In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus
Abstract
:1. Introduction
2. In Vitro and Ex Vivo Assays for the Evaluation of the Pathogenicity of Pemphigus Antibodies and the Efficacy of Experimental Drugs
3. In Vivo Passive and Active Models for the Study of Pemphigus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amagai, M.; Ishii, K.; Hashimoto, T.; Gamou, S.; Shimizu, N.; Nishikawa, T. Conformational epitopes of pemphigus antigens (Dsg1 and Dsg3) are calcium dependent and glycosylation independent. J. Investig. Dermatol. 1995, 105, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagai, M.; Koch, P.J.; Nishikawa, T.; Stanley, J.R. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. J. Investig. Dermatol. 1996, 106, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Kasperkiewicz, M.; Ellebrecht, C.T.; Takahashi, H.; Yamagami, J.; Zillikens, D.; Payne, A.S.; Amagai, M. Pemphigus. Nat. Rev. Dis. Primers 2017, 3, 17026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitajima, Y. New insights into desmosome regulation and pemphigus blistering as a desmosome-remodeling disease. Kaohsiung J. Med. Sci. 2013, 29, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sumigray, K.D.; Lechler, T. Cell adhesion in epidermal development and barrier formation. Curr. Top. Dev. Biol. 2015, 112, 383–414. [Google Scholar] [CrossRef] [Green Version]
- Walter, E.; Vielmuth, F.; Wanuske, M.-T.; Seifert, M.J.N.; Pollmann, R.; Eming, R.; Waschke, J. Role of Dsg1- and Dsg3-Mediated Signaling in Pemphigus Autoantibody-Induced Loss of Keratinocyte Cohesion. Front. Immunol. 2019, 10, 1128. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Nagler, A.R.; Farber, S.A.; Choi, E.J.; Jackson, L.H.; Leiferman, K.M.; Ishii, N.; Hashimoto, T.; Amagai, M.; Zone, J.J.; et al. Autoimmunity to Desmocollin 3 in Pemphigus Vulgaris. Am. J. Pathol. 2010, 177, 2724–2730. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Khylynskyi, M.M.; Patel, K.G.; Grando, S.A. Chronic exposure to the anti-M3 muscarinic acetylcholine receptor autoantibody in pemphigus vulgaris contributes to disease pathophysiology. J. Biol. Chem. 2022, 298, 101687. [Google Scholar] [CrossRef]
- Didona, D.; Maglie, R.; Eming, R.; Hertl, M. Pemphigus: Current and Future Therapeutic Strategies. Front. Immunol. 2019, 10, 1418. [Google Scholar] [CrossRef] [Green Version]
- Hofrichter, M.; Dworschak, J.; Emtenani, S.; Langenhan, J.; Weiß, F.; Komorowski, L.; Zillikens, D.; Stöcker, W.; Probst, C.; Schmidt, E.; et al. Immunoadsorption of Desmoglein-3-Specific IgG Abolishes the Blister-Inducing Capacity of Pemphigus Vulgaris IgG in Neonatal Mice. Front. Immunol. 2018, 9, 1935. [Google Scholar] [CrossRef]
- Hoffmann, J.H.; Enk, A.H. High-dose intravenous immunoglobulins for the treatment of dermatological autoimmune diseases. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. 2017, 15, 1211–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Zhao, M.; Hilario-Vargas, J.; Prisayanh, P.; Warren, S.; Diaz, L.A.; Roopenian, D.C.; Liu, Z. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J. Clin. Investig. 2005, 115, 3440–3450. [Google Scholar] [CrossRef] [PubMed]
- Sesarman, A.; Vidarsson, G.; Sitaru, C. The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases. Cell. Mol. Life Sci. 2010, 67, 2533–2550. [Google Scholar] [CrossRef] [PubMed]
- Ulrichts, P.; Guglietta, A.; Dreier, T.; van Bragt, T.; Hanssens, V.; Hofman, E.; Vankerckhoven, B.; Verheesen, P.; Ongenae, N.; Lykhopiy, V.; et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J. Clin. Investig. 2018, 128, 4372–4386. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewicz, A.; Würth, C.; Beckert, B.; Feldhoff, S.; Vanderheyden, K.; Foss, S.; Andersen, J.T.; de Haard, H.; Verheesen, P.; Bobkov, V.; et al. Stabilization of Keratinocyte Monolayer Integrity in the Presence of Anti-Desmoglein-3 Antibodies through FcRn Blockade with Efgartigimod: Novel Treatment Paradigm for Pemphigus? Cells 2022, 11, 942. [Google Scholar] [CrossRef]
- Jeffes, E.W.B.; Kaplan, R.P.; Ahmed, A.R. Acantholysis produced in vitro with pemphigus serum: Hydrocortisone inhibits acantholysis, while dapsone and 6-mercaptopurine do not inhibit acantholysis. J. Clin. Immunol. 1984, 4, 359–363. [Google Scholar] [CrossRef]
- Burmester, I.A.K.; Emtenani, S.; Johns, J.-G.; Ludwig, R.J.; Hammers, C.M.; Hundt, J.E. Translational Use of a Standardized Full Human Skin Organ Culture Model in Autoimmune Blistering Diseases. Curr. Protoc. Pharmacol. 2019, 85, e56. [Google Scholar] [CrossRef]
- Nomura, H.; Wada, N.; Takahashi, H.; Kase, Y.; Yamagami, J.; Egami, S.; Iriki, H.; Mukai, M.; Kamata, A.; Ito, H.; et al. IgM to IgG Class Switching Is a Necessary Step for Pemphigus Phenotype Induction in Desmoglein 3-Specific B Cell Receptor Knock-in Mouse. J. Immunol. 2022, 208, 582–593. [Google Scholar] [CrossRef]
- Mao, X.; Choi, E.J.; Payne, A.S. Disruption of desmosome assembly by monovalent human pemphigus vulgaris monoclonal antibodies. J. Investig. Dermatol. 2009, 129, 908–918. [Google Scholar] [CrossRef] [Green Version]
- Calkins, C.C.; Setzer, S.V.; Jennings, J.M.; Summers, S.; Tsunoda, K.; Amagai, M.; Kowalczyk, A.P. Desmoglein endocytosis and desmosome disassembly are coordinated responses to pemphigus autoantibodies. J. Biol. Chem. 2006, 281, 7623–7634. [Google Scholar] [CrossRef] [Green Version]
- Calautti, V.; Cabodi, S.; Stein, P.L.; Hatzfeld, M.; Kedersha, N.; Dotto, G.P. Tyrosine Phosphorylation and Src Family Kinases Control Keratinocyte Cell–Cell Adhesion. J. Cell Biol. 1998, 141, 1449–1465. [Google Scholar] [CrossRef] [PubMed]
- Caldelari, R.; de Bruin, A.; Baumann, D.; Suter, M.M.; Bierkamp, C.; Balmer, V.; Müller, E. A Central Role for the Armadillo Protein Plakoglobin in the Autoimmune Disease Pemphigus Vulgaris. J. Cell Biol. 2001, 153, 823–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.F.; Feoktistova, M.; Panayotova-Dimitrova, D.; Eichkorn, R.A.; Yazdi, A.S. Pitfalls in the Application of Dispase-Based Keratinocyte Dissociation Assay for In Vitro Analysis of Pemphigus Vulgaris. Vaccines 2022, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Burmester, I.A.; Flaswinkel, S.; Thies, C.; Kasprick, A.; Kamaguchi, M.; Bumiller-Bini, V.; Emtenani, S.; Feldmann, N.; Kridin, K.; Schmidt, E.; et al. Identification of novel therapeutic targets for blocking acantholysis in pemphigus. Br. J. Pharmacol. 2020, 177, 5114–5130. [Google Scholar] [CrossRef] [PubMed]
- Egu, D.; Walter, E.; Spindler, V.; Waschke, J. Inhibition of p38MAPK signalling prevents epidermal blistering and alterations of desmosome structure induced by pemphigus autoantibodies in human epidermis. Br. J. Dermatol. 2017, 177, 1612–1618. [Google Scholar] [CrossRef]
- Egu, D.T.; Sigmund, A.M.; Schmidt, E.; Spindler, V.; Walter, E.; Waschke, J. A new ex vivo human oral mucosa model reveals that p38MAPK inhibition is not effective in preventing autoantibody-induced mucosal blistering in pemphigus. Br. J. Dermatol. 2020, 182, 987–994. [Google Scholar] [CrossRef]
- Anhalt, G.J.; Labib, R.S.; Voorhees, J.J.; Beals, T.F.; Diaz, L.A. Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N. Engl. J. Med. 1982, 306, 1189–1196. [Google Scholar] [CrossRef]
- Roscoe, J.T.; Diaz, L.; Sampaio, S.A.; Castro, R.M.; Labib, R.S.; Takahashi, Y.; Patel, H.; Anhalt, G.J. Brazilian pemphigus foliaceus autoantibodies are pathogenic to BALB/c mice by passive transfer. J. Investig. Dermatol. 1985, 85, 538–541. [Google Scholar] [CrossRef] [Green Version]
- Koch, P.J.; Mahoney, M.G.; Ishikawa, H.; Pulkkinen, L.; Uitto, J.; Shultz, L.; Murphy, G.F.; Whitaker-Menezes, D.; Stanley, J.R. Targeted Disruption of the Pemphigus Vulgaris Antigen (Desmoglein 3) Gene in Mice Causes Loss of Keratinocyte Cell Adhesion with a Phenotype Similar to Pemphigus Vulgaris. J. Cell Biol. 1997, 137, 1091–1102. [Google Scholar] [CrossRef]
- Zillikens, D.; Schmidt, E.; Reimer, S.; Chimanovitch, I.; Hardt-Weinelt, K.; Rose, C.; Brocker, E.B.; Kock, M.; Boehncke, W.H. Antibodies to desmogleins 1 and 3, but not to BP180, induce blisters in human skin grafted onto SCID mice. J. Pathol. 2001, 193, 117–124. [Google Scholar] [CrossRef]
- Bieber, K.; Sun, S.; Ishii, N.; Kasperkiewicz, M.; Schmidt, E.; Hirose, M.; Westermann, J.; Yu, X.; Zillikens, D.; Ludwig, R.J. Animal models for autoimmune bullous dermatoses. Exp. Dermatol. 2010, 19, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, M.G.; Wang, Z.; Rothenberger, K.; Koch, P.J.; Amagai, M.; Stanley, J.R. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. J. Clin. Investig. 1999, 103, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, K.; Galichet, A.; Sayar, B.S.; Scothern, A.; Howald, D.; Zymann, H.; Siffert, M.; Zenhäusern, D.; Bolli, R.; Koch, P.J.; et al. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris. J. Investig. Dermatol. 2012, 132, 346–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culton, D.A.; McCray, S.K.; Park, M.; Roberts, J.C.; Li, N.; Zedek, D.C.; Anhalt, G.J.; Cowley, D.O.; Liu, Z.; Diaz, L.A. Mucosal pemphigus vulgaris anti-Dsg3 IgG is pathogenic to the oral mucosa of humanized Dsg3 mice. J. Investig. Dermatol. 2015, 135, 1590–1597. [Google Scholar] [CrossRef] [Green Version]
- Eming, R.; Hennerici, T.; Bäcklund, J.; Feliciani, C.; Visconti, K.C.; Willenborg, S.; Wohde, J.; Holmdahl, R.; Sønderstrup, G.; Hertl, M. Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. J. Immunol. 2014, 193, 4391–4399. [Google Scholar] [CrossRef] [Green Version]
- Hudemann, C.; Maglie, R.; Llamazares-Prada, M.; Beckert, B.; Didona, D.; Tikkanen, R.; Schmitt, T.; Hashimoto, T.; Waschke, J.; Hertl, M.; et al. Human Desmocollin 3—Specific IgG Antibodies are Pathogenic in a Humanized HLA Class II Transgenic Mouse Model of Pemphigus. J. Investig. Dermatol. 2022, 142, 915–923. [Google Scholar] [CrossRef]
- Amagai, M.; Tsunoda, K.; Suzuki, H.; Nishifuji, K.; Koyasu, S.; Nishikawa, T. Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. J. Clin. Investig. 2000, 105, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Ishiko, A.; Ota, T.; Tsunoda, K.; Amagai, M.; Nishikawa, T. IgG binds to desmoglein 3 in desmosomes and causes a desmosomal split without keratin retraction in a pemphigus mouse model. J. Investig. Dermatol. 2004, 122, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Tsunoda, K.; Ota, T.; Aoki, M.; Yamada, T.; Nagai, T.; Nakagawa, T.; Koyasu, S.; Nishikawa, T.; Amagai, M. Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. J. Immunol. 2003, 170, 2170–2178. [Google Scholar] [CrossRef] [Green Version]
- Aoki-Ota, M.; Tsunoda, K.; Ota, T.; Iwasaki, T.; Koyasu, S.; Amagai, M.; Nishikawa, T. A mouse model of pemphigus vulgaris by adoptive transfer of naive splenocytes from desmoglein 3 knockout mice. Br. J. Dermatol. 2004, 151, 346–354. [Google Scholar] [CrossRef]
- Holm, T.L.; Markholst, H. Confirmation of a disease model of pemphigus vulgaris: Characterization and correlation between disease parameters in 90 mice. Exp. Dermatol. 2010, 19, e158–e165. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Tsunoda, K.; Hata, T.; Ishii, K.; Yamada, T.; Amagai, M. Synergistic pathogenic effects of combined mouse monoclonal anti-desmoglein 3 IgG antibodies on pemphigus vulgaris blister formation. J. Investig. Dermatol. 2006, 126, 2621–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, K.; Ota, T.; Suzuki, H.; Ohyama, M.; Nagai, T.; Nishikawa, T.; Amagai, M.; Koyasu, S. Pathogenic autoantibody production requires loss of tolerance against desmoglein 3 in both T and B cells in experimental pemphigus vulgaris. Eur. J. Immunol. 2002, 32, 627–633. [Google Scholar] [CrossRef]
- Takahashi, H.; Amagai, M.; Nishikawa, T.; Fujii, Y.; Kawakami, Y.; Kuwana, M. Novel system evaluating in vivo pathogenicity of desmoglein 3-reactive T cell clones using murine pemphigus vulgaris. J. Immunol. 2008, 181, 1526–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takae, Y.; Nishikawa, T.; Amagai, M. Pemphigus mouse model as a tool to evaluate various immunosuppressive therapies. Exp. Dermatol. 2009, 18, 252–260. [Google Scholar] [CrossRef]
- Kase, Y.; Takahashi, H.; Ito, H.; Kamata, A.; Amagai, M.; Yamagami, J. Intravenous Ig Regulates Anti-Desmoglein 3 IgG Production in B220- Antibody-Producing Cells in Mice with Pemphigus Vulgaris. J. Investig. Dermatol. 2021, 142, 1786–1792. [Google Scholar] [CrossRef]
- Amber, K.T.; Valdebran, M.; Grando, S.A. Non-Desmoglein Antibodies in Patients With Pemphigus Vulgaris. Front. Immunol. 2018, 9, 1190. [Google Scholar] [CrossRef]
- Lotti, R.; Atene, C.G.; Marconi, A.; Di Rocco, G.; Bonetti, L.R.; Marani, T.Z.; Pincelli, C. Development of a Desmocollin-3 Active Mouse Model Recapitulating Human Atypical Pemphigus. Front. Immunol. 2019, 10, 1387. [Google Scholar] [CrossRef] [Green Version]
- Grando, S.A.; Pittelkow, M.R. Pseudo pemphigus phenotypes in mice with inactivated desmoglein 3: Further insight to the complexity of pemphigus pathophysiology. Am. J. Pathol. 2015, 185, 3125–3127. [Google Scholar] [CrossRef]
Model | In Vitro Ex Vivo | In Vivo | Cell Culture or Mice | IgG Production | Treatment | Advantages | Disadvantages | Application |
---|---|---|---|---|---|---|---|---|
Human skin cultures | X | Healthy cells | No | Pemphigus antibodies from patients | Acantholysis study | Limited time | Therapies preventing acantholysis | |
HSOC | X | Healthy cells in organ cultures | No | scFv, PVIgG, AK23 | Skin structure preserved, acantholysis and blistering study | Limited time, complex | Therapies inhibiting blistering | |
DSG internalization assay | X | NHEK or HaCaT | No | PVIgG | Internalization of DSG3 | Limited time | Pathogenesis, Therapies inhibiting blistering | |
DDA | X | NHEK or HaCaT | No | PVIgG, scFv or AK23 | Keratinocyte dissociation studies | Limited time, reproducibility | Pathogenesis, Therapies inhibiting blistering | |
Passive | X | Neonatal mice | No | IgG from patients | Development of pemphigus lesions | Does not allow to study lesions in mature hair follicles and stem cell niche, limited time | Pathogenesis and Signalling of Pemphigus | |
SCID | No | PVIgG | Development of pemphigus lesions | Not further validated, limited time | ||||
Adult 8-week-old | No | AK23 | Lesions in mature hair follicles and stem cell niche | Limited time, expensive | ||||
Human hDsg3 transgenic | No | Mucosal PV sera | Mucosal PV sera bind mucosal epithelia from the hDSG3 mice | Limited time, expensive | ||||
Active for PV | X | DSG3null & Rag2−/− | Against DSG3 | Splenocytes from DSG3null immunized mice into Rag2−/− | Production of IgG against different epitopes. Longer follow up | Complex and time consuming | Pathogenesis and signalling of pemphigus. Study of experimental drugs over a prolonged period. | |
DSG3null & Rag2−/− | Against DSG3 | Naive splenocytes from non-immunized DSG3null mice into Rag2−/− | No immunization. Long Follow up | Lack of immunization makes a less efficient model | ||||
Active for Atypical Pemphigus | X | WT & Rag2−/− | Against DSC3 | Tolerance break against DSC3 in WT mice. Splenocytes transferred into Rag2−/− | Production of IgG against different epitopes. Longer follow up | Complex and time consuming | ||
WT, DSG3null & Rag2−/− | Against DSC3 & DSG3 | Splenocytes from both WT and DSG3null immunized mice transferred into Rag2−/− | Production of IgG against different epitopes. Longer follow up | Complex and time consuming |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotti, R.; Atene, C.G.; Zanfi, E.D.; Bertesi, M.; Zanocco-Marani, T. In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus. Int. J. Mol. Sci. 2022, 23, 7044. https://doi.org/10.3390/ijms23137044
Lotti R, Atene CG, Zanfi ED, Bertesi M, Zanocco-Marani T. In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus. International Journal of Molecular Sciences. 2022; 23(13):7044. https://doi.org/10.3390/ijms23137044
Chicago/Turabian StyleLotti, Roberta, Claudio Giacinto Atene, Emma Dorotea Zanfi, Matteo Bertesi, and Tommaso Zanocco-Marani. 2022. "In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus" International Journal of Molecular Sciences 23, no. 13: 7044. https://doi.org/10.3390/ijms23137044
APA StyleLotti, R., Atene, C. G., Zanfi, E. D., Bertesi, M., & Zanocco-Marani, T. (2022). In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus. International Journal of Molecular Sciences, 23(13), 7044. https://doi.org/10.3390/ijms23137044