Molecular Processes of Dodder Haustorium Formation on Host Plant under Low Red/Far Red (R/FR) Irradiation
Abstract
:1. Introduction
2. Results
2.1. Effect of R/FR Ratio on Writhing and Haustoria Formation
2.2. Scanning Electron Microscopy Analysis of Haustoria
2.3. Overview of Transcriptomic Data
2.4. DEGs in Response to Dodder Parasitism
2.5. GO and KEGG Enrichment Analysis of DEGs
2.6. Gene Expression Involved in the Prehaustorial and Early Stage of Haustorium Formation
2.7. Gene Expression Involved in the Middle Stage of Haustorium Formation
2.8. Gene Expression Involved in the Late Stage of Haustorium Formation
2.9. RT-qPCR Verification
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Seeds Germination
4.3. Treatments and Tissues Collection
4.4. Scanning Electron Microscopy Analysis of Haustoria
4.5. Transcriptome Analysis
4.6. RT-qPCR Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SAUR | small auxin up-regulated RNA |
AUX1 | auxin influx carrier |
ARR-A | Type-A Arabidopsis response regulator |
ARR-B | Type-B Arabidopsis response regulator |
TIR1 | transport inhibitor response 1 |
AHP | Arabidopsis histidine-containing phosphotransfer peotein |
ARF | auxin response factor |
PE | pectinesterase |
Pel | pectate lyase |
PG | polygalacturonase |
Prx | peroxidase |
CNGC | cyclic nucleotide gated channel |
Rboh | respiratory burst oxidase |
ROS | reactive oxygen species |
FLS2 | Flagellin sensitive2 |
CDPK | calcium-dependent protein kinase |
PAL | phenylalanine ammonia-lyase |
CYP73A | cinnamate 4-hydroxylase |
4CL | 4 coumarate CoA ligase |
CCR | cinnamoyl CoA reductase |
CRE | cytokinin receptor |
BAK | brassinosteroid-associated kinase |
CAD | cinnamyl-alcohol dehydrogenase |
F5H | ferulate-5-hydroxylase |
CCoAOMT | Caffeoyl-CoA O-methyltransferase |
COMT | caffeic acid 3-O-methyltransferase |
References
- Dawson, J.H.; Musselman, L.J.; Wolswinkel, P.; D€orr, I. Biology and control of Cuscuta. Rev. Weed Sci. 1994, 6, 265–317. [Google Scholar]
- Furuhashi, T. “Spear” and “Shield” plant parasitization and pathogenic response. J. Plant Physiol. Pathol. 2017, 5, 2. [Google Scholar] [CrossRef]
- Li, D.X.; Wang, L.J.; Yang, X.P.; Zhang, G.G.; Chen, L. Proteomic analysis of blue light-induced twining response in Cuscuta australis. Plant Mol. Biol. 2010, 72, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.K. A marginal value model and coiling response in Cuscuta subinclusa. Ecology 1990, 71, 1916–1925. [Google Scholar] [CrossRef]
- Furuhashi, T.; Furuhashi, K.; Weckwerth, W. The parasitic mechanism of the holostemparasitic plant Cuscuta. J. Plant Interact. 2011, 6, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Furuhashi, T.; Nakamura, T.; Iwase, K. Analysis of metabolites in stem parasitic plant interactions: Interaction of Cuscuta-Momordica versus Cassytha-Ipomoea. Plants 2016, 5, 43. [Google Scholar] [CrossRef]
- Runyon, J.B.; Mescher, M.C.; Moraes, C.D. Volatile chemical cues guide host location and host selection by parasitic plants. Science 2006, 313, 1964–1967. [Google Scholar] [CrossRef] [Green Version]
- Furuhashi, K.; Iwase, K.; Furuhashi, T. Role of light and plant hormones in stem parasitic plant (Cuscuta and Cassytha) swining and haustoria induction. Photochem. Photobiol. 2021, 97, 1054–1062. [Google Scholar] [CrossRef]
- Smith, J.D.; Johnson, B.I.; Mescher, M.C.; De Moraes, C.M. A plant parasite uses light cues to detect differences in host-plant proximity and architecture. Plant Cell Environ. 2020, 44, 1142–1150. [Google Scholar] [CrossRef]
- Orr, G.; Haidar, M.; Orr, D. Small seed dodder (Cuscuta planiflora) phototropism toward far-red when in white light. Weed Sci. 1996, 44, 233–240. [Google Scholar] [CrossRef]
- Furuhashi, K.; Kanno, M.; Morita, T. Photocontrol of parasitism in a parasitic flowering plant, Cuscuta japonica Chois, cultured in vitro. Plant Cell Physiol. 1995, 36, 533–536. [Google Scholar] [CrossRef]
- Furuhashi, K.; Tada, Y.; Okamoto, K.; Sugai, M.; Kubota, M.; Watanabe, M. Phytochrome participation in induction of haustoria in Cuscuta japonica, a holoparasitic flowering plant. Plant Cell Physiol. 1997, 38, 935–940. [Google Scholar] [CrossRef]
- Lane, H.C.; Kasperbauer, M.J. Photomorphogenic responses of dodder seedlings. Plant Physiol. 1965, 40, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Tada, Y.; Sugai, M.; Furuhashi, K. Haustoria of Cuscuta japonica, a holoparasitic flowering plant, are induced by the cooperative effects of far-red light and tactile stimuli. Plant Cell Physiol. 1996, 37, 1049–1053. [Google Scholar] [CrossRef]
- Haidar, M.A.; Orr, G.L.; Westra, P. Effects of light and mechanical stimulation on coiling and prehaustoria formation in Cuscuta spp. Weed Res. 1997, 37, 219–228. [Google Scholar] [CrossRef]
- Haidar, M.A.; Orr, G.L. The response of Cuscuta planiflora seedlings to red and far-red, blue light and end-of-day irradiations. Ann. Appl. Biol. 1999, 134, 117–120. [Google Scholar] [CrossRef]
- Benvenuti, S.; Dinelli, G.; Bonetti, A.; Catizone, P. Germination ecology, emergence and host detection in Cuscuta campestris. Weed Res. 2005, 45, 270–278. [Google Scholar] [CrossRef]
- Ranjan, A.; Ichihashi, Y.; Farhi, M.; Zumstein, K.; Townsley, B.; David-Schwartz, R.; Sinha, N.R. De Novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol. 2014, 166, 1186. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, H.; Alamisaeed, K.; Moslemkhani, C. Overexpression of stress-related genes in Cuscuta campestris in response to host defense reactions. Biotechnologia 2017, 98, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005, 6, 850–861. [Google Scholar] [CrossRef]
- Lockhart, J.A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 1965, 8, 264–275. [Google Scholar] [CrossRef]
- Gilroy, S. Plant tropisms. Curr. Biol. 2008, 18, R275–R277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muday, G.K. Auxins and tropisms. J. Plant Growth Regul. 2001, 20, 226–243. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, S.; Friml, J. Auxin: A trigger for change in plant development. Cell 2009, 136, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Shimizu, K. Development of parasitic organs of a stem holoparasitic plant in genus Cuscuta. Front. Plant Sci. 2019, 10, 1435. [Google Scholar]
- Johnsen, H.R.; Striberny, B.; Olsen, S.; Vidal-Melgosa, S.; Fangel, J.U.; Willats, W.G.T.; Rose, J.K.C.; Krause, K. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: A priori differences and induced changes. New Phytol. 2015, 207, 805–816. [Google Scholar] [CrossRef]
- Haidar, M.A.; Orr, G.L.; Westra, P. The response of dodder (Cuscuta spp.) seedlings to phytohormones under various light regimes. Ann. Appl. Biol. 1998, 132, 331–338. [Google Scholar] [CrossRef]
- Tian, Q.; Uhlir, N.J.; Reed, J.W. Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 2002, 14, 301–319. [Google Scholar] [CrossRef] [Green Version]
- Mason, M.G.; Mathews, D.E.; Argyros, D.A.; Maxwell, B.B.; Kieber, J.J.; Alonso, J.M.; Ecker, J.R.; Schaller, G.E. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 2005, 17, 3007–3018. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Zhou, J.J.; Zhang, J.Z. Aux/IAA gene family in plants: Molecular structure, regulation, and function. Int. J. Mol. Sci. 2018, 19, 259. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, G. Auxin-dependent cell elongation during the shade avoidance response. Front. Plant. Sci. 2019, 10, 914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.J.; Sun, N.; Zhang, F.F.; Yu, R.B.; Chen, H.D.; Deng, X.W.; Wei, N. SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis. Plant Cell 2020, 32, 3792–3811. [Google Scholar] [CrossRef] [PubMed]
- Pedmale, U.V.; Celaya, R.B.; Liscum, E. Phototropism: Mechanism and Outcomes; The Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2010; Volume 8, p. e0125. [Google Scholar]
- Kaga, Y.; Yokoyama, R.; Sano, R.; Ohtani, M.; Demura, T.; Kuroha, T.; Shinohara, N.; Nishitani, K. Interspecific signaling between the parasitic plant and the host plants regulate xylem vessel cell differentiation in haustoria of Cuscuta campestris. Front. Plant Sci. 2020, 11, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnsen, H.; Krause, K. Cellulase activity screening using pure carboxymethylcellulose: Application to soluble cellulolytic samples and to plant tissue prints. Int. J. Mol. Sci. 2014, 15, 830–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Curto, L.; Marquez-Guzman, J.; Diaz-Pontones, D.M. Invasion of Coffea arabica (Linn.) by Cuscuta jalapensis (Schlecht): In situ activity of peroxidase. Environ. Exp. Bot. 2006, 56, 127–135. [Google Scholar] [CrossRef]
- Nun, N.B.; Mayer, A.M. Culture of pectin methylesterase and polyphenoloxidase in Cuscuta campestris. Phytochemistry 1999, 50, 719–727. [Google Scholar] [CrossRef]
- Nagar, R.; Singh, M.; Sanwal, G.G. Cell wall degrading enzymes in Cuscuta reflexa and its hosts. J. Exp. Bot. 1984, 35, 1104–1112. [Google Scholar] [CrossRef]
- Nun, N.B.; Mor, A.; Mayer, A.M. A cofactor requirement for polygalacturonase from Cuscuta campestris. Phytochemistry 1999, 52, 1217–1221. [Google Scholar]
- Srivastava, S.; Nighojkar, A.; Kumar, A. Multiple forms of pectin methylesterase from Cuscuta reflexa filaments. Phytochemistry 1994, 37, 1233–1236. [Google Scholar] [CrossRef]
- Carpita, N.C.; Gibeaut, D.M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993, 3, 1–30. [Google Scholar] [CrossRef]
- Jiang, C.M.; Wu, M.C.; Wu, C.L.; Chang, H.M. Pectinesterase and polygalacturonase activities and textural properties of rubbery papaya (Carica papaya Linn.). J. Food Sci. 2003, 68, 1590–1594. [Google Scholar] [CrossRef]
- Kokla, A.; Melnyk, C.W. Developing a thief: Haustoria formation in parasitic plants. Dev. Biol. 2018, 442, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Hozumi, A.; Aoki, K. Organization of vascular cells in the haustorium of the parasitic flowering plant Cuscuta japonica. Plant Cell Physiol. 2018, 59, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Calvin, C.L. Anatomy of the endophytic system of the mistletoe, Phoradendron flavescens. Bot. Gaz. 1967, 128, 117–137. [Google Scholar] [CrossRef]
- Heide-Jørgensen, H.S.; Kuijt, J. The haustorium of the root parasite Triphysaria (Scrophulariaceae), with special reference to xylem bridge ultrastructure. Am. J. Bot. 1995, 82, 782–797. [Google Scholar] [CrossRef]
- Birschwilks, M.; Sauer, N.; Scheel, D.; Neumann, S. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec. Planta 2007, 226, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Yuki, T.; Mathias, S. Lignin polymerization: How do plants manage the chemistry so well? Curr. Opin. Biotech. 2019, 56, 75–81. [Google Scholar]
- Barros, J.; Serk, H.; Granlund, I. Pesquet E: The cell biology of lignification in higher plants. Ann. Bot. 2015, 115, 1053–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laitinen, T.; Morreel, K.; Delhomme, N.; Gauthier, A.; Schiffthaler, B.; Nickolov, K.; Brader, G.; Lim, K.J.; Teeri, T.H.; Street, N.R.; et al. A key role for apoplastic H2O2 in Norway spruce phenolic metabolism. Plant Physiol. 2017, 174, 1449–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigeto, J.; Tsutsumi, Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016, 209, 1395–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francoz, E.; Ranocha, P.; Nguyen-Kim, H.; Jamet, E.; Burlat, V.; Dunand, C. Roles of cell wall peroxidases in plant development. Phytochemistry 2015, 112, 15–21. [Google Scholar] [CrossRef]
- Kreslavski, V.D.; Lyubimov, V.Y.; Shirshikova, G.N.; Shmarev, A.N.; Kosobryukhov, A.A.; Schmitt, F.J.; Friedrich, T.; Allakhverdiev, S.I. Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A. J. Photochem. Photobiol. B 2013, 122, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.I.; De Moraes, C.M.; Mescher, M.C. Manipulation of light spectral quality disrupts host location and attachment by parasitic plants in the genus Cuscuta. J. Appl. Ecol. 2016, 53, 794–803. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhang, G.S.; Song, Q.L.; Zhang, Y.X.; Li, Z.; Guo, J.; Niu, N.; Ma, S.C.; Wang, J.W. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS ONE 2015, 10, e0119557. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-C.; Kim, Y.-H.; Ji, C.Y.; Park, S.; Jeong, J.C.; Lee, H.-S.; Kwak, S.-S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS ONE 2012, 7, e51502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lyu, J.; Lou, H.; Tang, C.; Zheng, H.; Chen, S.; Yu, M.; Hu, W.; Jin, L.; Wang, C.; et al. Effects of elevated sodium chloride on shelf-life and antioxidant ability of grape juice sports drink. J. Food Process. Preserv. 2021, 45, e15049. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, L.; Zhang, J.; Zheng, H.; Sun, Y.; Chen, S.; Yu, M.; Hu, W.; Shi, D.; Sun, X.; et al. Nondestructive determination of soluble solids content and pH in red bayberry (Myrica rubra) based on color space. J. Food Sci. Technol. 2020, 57, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Li, Y.; Chen, L.; Li, J. Molecular Processes of Dodder Haustorium Formation on Host Plant under Low Red/Far Red (R/FR) Irradiation. Int. J. Mol. Sci. 2022, 23, 7528. https://doi.org/10.3390/ijms23147528
Pan H, Li Y, Chen L, Li J. Molecular Processes of Dodder Haustorium Formation on Host Plant under Low Red/Far Red (R/FR) Irradiation. International Journal of Molecular Sciences. 2022; 23(14):7528. https://doi.org/10.3390/ijms23147528
Chicago/Turabian StylePan, Hangkai, Yi Li, Luxi Chen, and Junmin Li. 2022. "Molecular Processes of Dodder Haustorium Formation on Host Plant under Low Red/Far Red (R/FR) Irradiation" International Journal of Molecular Sciences 23, no. 14: 7528. https://doi.org/10.3390/ijms23147528
APA StylePan, H., Li, Y., Chen, L., & Li, J. (2022). Molecular Processes of Dodder Haustorium Formation on Host Plant under Low Red/Far Red (R/FR) Irradiation. International Journal of Molecular Sciences, 23(14), 7528. https://doi.org/10.3390/ijms23147528