Immunotherapy in NSCLC Patients with Brain Metastases
Abstract
:1. Introduction
2. Single-Agent Anti-PD-L1/PD-1 or Anti-CTLA-4 Monoclonal Antibodies
3. Combination Therapy
3.1. Anti-PD-1 and Anti-CTLA-4 Therapy
3.2. ICIs and Chemotherapy
3.3. ICIs and Radiotherapy
3.4. ICIs and Antiangiogenic Drugs
3.5. ICIs and Target Agents
4. Future Perspective and Ongoing Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of Brain Metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, P.; Bosch-Barrera, J.; Serrano, D.; Valiente, M.; Calvo, A.; Aristu, J. Challenges and Novel Opportunities of Radiation Therapy for Brain Metastases in Non-Small Cell Lung Cancer. Cancers 2021, 13, 2141. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Bexelius, C.; Munk, V.; Leighl, N. The impact of brain metastasis on quality of life, resource utilization and survival in patients with non-small-cell lung cancer. Cancer Treat. Rev. 2016, 45, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Le Rhun, E.; Guckenberger, M.; Smits, M.; Dummer, R.; Bachelot, T.; Sahm, F.; Galldiks, N.; de Azambuja, E.; Berghoff, A.; Metellus, P.; et al. EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumors. Ann. Oncol. 2021, 32, 1332–1347. [Google Scholar] [CrossRef]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516, Erratum in J. Clin. Oncol. 2022, 40, 1392. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. ESMO Guidelines Committee. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237, Erratum in Ann. Oncol. 2019, 30, 863–870. [Google Scholar] [CrossRef]
- Remon, J.; Besse, B. Brain Metastases in Oncogene-Addicted Non-Small Cell Lung Cancer Patients: Incidence and Treatment. Front. Oncol. 2018, 8, 88. [Google Scholar] [CrossRef]
- Mantovani, C.; Gastino, A.; Cerrato, M.; Badellino, S.; Ricardi, U.; Levis, M. Modern Radiation Therapy for the Management of Brain Metastases from Non-Small Cell Lung Cancer: Current Approaches and Future Directions. Front. Oncol. 2021, 11, 772789. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Mok, T.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Kim, R.; Keam, B.; Kim, S.; Kim, M.; Kim, S.H.; Kim, J.W.; Kim, Y.J.; Kim, T.M.; Jeon, Y.K.; Kim, D.-W.; et al. Differences in tumor microenvironments between primary lung tumors and brain metastases in lung cancer patients: Therapeutic implications for immune checkpoint inhibitors. BMC Cancer 2019, 19, 19. [Google Scholar] [CrossRef]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non–small-cell lung cancer. J. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Berghoff, A.S.; Schur, S.; Füreder, L.M.; Gatterbauer, B.; Dieckmann, K.; Widhalm, G.; Hainfellner, J.; Zielinski, C.C.; Birner, P.; Bartsch, R.; et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open 2016, 1, e000024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galldiks, N.; Kocher, M.; Ceccon, G.; Werner, J.-M.; Brunn, A.; Deckert, M.; Pope, W.B.; Soffietti, R.; Le Rhun, E.; Weller, M.; et al. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: Response, progression, and pseudoprogression. Neuro Oncol. 2020, 22, 17–20. [Google Scholar] [CrossRef]
- Kim, S.; Koh, J.; Kwon, D.; Keam, B.; Go, H.; Kim, Y.A.; Jeon, Y.K.; Chung, D.H. Comparative analysis of PD-L1 expression between primary and metastatic pulmonary adenocarcinomas. Eur. J. Cancer 2017, 75, 141–149. [Google Scholar] [CrossRef]
- Althammer, S.; Tan, T.H.; Spitzmüller, A.; Rognoni, L.; Wiestler, T.; Herz, T.; Widmaier, M.; Rebelatto, M.C.; Kaplon, H.; Damotte, D.; et al. Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy. J. Immunother. Cancer 2019, 7, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolin, K.; Ernstoff, M.S.; Hamid, O.; Lawrence, D.; McDermott, D.; Puzanov, I.; Wolchok, J.D.; Clark, J.I.; Sznol, M.; Logan, T.F.; et al. Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. Lancet Oncol. 2012, 13, 459–465. [Google Scholar] [CrossRef]
- Queirolo, P.; Spagnolo, F.; Ascierto, P.A.; Simeone, E.; Marchetti, P.; Scoppola, A.; Del Vecchio, M.; Di Guardo, L.; Maio, M.; Di Giacomo, A.M.; et al. Efficacy and safety of ipilimumab in patients with advanced melanoma and brain metastases. J. Neurooncol. 2014, 118, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Heller, K.N.; Pavlick, A.C.; Hodi, F.S.; Thompson, J.A.; Margolin, K.A.; Lawrence, D.P.; McDermott, D.F.; Samlowski, W.E.; Michener, T.; Karasarides, M. Safety and survival analysis of ipilimumab therapy in patients with stable asymptomatic brain metastases. J. Clin. Oncol. 2011, 29 (Suppl. S15), 8581. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Schalper, K.A.; Gettinger, S.N.; Mahajan, A.; Herbst, R.S.; Chiang, A.C.; Lilenbaum, R.; Wilson, F.H.; Omay, S.B.; Yu, J.B.; et al. Pembrolizumab for management of patients with NSCLC and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 655–663. [Google Scholar] [CrossRef]
- Mansfield, A.S.; Herbst, R.S.; de Castro, G.; Hui, R.; Peled, N.; Kim, D.-W.; Novello, S.; Satouchi, M.; Wu, Y.-L.; Garon, E.B.; et al. Outcomes with Pembrolizumab Monotherapy in Patients with Programmed Death-Ligand 1–Positive NSCLC with Brain Metastases: Pooled Analysis of KEYNOTE-001, 010, 024, and 042. JTO Clin. Res. Rep. 2021, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Davis, C.W.; Hwang, W.-T.; Jeffries, S.; Sulyok, L.F.; Marmarelis, M.E.; Singh, A.P.; Berman, A.T.; Feigenberg, S.J.; Levin, W.; et al. Outcomes in Patients with Non–small-cell Lung Cancer with Brain Metastases Treated with Pembrolizumab-based Therapy. Clin. Lung Cancer 2021, 22, 58–66.e3. [Google Scholar] [CrossRef]
- Wakuda, K.; Yabe, M.; Kodama, H.; Nishioka, N.; Miyawaki, T.; Miyawaki, E.; Mamesaya, N.; Kawamura, T.; Kobayashi, H.; Omori, S.; et al. Efficacy of pembrolizumab in patients with brain metastasis caused by previously untreated non-small cell lung cancer with high tumor PD-L1 expression. Lung Cancer 2021, 151, 60–68. [Google Scholar] [CrossRef]
- Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; Carpeno, J.D.C.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; et al. Five-year outcomes from the randomized, phase iii trials checkmate 017 and 057: Nivolumab vs. docetaxel in previously treated non-small-cell lung cancer. J. Clin. Oncol. 2021, 39, 723–733. [Google Scholar] [CrossRef]
- Cortinovis, D.; Chiari, R.; Catino, A.; Grossi, F.; DE Marinis, F.; Sperandi, F.; Piantedosi, F.; Vitali, M.; Parra, H.J.S.; Migliorino, M.R.; et al. Italian cohort of the nivolumab EAP in squamous NSCLC: Efficacy and safety in patients with CNS metastases. Anticancer Res. 2019, 39, 4265–4271. [Google Scholar] [CrossRef]
- Bidoli, P.; Chiari, R.; Catino, A.; Grossi, F.; Noberasco, C.; Gelsomino, F.; Gilli, M.; Proto, C.; Parra, H.S.; Migliorino, M.; et al. Efficacy and safety data from patients with advanced squamous NSCLC and brain metastases participating in the nivolumab Expanded Access Programme (EAP) in Italy. Ann. Oncol. 2016, 27, vi425. [Google Scholar] [CrossRef] [Green Version]
- Grossi, F.; Genova, C.; Crinò, L.; Delmonte, A.; Turci, D.; Signorelli, D.; Passaro, A.; Parra, H.S.; Catino, A.; Landi, L.; et al. Real-life results from the overall population and key subgroups within the Italian cohort of nivolumab expanded access program in non-squamous non–small cell lung cancer. Eur. J. Cancer 2019, 123, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Crinò, L.; Bronte, G.; Bidoli, P.; Cravero, P.; Minenza, E.; Cortesi, E.; Garassino, M.C.; Proto, C.; Cappuzzo, F.; Grossi, F.; et al. Nivolumab and brain metastases in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer 2019, 129, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Assié, J.-B.; Corre, R.; Levra, M.G.; Calvet, C.Y.; Gaudin, A.-F.; Grumberg, V.; Jouaneton, B.; Cotté, F.-E.; Chouaïd, C. Nivolumab treatment in advanced non-small cell lung cancer: Real-world long-term outcomes within overall and special populations (the UNIVOC study). Ther. Adv. Med. Oncol. 2020, 12, 1758835920967237. [Google Scholar] [CrossRef]
- Debieuvre, D.; Juergens, R.A.; Asselain, B.; Audigier-Valette, C.; Auliac, J.-B.; Barlesi, F.; Benoit, N.; Bombaron, P.; Butts, C.A.; Dixmier, A.; et al. Two-year survival with nivolumab in previously treated advanced non–small-cell lung cancer: A real-world pooled analysis of patients from France, Germany, and Canada. Lung Cancer 2021, 157, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Gadgeel, S.M.; Lukas, R.V.; Goldschmidt, J.; Conkling, P.; Park, K.; Cortinovis, D.; de Marinis, F.; Rittmeyer, A.; Patel, J.D.; von Pawel, J.; et al. Atezolizumab in patients with advanced non-small cell lung cancer and history of asymptomatic, treated brain metastases: Exploratory analyses of the phase III OAK study. Lung Cancer 2019, 128, 105–112. [Google Scholar] [CrossRef]
- Spigel, D.R.; Chaft, J.E.; Gettinger, S.; Chao, B.; Dirix, L.; Schmid, P.; Chow, L.Q.; Hicks, R.J.; Leon, L.; Fredrickson, J.; et al. FIR: Efficacy, Safety, and Biomarker Analysis of a Phase II Open-Label Study of Atezolizumab in PD-L1-Selected Patients with NSCLC. J. Thorac. Oncol. 2018, 13, 1733–1742. [Google Scholar] [CrossRef] [Green Version]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Nadal, E.; Massuti, B.; Huidobro, G.; Castro, R.L.; Estival, A.; Mosquera, J.; Sullivan, I.; Felip, E.; Blasco, A.; Guirado, M.; et al. Atezo-Brain: Single Arm Phase II Study of Atezolizumab Plus Chemotherapy in Stage IV NSCLC with Untreated Brain Metastases. J. Thorac. Oncol. 2021, 16, S863. [Google Scholar] [CrossRef]
- Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Levine, J.H.; Cogdill, A.P.; Zhao, Y.; Anang, N.-A.A.S.; Andrews, M.C.; Sharma, P.; Wang, J.; Wargo, J.A.; Pe’Er, D.; et al. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell 2017, 170, 1120–1133.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, L.; Tsoi, J.; Wang, X.; Emerson, R.; Homet, B.; Chodon, T.; Mok, S.; Huang, R.R.; Cochran, A.J.; Comin-Anduix, B.; et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin. Cancer Res. 2014, 20, 2424–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmann, M.D.; Ciuleanu, T.-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Borghaei, H.; Pluzanski, A.; Caro, R.B.; Provencio, M.; Burgers, S.; Carcereny, E.; Park, K.; Alexandru, A.; Lupinacci, L.; Sangha, R.; et al. Abstract CT221: Nivolumab (NIVO) + ipilimumab (IPI) as first-line (1L) treatment for patients with advanced non-small cell lung cancer (NSCLC) with brain metastases: Results from CheckMate 227. Cancer Res. 2020, 80 (Suppl. S16), CT221. [Google Scholar] [CrossRef]
- Barlesi, F.; Tomasini, P. OA04.02 CheckMate 817: First-Line Nivolumab + Ipilimumab in Patients with ECOG PS 2 and Other Special Populations with Advanced NSCLC. J. Thorac. Oncol. 2019, 14, S214–S215. [Google Scholar] [CrossRef]
- Mathew, M.; Enzler, T.; Shu, C.A.; Rizvi, N.A. Combining chemotherapy with PD-1 blockade in NSCLC. Pharmacol. Ther. 2018, 186, 130–137. [Google Scholar] [CrossRef]
- Peng, J.; Hamanishi, J.; Matsumura, N.; Abiko, K.; Murat, K.; Baba, T.; Yamaguchi, K.; Horikawa, N.; Hosoe, Y.; Murphy, S.K.; et al. Chemotherapy Induces Programmed Cell Death-Ligand 1 Overexpression via the Nuclear Factor-κB to Foster an Immunosuppressive Tumor Microenvironment in Ovarian Cancer. Cancer Res. 2015, 75, 5034–5045. [Google Scholar] [CrossRef] [Green Version]
- Zitvogel, L.; Galluzzi, L.; Smyth, M.J.; Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity 2013, 39, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.F.; Rodríguez-Abreu, D.; Langer, C.J.; Tafreshi, A.; Paz-Ares, L.; Kopp, H.-G.; Rodríguez-Cid, J.; Kowalski, D.M.; Cheng, Y.; Kurata, T.; et al. Outcomes with Pembrolizumab Plus Platinum-Based Chemotherapy for Patients with NSCLC and Stable Brain Metastases: Pooled Analysis of KEYNOTE-021, -189, and -407. J. Thorac. Oncol. 2021, 16, 1883–1892. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M.; Hui, R.; Hochmair, M.J.; Clingan, P.; Powell, S.F.; et al. Updated analysis from KEYNOTE-189: Pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non–small-cell lung cancer. J. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef]
- Carbone, D.; Ciuleanu, T.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. OA09.01 First-line Nivolumab + Ipilimumab + Chemo in Patients with Advanced NSCLC and Brain Metastases: Results from CheckMate 9LA. J. Thorac. Oncol. 2021, 16, S862. [Google Scholar] [CrossRef]
- Gong, J.; Le, T.Q.; Massarelli, E.; Hendifar, A.E.; Tuli, R. Radiation therapy and PD-1/PD-L1 blockade: The clinical development of an evolving anticancer combination. J. Immunother. Cancer. 2018, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.-X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; See, A.P.; Phallen, J.; Jackson, C.M.; Belcaid, Z.; Ruzevick, J.; Durham, N.; Meyer, C.; Harris, T.J.; Albesiano, E.; et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Dovedi, S.J.; Cheadle, E.J.; Popple, A.L.; Poon, E.; Morrow, M.; Stewart, R.; Yusko, E.C.; Sanders, C.M.; Vignali, M.; Emerson, R.O.; et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res. 2017, 23, 5514–5526. [Google Scholar] [CrossRef] [Green Version]
- Schapira, E.L.; Hubbeling, H.; Yeap, B.Y.; Mehan, W.A.; Shaw, A.T.; Oh, K.; Gainor, J.F.; Shih, H.A. Improved Overall Survival and Locoregional Disease Control with Concurrent PD-1 Pathway Inhibitors and Stereotactic Radiosurgery for Lung Cancer Patients with Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 624–629. [Google Scholar] [CrossRef]
- Kotecha, R.; Kim, J.M.; Miller, J.A.; Juloori, A.; Chao, S.T.; Murphy, E.S.; Peereboom, D.M.; Mohammadi, A.M.; Barnett, G.H.; Vogelbaum, M.A.; et al. The impact of sequencing PD-1/PD-L1 inhibitors and stereotactic radiosurgery for patients with brain metastasis. Neuro Oncol. 2019, 21, 1060–1068. [Google Scholar] [CrossRef]
- Lehrer, E.; Peterson, J.; Brown, P.D.; Sheehan, J.P.; Quiñones-Hinojosa, A.; Zaorsky, N.G.; Trifiletti, D.M. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: An international meta-analysis of individual patient data. Radiother. Oncol. 2019, 130, 104–112. [Google Scholar] [CrossRef]
- Cohen-Inbar, O.; Shih, H.H.; Xu, Z.; Schlesinger, D.; Sheehan, J.P. The effect of timing of stereotactic radiosurgery treatment of melanoma brain metastases treated with ipilimumab. J. Neurosurg. 2017, 127, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Douglass, J.; Kleinberg, L.; Ye, X.; Marciscano, A.E.; Forde, P.M.; Brahmer, J.; Lipson, E.; Sharfman, W.; Hammers, H.; et al. Concurrent Immune Checkpoint Inhibitors and Stereotactic Radiosurgery for Brain Metastases in Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Plá, M.R.; Beltrán, D.D.; Albiach, E.F. Immune Checkpoints Inhibitors and SRS/SBRT Synergy in Metastatic Non-Small-Cell Lung Cancer and Melanoma: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 11621. [Google Scholar] [CrossRef]
- Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 2017, 9, eaak9679. [Google Scholar] [CrossRef] [Green Version]
- Schmittnaegel, M.; Rigamonti, N.; Kadioglu, E.; Cassará, A.; Rmili, C.W.; Kiialainen, A.; Kienast, Y.; Mueller, H.-J.; Ooi, C.-H.; Laoui, D.; et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 2017, 9, eaak9670. [Google Scholar] [CrossRef] [PubMed]
- Manegold, C.; Dingemans, A.-M.C.; Gray, J.E.; Nakagawa, K.; Nicolson, M.; Peters, S.; Reck, M.; Wu, Y.-L.; Brustugun, O.T.; Crinò, L.; et al. The Potential of Combined Immunotherapy and Antiangiogenesis for the Synergistic Treatment of Advanced NSCLC. J. Thorac. Oncol. 2017, 12, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Martino, E.; Misso, G.; Pastina, P.; Costantini, S.; Vanni, F.; Gandolfo, C.; Botta, C.; Capone, F.; Lombardi, A.; Pirtoli, L.; et al. Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov. 2016, 2, 16025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappuzzo, F.; Reck, M.; Socinski, M.A.; Mok, T.S.K.; Jotte, R.M.; Finley, G.G.; Rodriguez-Abreu, D.; Aerts, J.; West, H.; Nishio, M.; et al. IMpower150: Exploratory analysis of brain metastases development. J. Clin. Oncol. 2020, 38 (Suppl. S15), 9587. [Google Scholar] [CrossRef]
- Sugawara, S.; Lee, J.-S.; Kang, J.-H.; Kim, H.; Inui, N.; Hida, T.; Lee, K.; Yoshida, T.; Tanaka, H.; Yang, C.-T.; et al. Nivolumab with carboplatin, paclitaxel, and bevacizumab for first-line treatment of advanced non-small-cell lung cancer. Ann. Oncol. 2021, 32, 1137–1147. [Google Scholar] [CrossRef]
- Taylor, M.H.; Schmidt, E.V.; Dutcus, C.; Pinheiro, E.M.; Funahashi, Y.; Lubiniecki, G.; Rasco, D. The LEAP program: Lenvatinib plus pembrolizumab for the treatment of advanced solid tumors. Future Oncol. 2021, 17, 637–648. [Google Scholar] [CrossRef]
- Reckamp, K.L.; Redman, M.W.; Dragnev, K.H.; Minichiello, K.; Villaruz, L.C.; Faller, B.; Al Baghdadi, T.; Hines, S.; Everhart, L.; Highleyman, L.; et al. Phase II Randomized Study of Ramucirumab and Pembrolizumab Versus Standard of Care in Advanced Non-Small-Cell Lung Cancer Previously Treated with Immunotherapy-Lung-MAP S1800A. J. Clin. Oncol. 2022, JCO2200912. [Google Scholar] [CrossRef]
- Siciliano, M.; Caridà, G.; Ciliberto, D.; D’Apolito, M.; Pelaia, C.; Caracciolo, D.; Riillo, C.; Correale, P.; Galvano, A.; Russo, A.; et al. Efficacy and safety of first-line checkpoint inhibitors-based treatments for non-oncogene-addicted non-small-cell lung cancer: A systematic review and meta-analysis. ESMO Open 2022, 7, 100465. [Google Scholar] [CrossRef] [PubMed]
- Cabanie, C.; Biau, J.; Durando, X.; Mansard, S.; Molnar, I.; Chassin, V.; Verrelle, P.; Khalil, T.; Lapeyre, M.; Dupic, G. Toxicity and time lapse between immunotherapy and stereotactic radiotherapy of brain metastases. Cancer/Radiotherapie 2021, 25, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Yang, G.; Xing, L.; Sun, X. Navigate Towards the Immunotherapy Era: Value of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer Patients with Brain Metastases. Front. Immunol. 2022, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.L.; Henon, C.; Auclin, E.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Rabeau, A.; Le Moulec, S.; et al. Outcome of Patients with Non–Small Cell Lung Cancer and Brain Metastases Treated with Checkpoint Inhibitors. J. Thorac. Oncol. 2019, 14, 1244–1254. [Google Scholar] [CrossRef]
- Harada, D.; Takigawa, N. Oligoprogression in Non-Small Cell Lung Cancer. Cancers 2021, 13, 5823. [Google Scholar] [CrossRef]
Reference | Drug | N. of pts | Histology | BM Status | PD-L1 | ORR | PFS | OS |
---|---|---|---|---|---|---|---|---|
Goldberg et al. [25] | Pembrolizumab | 42 | NSCLC | Asymptomatic +/− RT | Cohort 1: PD-L1 ≥ 1% Cohort 2: PD-L1 < 1% | Cohort 1: 19% | 1.9 m | 9.9 m |
Mansfield et al. [26] | Pembrolizumab vs. CT | 293 | NSLC | Asymptomatic (pre-treated or not) | TPS ≥ 1% | TPS ≥ 50%: 33.9% vs. 14.6% TPS ≥ 1%: 26.1% vs. 18.1% | TPS ≥ 50%: 4.1 vs. 4.6 m TPS ≥ 1%: 2.3 vs. 5.2 m | TPS ≥ 50%: 19.7 vs. 9.7 m TPS ≥ 1%: 13.4 vs. 10.3 m |
Sun et al. [27] | Pembrolizumab +/− CT | 131 | NSCLC | Asymptomatic (pre-treated or not) | Any | 27.8% | 9.2 m | 18.0 m |
Wakuda et al. [28] | Pembrolizumab | 23 | NSCLC | Any | TPS ≥ 50% | 57% | 6.5 m | 21.6 m |
Borghaei et al. [29] | Nivolumab vs. docetaxel | 87 | NSCLC | Pre-treated and asymptomatic | Any | NA | NA | 7.6 vs. 6.2 m |
Cortinovis et al. [30] | Nivolumab | 37 | Squamous NSCLC | Pre-treated and asymptomatic | NA | 19% | 4.9 m | 5.8 m |
Grossi et al. [32] | Nivolumab | 409 | Non-squamous NSCLC | Pre-treated and asymptomatic | NA | NA | NA | 8.6 m |
Crinò et al. [33] | Nivolumab | 409 | Non-squamous NSCLC | Pre-treated and asymptomatic | NA | 17% | 3 m | 8.6 m |
Bidoli et al. [31] | Nivolumab | 38 | Squamous NSCLC | Pre-treated and asymptomatic | NA | NA | 5.5 m | 6.5 m |
Assié et al. [34] | Nivolumab | 1800 | NSCLC | Pre-treated and asymptomatic | NA | NA | NA | 9.9 m |
Debieuvre et al. [35] | Nivolumab | 477 | NSCLC | Pre-treated and asymptomatic | NA | NA | NA | 9.7 m |
Gadgeel et al. [36] | Atezolizumab vs. docetaxel | 123 | NSCLC | Pre-treated and asymptomatic | NA | NA | NA | 16 vs. 11.9 m |
Spigel et al. [37] | Atezolizumab | 13 | NSCLC | Pre-treated and asymptomatic | >5% | 13.2% | 2.5 m | 6.8 m |
Sezer et al. [39] | Cemiplimab vs. CT | 68 | NSCLC | Asymptomatic (pre-treated or not) | ≥50% | NA | 13/34 vs. 26/34 events | 4/34 vs. 12/34 events |
Hendriks et al. [40] | ICIs | 255 | NSCLC | Any | NA | 20.6% | 1.7 m | 8.5 m |
Reference | Drug | N. of pts | Histology | BM Status | PD-L1 | ORR | PFS | OS |
---|---|---|---|---|---|---|---|---|
Hellman et al. [44] | Nivolumab + ipilimumab | 81 | NSCLC | Pre-treated and asymptomatic | >1% and TMB > 10 | NA | 4.9 m | NA |
Borghaei et al. [45] | Nivolumab + ipilimumab | 135 | NSCLC | Pre-treated and asymptomatic | Any | 33% | 5.4 m | 17.4 m |
Barlesi et al. [46] | Nivolumab + ipilimumab | 44 | NSCLC | Untreated and asymptomatic | Any | 37% | 4.2 m | NA |
Powell et al. [50] | Pembrolizumab + CT | 171 | NSCLC | Asymptomatic | Any | 54.6% | 6.9 m | 18.8 m |
Gadgeel et al. [51] | Pembrolizumab + CT | 73 | NSCLC | Asymptomatic | Any | NA | 1-year PFS rate: 31.7% | 1-year OS rate: 65.4% |
Carbone et al. [52] | Nivolumab + ipilimumab + CT | 101 | NSCLC | Pre-treated and asymptomatic | Any | 43% | 10.6 m | 19.3 m |
Schapira et al. [57] | Concurrent SRS + ICI | 37 | NSCLC | Untreated | Any | NA | NA | 1-year OS rate 87.3% |
Chen et al. [61] | Concurrent SRS + ICI | 157 | NSCLC + others | Any | Any | NA | 1-year intracranial PFS rate: 88% | NA |
Sugawara et al. [68] | Nivolumab + bevacizumab + CT | 36 | Non squamous NSCLC | Asymptomatic | Any | NA | 10.5 m | NA |
Nadal et al. [40] | Atezolizumab + CT | 40 | Non squamous NSCLC | Untreated and asymptomatic | Any | 12-week intracranial ORR: 42.5% | Intracranial PFS: 7.1 m | Intracranial OS: 8.9 m |
Identifier | Description of the Study | Phase | Status |
---|---|---|---|
NCT05129202 | Outcomes with Immune Checkpoint Inhibitor for Patients with Non-Small-Cell Lung Cancer and Stable Brain Metastases: A Retrospective Study | - | Recruiting |
NCT05012254 | Nivolumab Plus Ipilimumab Plus Two Cycles of Platinum-based Chemotherapy as First-Line Treatment for Stage IV/Recurrent Non-small Cell Lung Cancer (NSCLC) Patients with Synchronous Brain Metastases | II | Recruiting |
NCT04650490 | A Randomized, Phase II Trial of SRS Timing with Immune Checkpoint Inhibition in Patients with Untreated Brain Metastases from Non-small Cell Lung Cancer | II | Recruiting |
NCT04187872 | Recurrent Brain Metastasis Immune Effects and RespOnse to Laser Interstitial ThermotHerapy (LITT) and Pembrolizumab in Combination (TORCH) | - | Recruiting |
NCT02978404 | A Phase II, Multi-centre Study, of Combining Radiosurgery and Nivolumab in the Treatment of Brain Metastases from Non-small Cell Lung Cancer and Renal Cell Cancer | II | Active, not recruiting |
NCT02696993 | Phase I/II Trial of Nivolumab with Radiation or Nivolumab and Ipilimumab with Radiation for the Treatment of Intracranial Metastases from Non-Small Cell Lung Cancer | I/II | Recruiting |
NCT04835025 | A Retrospective, Multicenter Case-control Study of Radiotherapy Combined with Immunotherapy for Brain Metastases of Non-small Cell Lung Cancer | - | Suspended (because of COVID-19) |
NCT01454102 | A Multi-arm Phase I Safety Study of Nivolumab in Combination with Gemcitabine/Cisplatin, Pemetrexed/Cisplatin, Carboplatin/Paclitaxel, Bevacizumab Maintenance, Erlotinib, Ipilimumab or as Monotherapy in Subjects with Stage IIIB/IV Non-small Cell Lung Cancer (NSCLC) | I | Completed recruitment |
NCT02681549 | Pembrolizumab Plus Bevacizumab for Treatment of Brain Metastases in Metastatic Melanoma or Non-small Cell Lung Cancer | II | Recruiting |
NCT02886585 | Pembrolizumab in Central Nervous System Metastases (NSCLC and melanoma) | II | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buriolla, S.; Pelizzari, G.; Corvaja, C.; Alberti, M.; Targato, G.; Bortolot, M.; Torresan, S.; Cortiula, F.; Fasola, G.; Follador, A. Immunotherapy in NSCLC Patients with Brain Metastases. Int. J. Mol. Sci. 2022, 23, 7068. https://doi.org/10.3390/ijms23137068
Buriolla S, Pelizzari G, Corvaja C, Alberti M, Targato G, Bortolot M, Torresan S, Cortiula F, Fasola G, Follador A. Immunotherapy in NSCLC Patients with Brain Metastases. International Journal of Molecular Sciences. 2022; 23(13):7068. https://doi.org/10.3390/ijms23137068
Chicago/Turabian StyleBuriolla, Silvia, Giacomo Pelizzari, Carla Corvaja, Martina Alberti, Giada Targato, Martina Bortolot, Sara Torresan, Francesco Cortiula, Gianpiero Fasola, and Alessandro Follador. 2022. "Immunotherapy in NSCLC Patients with Brain Metastases" International Journal of Molecular Sciences 23, no. 13: 7068. https://doi.org/10.3390/ijms23137068
APA StyleBuriolla, S., Pelizzari, G., Corvaja, C., Alberti, M., Targato, G., Bortolot, M., Torresan, S., Cortiula, F., Fasola, G., & Follador, A. (2022). Immunotherapy in NSCLC Patients with Brain Metastases. International Journal of Molecular Sciences, 23(13), 7068. https://doi.org/10.3390/ijms23137068