W., McKenney, J.K., Myers, J.L., Eds.; Elsevier: Philadelphia, PA, USA, 2018; pp. 355–369. [Google Scholar]
- Uljanovs, R.; Strumfa, I.; Bahs, G.; Vidusa, L.; Merkurjeva, K.; Franckevica, I.; Strumfs, B. Molecular profile of parathyroid tissues and tumours: A heterogeneous landscape. Pol. J. Pathol. 2021, 72, 99–116. [Google Scholar] [CrossRef]
- Guarnieri, V.; Battista, C.; Muscarella, L.A.; Bisceglia, M.; de Martino, D.; Baorda, F.; Maiello, E.; D’Agruma, L.; Chiodini, I.; Clemente, C.; et al. CDC73 mutations and parafibromin immunohistochemistry in parathyroid tumors: Clinical correlations in a single-centre patient cohort. Cell. Oncol. 2012, 35, 411–422. [Google Scholar] [CrossRef]
- Kruijff, S.; Sidhu, S.B.; Sywak, M.S.; Gill, A.J.; Delbridge, L.W. Negative parafibromin staining predicts malignant behavior in atypical parathyroid adenomas. Ann. Surg. Oncol. 2014, 21, 426–433. [Google Scholar] [CrossRef]
- Cetani, F.; Marcocci, C.; Torregrossa, L.; Pardi, E. Atypical parathyroid adenomas: Challenging lesions in the differential diagnosis of endocrine tumors. Endocr. Relat. Cancer 2019, 26, R441–R464. [Google Scholar] [CrossRef] [Green Version]
- Imanishi, Y.; Hosokawa, Y.; Yoshimoto, K.; Schipani, E.; Mallya, S.; Papanikolaou, A.; Kifor, O.; Tokura, T.; Sablosky, M.; Ledgard, F.; et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J. Clin. Investig. 2001, 107, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Their, M.; Daudi, S.; Bergenfelz, A.; Almquist, M. Predictors of multiglandular disease in primary hyperparathyroidism. Langenbecks Arch. Surg. 2018, 403, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, H.; Pillutla, P.; Schwartz, C.; Nguyen, T. Intrathyroidal parathyroid carcinoma: Case report and literature review. Ear Nose Throat J. 2022, 1455613221093729. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, D. Hyperparathyroidism caused by intrathyroidal parathyroid adenoma detected by 99mTc-sestamibi parathyroid scan and 18F-Fluorocholine PET/CT. Jpn. J. Clin. Oncol. 2022, 52, 397–398. [Google Scholar] [CrossRef]
- Sim, I.W.; Farrell, S.; Grodski, S.; Jung, C.; Ng, K.W. Parathyromatosis following spontaneous rupture of a parathyroid adenoma: Natural history and the challenge of management. Intern. Med. J. 2013, 43, 819–822. [Google Scholar] [CrossRef]
- Sharma, S.; Dey, P.; Gude, G.; Saikia, U.N. Parathyromatosis—A rare occurrence along the endoscopic tract detected on fine needle aspiration cytology. Diagn. Cytopathol. 2016, 44, 1125–1127. [Google Scholar] [CrossRef]
- Bartoňová, L.; Campr, V.; Chmelová, R.; Taudy, M.; Kodet, R. Nonfunctioning parathyroid carcinoma associated with parathyromatosis. A case report. Cesk Patol. 2018, 54, 37–42. [Google Scholar]
- Kaszczewska, M.; Popow, M.; Chudziński, W.; Kaszczewska, J.; Bogdańska, M.; Podgórska, J.; Czarniecka, A.; Gałązka, Z. A woman with a 27-year history of hyperparathyroidism and hypercalcemia who was diagnosed with low-grade parathyroid carcinoma. Am. J. Case Rep. 2021, 22, e930301. [Google Scholar] [CrossRef]
- Latgé, A.; Averous, G.; Helali, M.; Bachellier, P.; Imperiale, A. Parathyromatosis: A challenging cause of recurrent primary hyperparathyroidism. QJM Int. J. Med. 2022, 115, hcac042. [Google Scholar] [CrossRef]
- Gill, A.J.; Lim, G.; Cheung, V.K.Y.; Andrici, J.; Perry-Keene, J.L.; Paik, J.; Sioson, L.; Clarkson, A.; Sheen, A.; Luxford, C.; et al. Parafibromin-deficient (HPT-JT type, CDC73 mutated) parathyroid tumors demonstrate distinctive morphologic features. Am J. Surg. Pathol. 2019, 43, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Newey, P.J. Hereditary primary hyperparathyroidism. Endocrinol. Metab. Clin. N. Am. 2021, 50, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Bradley, K.J.; Hobbs, M.R.; Buley, I.D.; Carpten, J.D.; Cavaco, B.M.; Fares, J.E.; Laidler, P.; Manek, S.; Robbins, C.M.; Salti, I.S.; et al. Uterine tumours are a phenotypic manifestation of the hyperparathyroidism-jaw tumour syndrome. J. Intern. Med. 2005, 257, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Rekik, N.; Ben Naceur, B.; Mnif, M.; Mnif, F.; Mnif, H.; Boudawara, T.; Abid, M. Hyperparathyroidism-jaw tumor syndrome: A case report. Ann. Endocrinol. 2010, 71, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Cetani, F.; Ambrogini, E.; Viacava, P.; Pardi, E.; Fanelli, G.; Naccarato, A.G.; Borsari, S.; Lemmi, M.; Berti, P.; Miccoli, P.; et al. Should parafibromin staining replace HRTP2 gene analysis as an additional tool for histologic diagnosis of parathyroid carcinoma? Eur. J. Endocrinol. 2007, 156, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Han, J.W.; Youn, H.D.; Cho, E.J. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucleic Acids Res. 2010, 38, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Truran, P.P.; Johnson, S.J.; Bliss, R.D.; Lennard, T.W.; Aspinall, S.R. Parafibromin, galectin-3, PGP9.5, Ki67, and cyclin D1: Using an immunohistochemical panel to aid in the diagnosis of parathyroid cancer. World J. Surg. 2014, 38, 2845–2854. [Google Scholar] [CrossRef]
- Davies, M.P.; John Evans, T.W.; Tahir, F.; Balasubramanian, S.P. Parathyroid cancer: A systematic review of diagnostic biomarkers. Surgeon 2021, 19, e536–e548. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, P.; Lu, J.; Pan, B.; Guo, D.; Zhang, Z.; Wang, A.; Zhang, M.; Sun, J.; Wang, W.; et al. Diagnostic significance of parafibromin expression in parathyroid carcinoma. Hum. Pathol. 2022; in press. [Google Scholar] [CrossRef]
- Gill, A.J. Understanding the genetic basis of parathyroid carcinoma. Endocr. Pathol. 2014, 25, 30–34. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, Z.; Hu, Y. Prognostic role of parafibromin staining and CDC73 mutation in patients with parathyroid carcinoma: A systematic review and meta-analysis based on individual patient data. Clin. Endocrinol. 2020, 92, 295–302. [Google Scholar] [CrossRef]
- DeLellis, R.A. Challenging lesions in the differential diagnosis of endocrine tumors: Parathyroid carcinoma. Endocr. Pathol. 2008, 19, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Juhlin, C.C.; Haglund, F.; Obara, T.; Arnold, A.; Larsson, C.; Höög, A. Absence of nucleolar parafibromin immunoreactivity in subsets of parathyroid malignant tumours. Virchows Arch. 2011, 459, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.H.; Chung, T.M.; Youn, H.; Yoo, J.Y. Cytoplasmic parafibromin/hCdc73 targets and destabilizes p53 mRNA to control p53-mediated apoptosis. Nat. Commun. 2014, 5, 5433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhlin, C.C.; Villablanca, A.; Sandelin, K.; Haglund, F.; Nordenström, J.; Forsberg, L.; Bränström, R.; Obara, T.; Arnold, A.; Larsson, C.; et al. Parafibromin immunoreactivity: Its use as an additional diagnostic marker for parathyroid tumor classification. Endocr. Relat. Cancer 2007, 14, 501–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.K.; Oh, Y.L.; Kim, S.H.; Lee, D.Y.; Kang, H.C.; Lee, J.I.; Jang, H.W.; Hur, K.Y.; Kim, J.H.; Min, Y.K.; et al. Parafibromin immunohistochemical staining to differentiate parathyroid carcinoma from parathyroid adenoma. Head Neck 2012, 34, 201–206. [Google Scholar] [CrossRef]
- Wang, O.; Wang, C.Y.; Shi, J.; Nie, M.; Xia, W.B.; Li, M.; Jiang, Y.; Guan, H.; Meng, X.W.; Xing, X.P. Expression of Ki-67, galectin-3, fragile histidine triad, and parafibromin in malignant and benign parathyroid tumors. Chin. Med. J. 2012, 125, 2895–2901. [Google Scholar]
- Fernandez-Ranvier, G.G.; Khanafshar, E.; Tacha, D.; Wong, M.; Kebebew, E.; Duh, Q.Y.; Clark, O.H. Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer 2009, 115, 334–344. [Google Scholar] [CrossRef]
- Hosny Mohammed, K.; Siddiqui, M.T.; Willis, B.C.; Zaharieva Tsvetkova, D.; Mohamed, A.; Patel, S.; Sharma, J.; Weber, C.; Cohen, C. Parafibromin, APC, and MIB-1 are useful markers for distinguishing parathyroid carcinomas from adenomas. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 731–735. [Google Scholar] [CrossRef]
- Tominaga, Y.; Tsuzuki, T.; Matsuoka, S.; Uno, N.; Sato, T.; Shimabukuro, S.; Goto, N.; Nagasaka, T.; Uchida, K. Expression of parafibromin in distant metastatic parathyroid tumors in patients with advanced secondary hyperparathyroidism due to chronic kidney disease. World J. Surg. 2008, 32, 815–821. [Google Scholar] [CrossRef]
- Juhlin, C.C.; Nilsson, I.L.; Lagerstedt-Robinson, K.; Stenman, A.; Bränström, R.; Tham, E.; Höög, A. Parafibromin immunostainings of parathyroid tumors in clinical routine: A near-decade experience from a tertiary center. Mod. Pathol. 2019, 32, 1082–1094. [Google Scholar] [CrossRef]
- Kumari, N.; Chaudhary, N.; Pradhan, R.; Agarwal, A.; Krishnani, N. Role of histological criteria and immunohistochemical markers in predicting risk of malignancy in parathyroid neoplasms. Endocr. Pathol. 2016, 27, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Karaarslan, S.; Yurum, F.N.; Kumbaraci, B.S.; Pala, E.E.; Sivrikoz, O.N.; Akyildiz, M.; Bugdayci, M.H. The role of parafibromin, galectin-3, HBME-1, and Ki-67 in the differential diagnosis of parathyroid tumors. Oman Med. J. 2015, 30, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Howell, V.M.; Gill, A.; Clarkson, A.; Nelson, A.E.; Dunne, R.; Delbridge, L.W.; Robinson, B.G.; The, B.T.; Gimm, O.; Marsh, D.J. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J. Clin. Endocrinol. Metab. 2009, 94, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, M.H.; Morrison, C.; Wang, P.; Yang, X.; Haven, C.J.; Zhang, C.; Zhao, P.; Tretiakova, M.S.; Korpi-Hyovalti, E.; Burgess, J.R.; et al. Loss of parafibromin immunoreactivity is a distinguishing feature of parathyroid carcinoma. Clin. Cancer Res. 2004, 10, 6629–6637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Kaufman, P.D. Ki-67: More than a proliferation marker. Chromosoma 2018, 127, 175–186. [Google Scholar] [CrossRef]
- Robertson, S.; Acs, B.; Lippert, M.; Hartman, J. Prognostic potential of automated Ki67 evaluation in breast cancer: Different hot spot definitions versus true global score. Breast Cancer Res. Treat. 2020, 183, 161–175. [Google Scholar] [CrossRef]
- Sungu, N.; Dogan, H.T.; Kiliçarslan, A.; Kiliç, M.; Polat, S.; Tokaç, M.; Akbaba, S.; Parlak, Ö.; Balci, S.; Ögüt, B.; et al. Role of calcium-sensing receptor, Galectin-3, Cyclin D1, and Ki-67 immunohistochemistry to favor in the diagnosis of parathyroid carcinoma. Indian J. Pathol. Microbiol. 2018, 61, 22–26. [Google Scholar] [CrossRef]
- Kaczmarek, E.; Lacka, K.; Majewski, P.; Trzeciak, P.; Gorna, A.; Jarmolowska-Jurczyszyn, D.; Kluk, A. Selected markers of proliferation and apoptosis in the parathyroid lesions: A spatial visualization and quantification. J. Mol. Histol. 2008, 39, 509–517. [Google Scholar] [CrossRef]
- Hadar, T.; Shvero, J.; Yaniv, E.; Ram, E.; Shvili, I.; Koren, R. Expression of p53, Ki-67 and Bcl-2 in parathyroid adenoma and residual normal tissue. Pathol. Oncol. Res. 2005, 11, 45–49. [Google Scholar] [CrossRef]
- Thomopoulou, G.E.; Tseleni-Balafouta, S.; Lazaris, A.C.; Koutselini, H.; Kavantzas, N.; Davaris, P.S. Immunohistochemical detection of cell cycle regulators, Fhit protein and apoptotic cells in parathyroid lesions. Eur. J. Endocrinol. 2003, 148, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Abbona, G.C.; Papotti, M.; Gasparri, G.; Bussolati, G. Proliferative activity in parathyroid tumors as detected by Ki-67 immunostaining. Hum. Pathol. 1995, 26, 135–138. [Google Scholar] [CrossRef]
- Inic, Z.; Inic, M.; Jancic, S.; Paunovic, I.; Tatic, S.; Tausanovic, K.; Zivavljevic, V.; Zegarac, M.; Inic, I.; Dunjdjerovic, D. The relationship between proliferation activity and parathyroid hormone levels in parathyroid tumors. J. BUON 2015, 20, 562–566. [Google Scholar] [PubMed]
- Erickson, L.A.; Jin, L.; Wollan, P.; Thompson, G.B.; van Heerden, J.A.; Lloyd, R.V. Parathyroid hyperplasia, adenomas, and carcinomas: Differential expression of p27Kip1 protein. Am. J. Surg. Pathol. 1999, 23, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Lumachi, F.; Ermani, M.; Marino, F.; Iacobone, M.; Baldessin, M.; Cappuzzo, G.; Zanella, S.; Favia, G. PCNA-LII, Ki-67 immunostaining, p53 activity and histopathological variables in predicting the clinical outcome in patients with parathyroid carcinoma. Anticancer Res. 2006, 26, 1305–1308. [Google Scholar]
- Demiralay, E.; Altaca, G.; Demirhan, B. Morphological evaluation of parathyroid adenomas and immunohistochemical analysis of PCNA and Ki-67 proliferation markers. Turk Patoloji Derg. 2011, 27, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Blum, W.; Henzi, T.; Schwaller, B.; Pecze, L. Biological noise and positional effects influence cell stemness. J. Biol. Chem. 2018, 293, 5247–5258. [Google Scholar] [CrossRef] [Green Version]
- Bencivenga, D.; Caldarelli, I.; Stampone, E.; Mancini, F.P.; Balestrieri, M.L.; Della Ragione, F.; Borriello, A. p27Kip1 and human cancers: A reappraisal of a still enigmatic protein. Cancer Lett. 2017, 403, 354–365. [Google Scholar] [CrossRef]
- Bachs, O.; Gallastegui, E.; Orlando, S.; Bigas, A.; Morante-Redolat, J.M.; Serratosa, J.; Fariñas, I.; Aligué, R.; Pujol, M.J. Role of p27Kip1 as a transcriptional regulator. Oncotarget 2018, 9, 26259–26278. [Google Scholar] [CrossRef] [Green Version]
- Bencivenga, D.; Stampone, E.; Roberti, D.; Della Ragione, F.; Borriello, A. p27Kip1, an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021, 10, 2254. [Google Scholar] [CrossRef]
- Árvai, K.; Nagy, K.; Barti-Juhász, H.; Peták, I.; Krenács, T.; Micsik, T.; Végső, G.; Perner, F.; Szende, B. Molecular profiling of parathyroid hyperplasia, adenoma and carcinoma. Pathol. Oncol. Res. 2012, 18, 607–614. [Google Scholar] [CrossRef]
- Stojadinovic, A.; Hoos, A.; Nissan, A.; Dudas, M.E.; Cordon-Cardo, C.; Shaha, A.R.; Brennan, M.F.; Singh, B.; Ghossein, R.A. Parathyroid neoplasms: Clinical, histopathological, and tissue microarray-based molecular analysis. Hum. Pathol. 2003, 34, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Turchini, J.; Gill, A.J. Hereditary parathyroid disease: Sometimes pathologists do not know what they are missing. Endocr. Pathol. 2020, 31, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Cazzalini, O.; Scovassi, A.I.; Savio, M.; Stivala, L.A.; Prosperi, E. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat. Res. 2010, 704, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Shamloo, B.; Usluer, S. p21 in cancer research. Cancers 2019, 11, 1178. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.C. Cyclin D1 in human neuroendocrine tumorigenesis. Ann. N. Y. Acad. Sci. 2004, 1014, 209–217. [Google Scholar] [CrossRef]
- Qie, S.; Diehl, J.A. Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. 2016, 94, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Westin, G.; Björklund, P.; Akerström, G. Molecular genetics of parathyroid disease. World J. Surg. 2009, 33, 2224–2233. [Google Scholar] [CrossRef]
- Alao, J.P. The regulation of cyclin D1 degradation: Roles in cancer development and the potential for therapeutic invention. Mol. Cancer 2007, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, H.; Cheung, P.Y.; Tsao, S.W.; Lv, L.; Cheung, A.L.M. FBX4 mediates rapid cyclin D1 proteolysis upon DNA damage in immortalized esophageal epithelial cells. Biochem. Biophys. Res. Commun. 2021, 554, 76–82. [Google Scholar] [CrossRef]
- Rodriguez, C.; Nadéri, S.; Hans, C.; Badoual, C. Parathyroid carcinoma: A difficult histological diagnosis. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2012, 129, 157–159. [Google Scholar] [CrossRef] [Green Version]
- Woodard, G.E.; Lin, L.; Zhang, J.H.; Agarwal, S.K.; Marx, S.J.; Simonds, W.F. Parafibromin, product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene 2005, 24, 1272–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhlin, C.; Larsson, C.; Yakoleva, T.; Leibiger, I.; Leibiger, B.; Alimov, A.; Weber, G.; Höög, A.; Villablanca, A. Loss of parafibromin expression in a subset of parathyroid adenomas. Endocr. Relat. Cancer 2006, 13, 509–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristobal, E.; Arribas, B.; Tardio, J.; AIcazar, J.A.; Matinez-Montero, J.C.; Carrion, R.; Polo, J.R.; Gil, L.; Azanedo, M.; Rojas, J.M.; et al. Analysis of the cyclin D1/p16/pRb pathway in parathyroid adenomas. Endocr. Pathol. 2000, 11, 259–266. [Google Scholar] [CrossRef]
- Ikeda, S.; Ishizaki, Y.; Shimizu, Y.; Fujimori, M.; Ojima, Y.; Okajima, M.; Sugino, K.; Asahara, T. Immunohistochemistry of cyclin D1 and beta-catenin, and mutational analysis of exon 3 of beta-catenin gene in parathyroid adenomas. Int. J. Oncol. 2002, 20, 463–466. [Google Scholar]
- Dabbs, D.J. Diagnostic Immunohistochemistry. Theranostic and Genomic Applications, 4th ed.; Dabbs, D.J., Ed.; Elsevier Saunders: Philadelphia, PA, USA, 2014; pp. 1–1008. [Google Scholar]
- Olkinuora, A.P.; Peltomäki, P.T.; Aaltonen, L.A.; Rajamäki, K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum. Mol. Genet. 2021, 30, R206–R224. [Google Scholar] [CrossRef]
- Disoma, C.; Zhou, Y.; Li, S.; Peng, J.; Xia, Z. Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie 2022, 195, 39–53. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Liu, A. Clinicopathologic features of parathyroid carcinoma: A study of 11 cases with review of literature. Zhonghua Bing Li Xue Za Zhi 2014, 43, 296–300. (In Chinese) [Google Scholar]
- Miettinen, M.; Clark, R.; Lehto, V.P.; Virtanen, I.; Damjanov, I. Intermediate-filament proteins in parathyroid glands and parathyroid adenomas. Arch. Pathol. Lab. Med. 1985, 109, 986–989. [Google Scholar] [CrossRef]
- Arcolia, V.; Journe, F.; Renaud, F.; Leteurtre, E.; Gabius, H.J.; Remmelink, M.; Saussez, S. Combination of galectin-3, CK19 and HBME-1 immunostaining improves the diagnosis of thyroid cancer. Oncol. Lett. 2017, 14, 4183–4189. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, X.; Peng, C.; Qin, Y.; Gao, T.; Jing, J.; Zhao, H. BRAFV600E-induced KRT19 expression in thyroid cancer promotes lymph node metastasis via EMT. Oncol. Lett. 2019, 18, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Viana, A.O.R.; Gonçalves Filho, J.; Francisco, A.L.N.; Pinto, C.A.L.; Kowalski, L.P. Ki-67 and CK-19 are predictors of locoregional recurrence in papillary thyroid carcinoma. Acta Otorhinolaryngol. Ital. 2020, 40, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Elsers, D.A.; Hussein, M.R.A.; Osman, M.H.; Mohamed, G.A.; Hosny, G. Challenge in the pathological diagnosis of the follicular- patterned thyroid lesions. Asian Pac. J. Cancer Prev. 2021, 22, 3365–3376. [Google Scholar] [CrossRef] [PubMed]
- Menz, A.; Bauer, R.; Kluth, M.; Marie von Bargen, C.; Gorbokon, N.; Viehweger, F.; Lennartz, M.; Völkl, C.; Fraune, C.; Uhlig, R.; et al. Diagnostic and prognostic impact of cytokeratin 19 expression analysis in human tumors: A tissue microarray study of 13,172 tumors. Hum. Pathol. 2021, 115, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Eriksson, J.E. Intermediate filaments and the regulation of cell motility during regeneration and wound healing. Cold Spring Harb. Perspect. Biol. 2017, 9, a022046. [Google Scholar] [CrossRef] [PubMed]
- Gogusev, J.; Murakami, I.; Telvi, L.; Goguin, A.; Sarfati, E.; Jaubert, F. Establishment and characterization of a human parathyroid carcinoma derived cell line. Pathol. Res. Pract. 2015, 211, 332–340. [Google Scholar] [CrossRef]
- Szatanek, R.; Baj-Krzyworzeka, M. CD44 and tumor-derived extracellular vesicles (TEVs). Possible gateway to cancer metastasis. Int. J. Mol. Sci. 2021, 22, 1463. [Google Scholar] [CrossRef]
- Weng, X.; Maxwell-Warburton, S.; Hasib, A.; Ma, L.; Kang, L. The membrane receptor CD44: Novel insights into metabolism. Trends Endocrinol. Metab. 2022, 33, 318–332. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Biserova, K.; Jakovlevs, A.; Uljanovs, R.; Strumfa, I. Cancer stem cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells 2021, 10, 621. [Google Scholar] [CrossRef]
- Briede, I.; Balodis, D.; Gardovskis, J.; Strumfa, I. Stemness, inflammation and epithelial-mesenchymal transition in colorectal carcinoma: The intricate network. Int. J. Mol. Sci. 2021, 22, 12891. [Google Scholar] [CrossRef]
- Zeromski, J.; Lawniczak, M.; Galbas, K.; Jenek, R.; Golusiński, P. Expression of CD56/N-CAM antigen and some other adhesion molecules in various human endocrine glands. Folia Histochem. Cytobiol. 1998, 36, 119–125. [Google Scholar] [PubMed]
- Fang, S.H.; Guidroz, J.A.; O’Malley, Y.; Lal, G.; Sugg, S.L.; Howe, J.R.; Jensen, C.S.; Weigel, R.J. Expansion of a cell population expressing stem cell markers in parathyroid glands from patients with hyperparathyroidism. Ann. Surg. 2010, 251, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Morise, M.; Hishida, T.; Takahashi, A.; Yoshida, J.; Ohe, Y.; Nagai, K.; Ishii, G. Clinicopathological significance of cancer stem-like cell markers in high-grade neuroendocrine carcinoma of the lung. J. Cancer Res. Clin. Oncol. 2015, 141, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Simtniece, Z.; Vanags, A.; Strumfa, I.; Sperga, M.; Vasko, E.; Prieditis, P.; Trapencieris, P.; Gardovskis, J. Morphological and immunohistochemical profile of pancreatic neuroendocrine neoplasms. Pol. J. Pathol. 2015, 66, 176–194. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Meng, Y.; Wu, H.; Cui, Q.; Luo, Y.; Xue, X. Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: A ten-year follow-up and prognostic analysis. J. Surg. Oncol. 2016, 113, 144–151. [Google Scholar] [CrossRef]
- Papaxoinis, G.; Nonaka, D.; O’Brien, C.; Sanderson, B.; Krysiak, P.; Mansoor, W. Prognostic significance of CD44 and Orthopedia Homeobox Protein (OTP) expression in pulmonary carcinoid tumours. Endocr. Pathol. 2017, 28, 60–70. [Google Scholar] [CrossRef]
- Sun, Z.; Li, D.; Wu, H.; Hou, B. Tumour stem cell markers CD133 and CD44 are useful prognostic factors after surgical resection of pancreatic neuroendocrine tumours. Oncol. Lett. 2020, 20, 341. [Google Scholar] [CrossRef]
- Komminoth, P.; Seelentag, W.K.; Saremaslani, P.; Heitz, P.U.; Roth, J. CD44 isoform expression in the diffuse neuroendocrine system. II. Benign and malignant tumors. Histochem. Cell Biol. 1996, 106, 551–562. [Google Scholar] [CrossRef]
- Peissig, K.; Condie, B.G.; Manley, N.R. Embryology of the parathyroid glands. Endocrinol. Metab. Clin. N. Am. 2018, 47, 733–742. [Google Scholar] [CrossRef]
- Gordon, J.; Patel, S.R.; Mishina, Y.; Manley, N.R. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev. Biol. 2010, 339, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Chojnowski, J.L.; Masuda, K.; Trau, H.A.; Thomas, K.; Capecchi, M.; Manley, N.R. Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse. Development 2014, 141, 3697–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, V.E.; Gordon, J.; O’Neil, J.D.; Ramos, I.; Richie, E.R.; Manley, N.R. Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate. Development 2016, 143, 4027–4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teshima, T.H.; Lourenco, S.V.; Tucker, A.S. Multiple cranial organ defects after conditionally knocking out Fgf10 in the neural crest. Front. Physiol. 2016, 7, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seelentag, W.K.; Komminoth, P.; Saremaslani, P.; Heitz, P.U.; Roth, J. CD44 isoform expression in the diffuse neuroendocrine system. I. Normal cells and hyperplasia. Histochem. Cell Biol. 1996, 106, 543–550. [Google Scholar] [CrossRef]
- Cetani, F.; Frustaci, G.; Torregrossa, L.; Magno, S.; Basolo, F.; Campomori, A.; Miccoli, P.; Marcocci, C. A nonfunctioning parathyroid carcinoma misdiagnosed as a follicular thyroid nodule. World J. Surg. Oncol. 2015, 13, 270. [Google Scholar] [CrossRef] [Green Version]
- Ha, H.J.; Kim, E.J.; Kim, J.S.; Shin, M.S.; Noh, I.; Park, S.; Koh, J.S.; Lee, S.S. Major clues and pitfalls in the differential diagnosis of parathyroid and thyroid lesions using fine needle aspiration cytology. Medicina 2020, 56, 558. [Google Scholar] [CrossRef]
- Wuertz, F.G.; Kresnik, E.; Malle, P.; Hyden, M.; Lind, P.; Rogatsch, H.; Gallowitsch, H.J. Fine-needle aspiration with immunohistochemistry using a modified scrape cell block technique for the diagnosis of thyroid and parathyroid nodules. Acta Cytol. 2016, 60, 118–130. [Google Scholar] [CrossRef]
- Yu, Q.; Hardin, H.; Chu, Y.H.; Rehrauer, W.; Lloyd, R.V. Parathyroid neoplasms: Immunohistochemical characterization and long noncoding RNA (lncRNA) expression. Endocr. Pathol. 2019, 30, 96–105. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, J.H. Pathologic differential diagnosis of metastatic carcinoma in the liver. Clin. Mol. Hepatol. 2019, 25, 12–20. [Google Scholar] [CrossRef] [Green Version]
- McHugh, K.E.; Mukhopadhyay, S.; Doxtader, E.E.; Lanigan, C.; Allende, D.S. INSM1 is a highly specific marker of neuroendocrine differentiation in primary neoplasms of the gastrointestinal tract, appendix, and pancreas. Am. J. Clin. Pathol. 2020, 153, 811–820. [Google Scholar] [CrossRef]
- Georgakopoulou, V.E.; Zygouris, E.; Damaskos, C.; Pierrakou, A.; Papalexis, P.; Garmpis, N.; Aravantinou-Fatorou, A.; Chlapoutakis, S.; Diamantis, E.; Nikokiris, C.; et al. Prognostic value of the immunohistochemistry markers CD56, TTF-1, synaptophysin, CEA, EMA and NSE in surgically resected lung carcinoid tumors. Mol. Clin. Oncol. 2022, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Rothrock, A.T.; Stewart, J., 3rd; Li, F.; Racila, E.; Amin, K. Exploration of INSM1 and hASH1 as additional markers in lung cytology samples of high-grade neuroendocrine carcinoma with indeterminate neuroendocrine differentiation. Diagn. Cytopathol. 2022, 50, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Lebel, E.; Nachmias, B.; Pick, M.; Gross Even-Zohar, N.; Gatt, M.E. Understanding the bioactivity and prognostic implication of commonly used surface antigens in multiple myeloma. J. Clin. Med. 2022, 11, 1809. [Google Scholar] [CrossRef] [PubMed]
- Handra-Luca, A.; Tissier, F. Infracentimetric parathyroid cysts in hyperparathyroidemia. Pathol. Res. Pract. 2018, 214, 455–458. [Google Scholar] [CrossRef]
- Ozolins, A.; Narbuts, Z.; Strumfa, I.; Volanska, G.; Gardovskis, J. Diagnostic utility of immunohistochemical panel in various thyroid pathologies. Langenbecks Arch. Surg. 2010, 395, 885–891. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.; Mavroeidi, V.; Chatzellis, E.; Kaltsas, G.A.; Alexandraki, K.I. Histopathological, immunohistochemical, genetic and molecular markers of neuroendocrine neoplasms. Ann. Transl. Med. 2018, 6, 252. [Google Scholar] [CrossRef]
- Staaf, J.; Tran, L.; Söderlund, L.; Nodin, B.; Jirström, K.; Vidarsdottir, H.; Planck, M.; Mattsson, J.S.M.; Botling, J.; Micke, P.; et al. Diagnostic value of insulinoma-associated protein 1 (INSM1) and comparison with established neuroendocrine markers in pulmonary cancers. Arch. Pathol. Lab. Med. 2020, 144, 1075–1085. [Google Scholar] [CrossRef] [Green Version]
- Cho, J. Basic immunohistochemistry for lymphoma diagnosis. Blood Res. 2022, 57 (Suppl. 1), 55–61. [Google Scholar] [CrossRef]
- Win, K.T.; Lee, M.Y.; Tan, T.D.; Tsai, M.P.; Bahrami, A.; Raimondi, S.C.; Chuang, S.S. Nasopharyngeal alveolar rhabdomyosarcoma expressing CD56: A mimicker of extranodal natural killer/T-cell lymphoma. Int. J. Clin. Exp. Pathol. 2013, 7, 451–455. [Google Scholar]
- Buzdugă, C.M.; Costea, C.F.; Cărăuleanu, A.; Lozneanu, L.; Turliuc, M.D.; Cucu, A.I.; Ciocoiu, M.; Floria, M.; Tănase, D.M.; Dragomir, R.A.; et al. Protean cytological, histological and immunohistochemical appearances of medullary thyroid carcinoma: Current updates. Rom. J. Morphol. Embryol. 2019, 60, 369–381. [Google Scholar]
- Ordóñez, N.G. Value of PAX 8 immunostaining in tumor diagnosis: A review and update. Adv. Anat. Pathol. 2012, 19, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Barletta, J.A. Thyroid tumors you don’t want to miss. Surg. Pathol. Clin. 2019, 12, 901–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.D.; Rich, T.A. Paragangliomas arising in the head and neck: A morphologic review and genetic update. Surg. Pathol. Clin. 2014, 7, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.C.; Paties, C.T.; Schiavi, F.; Esposito, D.L.; Lotti, L.V.; Mariani-Costantini, R.; Sanna, M. Tympanojugular Paragangliomas: Surgical Management and Clinicopathological Features. In Paraganglioma: A Multidisciplinary Approach [Internet]; Mariani-Costantini, R., Ed.; Codon Publications: Brisbane, Australia, 2019; Chapter 6. [Google Scholar]
- Juhlin, C.C. Challenges in paragangliomas and pheochromocytomas: From histology to molecular immunohistochemistry. Endocr. Pathol. 2021, 32, 228–244. [Google Scholar] [CrossRef]
- Bowman, D.M.; Dubé, W.J.; Levitt, M. Hypercalcemia in small cell (oat cell) carcinoma of the lung. Coincident parathyroid adenoma in one case. Cancer 1975, 36, 1067–1071. [Google Scholar] [CrossRef]
- Chan, V.W.Q.; Henry, M.T.; Kennedy, M.P. Hyponatremia and hypercalcemia: A study of a large cohort of patients with lung cancer. Transl. Cancer Res. 2020, 9, 222–230. [Google Scholar] [CrossRef]
- Shamji, F.M.; Beauchamp, G.; Maziak, D.E.; Cooper, J. Paraneoplastic syndromes in lung cancers: Manifestations of ectopic endocrinological syndromes and neurologic syndromes. Thorac. Surg. Clin. 2021, 31, 519–537. [Google Scholar] [CrossRef]
- Kashima, J.; Kitadai, R.; Okuma, Y. Molecular and morphological profiling of lung cancer: A foundation for “next-generation” pathologists and oncologists. Cancers 2019, 11, 599. [Google Scholar] [CrossRef] [Green Version]
- Raso, M.G.; Bota-Rabassedas, N.; Wistuba, I.I. Pathology and classification of SCLC. Cancers 2021, 13, 820. [Google Scholar] [CrossRef]
- Altınay, S.; Erözgür, B.; Dural, A.C.; Volante, M.; Papotti, M.G. Monoclonal/polyclonal PAX-8, PTH and GATA3 immunohistochemistry in parathyroid lesions. J. Endocrinol. Investig. 2021, 44, 1997–2008. [Google Scholar] [CrossRef]
- Haglund, F.; Juhlin, C.C.; Kiss, N.B.; Larsson, C.; Nilsson, I.L.; Höög, A. Diffuse parathyroid hormone expression in parathyroid tumors argues against important functional tumor subclones. Eur. J. Endocrinol. 2016, 174, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storvall, S.; Leijon, H.; Ryhänen, E.M.; Vesterinen, T.; Heiskanen, I.; Schalin-Jäntti, C.; Arola, J. Filamin A and parafibromin expression in parathyroid carcinoma. Eur. J. Endocrinol. 2021, 185, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Haven, C.J.; van Puijenbroek, M.; Karperien, M.; Fleuren, G.J.; Morreau, H. Differential expression of the calcium sensing receptor and combined loss of chromosomes 1q and 11q in parathyroid carcinoma. J. Pathol. 2004, 202, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Sugimoto, T.; Tsukamoto, T.; Chihara, K.; Kobayashi, A.; Kitazawa, S.; Maeda, S.; Kitazawa, R. Decrease in vitamin D receptor and calcium-sensing receptor in highly proliferative parathyroid adenomas. Eur. J. Endocrinol. 2003, 148, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, S.; Sugimoto, T.; Tsukamoto, T.; Chihara, K.; Kobayashi, A.; Kitazawa, S.; Maeda, S.; Kitazawa, R. Association of decreased calcium-sensing receptor expression with proliferation of parathyroid cells in secondary hyperparathyroidism. Kidney Int. 2000, 58, 1980–1986. [Google Scholar] [CrossRef]
- Mingione, A.; Verdelli, C.; Ferrero, S.; Vaira, V.; Guarnieri, V.; Scillitani, A.; Vicentini, L.; Balza, G.; Beretta, E.; Terranegra, A.; et al. Filamin A is reduced and contributes to the CASR sensitivity in human parathyroid tumors. J. Mol. Endocrinol. 2017, 58, 91–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, T.; Ohkido, I.; Nakashima, A.; Saito, Y.; Okabe, M.; Yokoo, T. Severe chronic kidney disease environment reduced calcium-sensing receptor expression in parathyroid glands of adenine-induced rats even without high phosphorus diet. BMC Nephrol. 2020, 21, 219. [Google Scholar] [CrossRef]
- Uchiyama, T.; Tatsumi, N.; Kamejima, S.; Waku, T.; Ohkido, I.; Yokoyama, K.; Yokoo, T.; Okabe, M. Hypermethylation of the CaSR and VDR genes in the parathyroid glands in chronic kidney disease rats with high-phosphate diet. Hum. Cell 2016, 29, 155–161. [Google Scholar] [CrossRef]
- Lee, H.J.; Seo, U.H.; Kim, W.Y.; Woo, S.U.; Lee, J.B. Calcium-sensing receptor and apoptosis in parathyroid hyperplasia of patients with secondary hyperparathyroidism. J. Int. Med. Res. 2013, 41, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Grzela, T.; Chudzinski, W.; Lasiecka, Z.; Niderla, J.; Wilczynski, G.; Gornicka, B.; Wasiutynski, A.; Durlik, M.; Boszczyk, A.; Brawura-Biskupski-Samaha, R.; et al. The calcium-sensing receptor and vitamin D receptor expression in tertiary hyperparathyroidism. Int. J. Mol. Med. 2006, 17, 779–783. [Google Scholar] [CrossRef]
- Balenga, N.; Azimzadeh, P.; Hogue, J.A.; Staats, P.N.; Shi, Y.; Koh, J.; Dressman, H.; Olson, J.A., Jr. Orphan adhesion GPCR GPR64/ADGRG2 is overexpressed in parathyroid tumors and attenuates calcium-sensing receptor-mediated signaling. J. Bone Miner. Res. 2017, 32, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Verdelli, C.; Tavanti, G.S.; Corbetta, S. Intratumor heterogeneity in human parathyroid tumors. Histol. Histopathol. 2020, 35, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
- Silva-Figueroa, A.; Villalobos, P.; Williams, M.D.; Bassett, R.L., Jr.; Clarke, C.N.; Lee, J.E.; Busaidy, N.L.; Perrier, N.D. Characterizing parathyroid carcinomas and atypical neoplasms based on the expression of programmed death-ligand 1 expression and the presence of tumor-infiltrating lymphocytes and macrophages. Surgery 2018, 164, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cui, M.; Bi, Y.; Zhang, X.; Wang, M.; Hua, S.; Liao, Q.; Zhao, Y. Immunocyte density in parathyroid carcinoma is correlated with disease relapse. J. Endocrinol. Investig. 2020, 43, 1453–1461. [Google Scholar] [CrossRef]
- Tseng, F.Y.; Hsiao, Y.L.; Chang, T.C. Ultrasound-guided fine needle aspiration cytology of parathyroid lesions. A review of 72 cases. Acta Cytol. 2002, 46, 1029–1036. [Google Scholar] [CrossRef]
- Segiet, O.A.; Michalski, M.; Brzozowa-Zasada, M.; Piecuch, A.; Żaba, M.; Helewski, K.; Gabriel, A.; Wojnicz, R. Angiogenesis in primary hyperparathyroidism. Ann. Diagn. Pathol. 2015, 19, 91–98. [Google Scholar] [CrossRef]
- Urbano, N.; Scimeca, M.; Di Russo, C.; Mauriello, A.; Bonanno, E.; Schillaci, O. [99mTc]Sestamibi SPECT can predict proliferation index, angiogenesis, and vascular invasion in parathyroid patients: A retrospective study. J. Clin. Med. 2020, 9, 2213. [Google Scholar] [CrossRef]
- Zeren, S.; Yaylak, F.; Ozbay, I.; Bayhan, Z. Relationship between the neutrophil to lymphocyte ratio and parathyroid adenoma size in patients with primary hyperparathyroidism. Int. Surg. 2015, 100, 1185–1189. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Wang, A.; Pang, J.; Zhang, Y.; Cui, M.; Sun, J.; Liang, Z. Programmed death ligand 1 (PD-L1) expression in parathyroid tumors. Endocr. Connect. 2019, 8, 887–897. [Google Scholar] [CrossRef]
- Schott, M.; Seissler, J.; Feldkamp, J.; von Schilling, C.; Scherbaum, W.A. Dendritic cell immunotherapy induces antitumour response in parathyroid carcinoma and neuroendocrine pancreas carcinoma. Horm. Metab. Res. 1999, 31, 662–664. [Google Scholar] [CrossRef]
- Schott, M.; Feldkamp, J.; Schattenberg, D.; Krueger, T.; Dotzenrath, C.; Seissler, J.; Scherbaum, W.A. Induction of cellular immunity in a parathyroid carcinoma treated with tumor lysate-pulsed dendritic cells. Eur. J. Endocrinol. 2000, 142, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Criterion | Ref. |
---|---|---|
Oncocytic adenoma | Oncocytes compose >75% of the tumour | Erickson et al., 2022 [12] |
Water-clear adenoma | Entirely composed of water-clear cells | |
Cystic adenoma | Extensive cystic change affecting >50% of parenchyma | |
Lipoadenoma | Stromal fat represents >50% of the tumour |
Pattern | Absolute Numbers of Negative/Investigated Cases; Frequency of Parafibromin Loss (%) | |||||
---|---|---|---|---|---|---|
Parathyroid Carcinoma | Atypical Parathyroid Tumour | Adenoma | Multiglandular Parathyroid Disease | Normal Gland | Reference | |
Total nuclear loss | 5/5; 100.0% | 0/102; 0.0% | 1/27 PPH 1; 3.7% | 0/45; 0.0% | Uljanovs et al., 2021 [38] | |
Total nuclear loss | 2/10; 20.0% | 2/46 AA 2; 4.3% | 2/182; 1.1% | Juhlin et al., 2019 [71] | ||
Partial nuclear loss | 5/10; 50.0% | 25/46 AA 2; 54.3% | 8/182; 4.4% | Juhlin et al., 2019 [71] | ||
Nucleolar loss | 0/10; 0.0% | 3/46AA 2; 6.5% | 4/182; 2.2% | Juhlin et al., 2019 [71] | ||
Nuclear loss, evaluated via cut-off score | 7/21; 33.3% | 0/3 AA 2; 0.0% | 1/73; 1.4% | Hosny Mohammed et al., 2017 [69] | ||
Nuclear loss, defined as <10% | 7/14; 50.0% | 6/19 AA 2; 31.6% | 19/194; 9.8% | Kumari et al., 2016 [72] | ||
Total nuclear loss | 2/2; 100.0% | 0/6 AA 2; 0.0% | 0/84; 0.0% | Karaarslan et al., 2015 [73] | ||
Total nuclear loss | 11/24; 45.8% | Truran et al., 2014 [57] | ||||
Total nuclear loss | 8/12; 66.7% | 2/13 AA 2; 15.4% | 3/17; 17.6% | Guarnieri et al., 2012 [39] | ||
Total nuclear loss | 9/15; 60.0% | 1/18; 5.6% | 0/8 PH 3; 0.0% | 0/5; 0.0% | Wang et al., 2012 [67] | |
Nuclear loss (>99%) | 3/8; 37.5% | 1/18; 5.6% | Kim et al., 2012 [66] | |||
Total nuclear loss | 5/16; 31.3% | 0/2 AA 2; 0.0% | 0/18; 0.0% | 0/14 PPH 1; 0.0% | 0/16 parathyromatosis; 0.0% | Fernandez-Ranvier et al., 2009 [68] |
Total nuclear loss | 14/27; 51.9% | 0/78; 0.0% | 0/12 PSTPH 4; 0.0% | 0/4; 0.0% | Howell et al., 2009 [74] | |
Total nuclear loss | 0/8 5; 0% 1/7 mts; 14.3% mts | Tominaga et al., 2008 [70] | ||||
Total nuclear loss | 11/11; 100.0% | 2/4 AA 2; 50.0% | 1/22; 4.5% | Cetani et al., 2007 [55] | ||
Total nuclear loss | 9/22; 40.9% | 0/48; 0% | 0/25 PPH 1; 0.0% | 0/6; 0.0% | Tan et al., 2004 [75] |
Approach to Evaluation | Absolute Numbers of Positive/Investigated Cases; Proportion of Positive Cases (%) or Proliferation Activity by Fraction of Positive Cells (%) | |||||
---|---|---|---|---|---|---|
Parathyroid Carcinoma | Atypical Parathyroid Tumour | Adenoma | Multiglandular Parathyroid Disease | Normal Gland | Reference | |
Mean fraction (%) of positive nuclei | 5.8% | 1.6% | 1.0% PPH 1 | 0.4% | Uljanovs et al., 2021 [38] | |
Hotspot-based nuclear fraction (%) | 11.8% | 3.5% | 2.8% PPH 1 | 1.0% | Uljanovs et al., 2021 [38] | |
Exceeds cut-off > 5%; NOS | 5/10; 50.0% | 5/14 AA 2; 35,7% | Sungu et al., 2018 [78] | |||
Exceeds cut-off > 5%; NOS | 18/21; 85.7% | 2/3; 66.7% | 0/73; 0.0% | Hosny Mohammed et al., 2017 [69] | ||
Exceeds cut-off 5%; highest * | 0/2; 0.0% | 1/6 AA 2; 16.7% | 1/84; 1.2% | Karaarslan et al., 2015 [73] | ||
Exceeds cut-off > 4%; highest | 5/23; 21.7% | Truran et al., 2014 [57] | ||||
Exceeds cut-off > 5%; NOS | 9/15; 60.0% | 0/2 AA 2; 0.0% | 1/18; 5.6% | 0/14 PPH 1; 0.0% | 1/15 parathyromatosis; 6.7% | Fernandez-Ranvier et al., 2009 [68] |
Mean fraction of positive nuclei (%) | 1.9% | 1.8% | 3.5% | Kaczmarek et al., 2008 [79] | ||
Exceeds cut-off > 5%; NOS | 15/26; 57.7% | 0/26; 0.0% | Hadar et al., 2005 [80] | |||
Mean fraction of positive nuclei (%) | 2.84% (mean in 17 adenomas and 2 carcinomas) | 2.84% (mean in 17 adenomas and 2 carcinomas) | 3.38% in 21 PPH 1; 3.14% in 30 SPH 3 | 0.19% in 10 normal glands | Thomopoulou et al., 2003 [81] | |
Mean fraction of positive nuclei (%) | 6.1% in 12 carcinomas | 3.3% in 11 adenomas | 2.6% in 11 hyperplastic glands | 0.1 in 9 normal glands | Abbona et al., 1995 [82] |
Step | Variable |
---|---|
Fixation | Time and temperature of cold ischemia before fixation; Choice of the fixative; Time of fixation; underfixation and overfixation |
Processing | Protocol of dehydration; Incubation time in xylene and paraffin; Temperature of melted paraffin |
Antigen retrieval | Type of antigen retrieval: heat-induced antigen retrieval (HIER) vs. enzymatic treatment vs. none |
HIER parameters | Mode: microwave vs. temperature; Temperature, time, pressure (if applicable); pH of the buffer: acidic (e.g., citrate; pH = 6.0), neutral (e.g., TBS; pH = 7.6) vs. basic (e.g., TEG; pH = 9.0) |
Primary antibody | Clonality (polyclonal vs. monoclonal), clone, isotype Dilution; Incubation time and temperature |
Visualisation system | Choice of the system |
Washing of tissue sections | Excessive or insufficient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uljanovs, R.; Sinkarevs, S.; Strumfs, B.; Vidusa, L.; Merkurjeva, K.; Strumfa, I. Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 6981. https://doi.org/10.3390/ijms23136981
Uljanovs R, Sinkarevs S, Strumfs B, Vidusa L, Merkurjeva K, Strumfa I. Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review. International Journal of Molecular Sciences. 2022; 23(13):6981. https://doi.org/10.3390/ijms23136981
Chicago/Turabian StyleUljanovs, Romans, Stanislavs Sinkarevs, Boriss Strumfs, Liga Vidusa, Kristine Merkurjeva, and Ilze Strumfa. 2022. "Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review" International Journal of Molecular Sciences 23, no. 13: 6981. https://doi.org/10.3390/ijms23136981
APA StyleUljanovs, R., Sinkarevs, S., Strumfs, B., Vidusa, L., Merkurjeva, K., & Strumfa, I. (2022). Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review. International Journal of Molecular Sciences, 23(13), 6981. https://doi.org/10.3390/ijms23136981