Peeling Back the Layers of Lymph Gland Structure and Regulation
Abstract
:1. Background—The Drosophila Model of Hematopoiesis
2. The Drosophila Lymph Gland
2.1. Discovery and Early Characterization
2.2. Functional Zones, Cell Types and Regulation
2.3. Re-Evaluating Zones and Cell Type Diversity
3. Hematopoietic Regulatory Mechanisms—Drosophila and Mammals
4. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikkola, H.K.A.; Orkin, S.H. The Journey of Developing Hematopoietic Stem Cells. Development 2006, 133, 3733–3744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, S.J.; Scadden, D.T. The Bone Marrow Niche for Haematopoietic Stem Cells. Nature 2014, 505, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepass, U.; Fessler, L.I.; Aziz, A.; Hartenstein, V. Embryonic Origin of Hemocytes and Their Relationship to Cell Death in Drosophila. Development 1994, 120, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Holz, A.; Bossinger, B.; Strasser, T.; Janning, W.; Klapper, R. The Two Origins of Hemocytes in Drosophila. Development 2003, 130, 4955–4962. [Google Scholar] [CrossRef] [Green Version]
- Honti, V.; Csordás, G.; Márkus, R.; Kurucz, É.; Jankovics, F.; Andó, I. Cell Lineage Tracing Reveals the Plasticity of the Hemocyte Lineages and of the Hematopoietic Compartments in Drosophila Melanogaster. Mol. Immunol. 2010, 47, 1997–2004. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Singh, A.; Mandal, S.; Mandal, L. Active Hematopoietic Hubs in Drosophila Adults Generate Hemocytes and Contribute to Immune Response. Dev. Cell 2015, 33, 478. [Google Scholar] [CrossRef] [Green Version]
- Rugendorff, A.; Younossi-Hartenstein, A.; Hartenstein, V. Embryonic Origin and Differentiation of the Drosophila Heart. Rouxs Arch. Dev. Biol. 1994, 203, 266–280. [Google Scholar] [CrossRef]
- Hultmark, D. Ancient Relationships. Nature 1994, 367, 116–117. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [Green Version]
- Kleino, A.; Silverman, N. The Drosophila IMD Pathway in the Activation of the Humoral Immune Response. Dev. Comp. Immunol. 2014, 42, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Rizki, T.M. Circulatory System and Associated Cells and Tissues. Genet. Biol. Drosoph. 1978, 2, 397–452. [Google Scholar]
- Honti, V.; Csordás, G.; Kurucz, É.; Márkus, R.; Andó, I. The Cell-Mediated Immunity of Drosophila Melanogaster: Hemocyte Lineages, Immune Compartments, Microanatomy and Regulation. Dev. Comp. Immunol. 2014, 42, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, M.; Lapraz, F.; Sharma, A.; Vanzo, N.; Waltzer, L.; Crozatier, M. Drosophila Hematopoiesis under Normal Conditions and in Response to Immune Stress. FEBS Lett. 2016, 590, 4034–4051. [Google Scholar] [CrossRef] [PubMed]
- Csordás, G.; Gábor, E.; Honti, V. There and Back Again: The Mechanisms of Differentiation and Transdifferentiation in Drosophila Blood Cells. Dev. Biol. 2021, 469, 135–143. [Google Scholar] [CrossRef]
- Irving, P.; Ubeda, J.M.; Doucet, D.; Troxler, L.; Lagueux, M.; Zachary, D.; Hoffmann, J.A.; Hetru, C.; Meister, M. New Insights into Drosophila Larval Haemocyte Functions through Genome-Wide Analysis. Cell. Microbiol. 2005, 7, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, É.; Váczi, B.; Márkus, R.; Laurinyecz, B.; Vilmos, P.; Zsámboki, J.; Csorba, K.; Gateff, E.; Hultmark, D.; Andó, I. Definition of Drosophila Hemocyte Subsets by Cell-Type Specific Antigens. Acta Biol. Hung. 2007, 58, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.; Gateff, E. Ultrastructure and Cytochemistry of the Cell Types in the Larval Hematopoietic Organs and Hemolymph of Drosophila Melanogaster Drosophila/Hematopoiesis/Blool Cells/Ultrastructure/Cytochemistry. Dev. Growth Differ. 1982, 24, 65–82. [Google Scholar] [CrossRef]
- Nappi, A.J.; Vass, E.; Frey, F.; Carton, Y. Superoxide Anion Generation in Drosophila during Melanotic Encapsulation of Parasites. Eur. J. Cell Biol. 1995, 68, 450–456. [Google Scholar]
- Rizki, T.M.; Rizki, R.M. Lamellocyte Differentiation in Drosophila Larvae Parasitized by Leptopilina. Dev. Comp. Immunol. 1992, 16, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Lanot, R.; Zachary, D.; Holder, F.; Meister, M. Postembryonic Hematopoiesis in Drosophila. Dev. Biol. 2001, 230, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Honti, V.; Kurucz, É.; Csordás, G.; Laurinyecz, B.; Márkus, R.; Andó, I. In Vivo Detection of Lamellocytes in Drosophila Melanogaster. Immunol. Lett. 2009, 126, 83–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattenoz, P.B.; Sakr, R.; Pavlidaki, A.; Delaporte, C.; Riba, A.; Molina, N.; Hariharan, N.; Mukherjee, T.; Giangrande, A. Temporal Specificity and Heterogeneity of Drosophila Immune Cells. EMBO J. 2020, 39, e104486. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Huang, X.; Zhang, P.; van de Leemput, J.; Han, Z. Single-Cell RNA Sequencing Identifies Novel Cell Types in Drosophila Blood. J. Genet. Genom. 2020, 47, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Tattikota, S.G.; Cho, B.; Liu, Y.; Hu, Y.; Barrera, V.; Steinbaugh, M.J.; Yoon, S.H.; Comjean, A.; Li, F.; Dervis, F.; et al. A Single-Cell Survey of Drosophila Blood. eLife 2020, 9, e54818. [Google Scholar] [CrossRef]
- Anderl, I.; Vesala, L.; Ihalainen, T.O.; Vanha-aho, L.M.; Andó, I.; Rämet, M.; Hultmark, D. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila Melanogaster Larvae after Wasp Infection. PLoS Pathog. 2016, 12, e1005746. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.N.; Burke, Z.D.; Tosh, D. Transdifferentiation, Metaplasia and Tissue Regeneration. Organogenesis 2004, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- Makhijani, K.; Alexander, B.; Tanaka, T.; Rulifson, E.; Brückner, K. The Peripheral Nervous System Supports Blood Cell Homing and Survival in the Drosophila Larva. Development 2011, 138, 5379–5391. [Google Scholar] [CrossRef] [Green Version]
- Zettervall, C.J.; Anderl, I.; Williams, M.J.; Palmer, R.; Kurucz, E.; Ando, I.; Hultmark, D. A Directed Screen for Genes Involved in Drosophila Blood Cell Activation. Proc. Natl. Acad. Sci. USA 2004, 101, 14192–14197. [Google Scholar] [CrossRef] [Green Version]
- el Shatoury, H.H. The Structure of the Lymph Glands OfDrosophila Larvae. Wilhelm Roux Arch. Entwickl. Org. 1955, 147, 489–495. [Google Scholar] [CrossRef]
- Stark, M.B.; Marshall, A.K. The Blood-Forming Organ of the Larva of Drosophila Melanogaster; Bell Telephone Laboratories: Murray Hill, NJ, USA, 1931. [Google Scholar]
- Barigozzi, C. Melanotic Tumors in DROSOPHILA. J. Cell. Comp. Physiol. 1958, 52, 371–381. [Google Scholar] [CrossRef]
- Rizki, M.T.M. Melanotic Tumor Formation in Drosophila. J. Morphol. 1960, 106, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Lebestky, T.; Jung, S.H.; Banerjee, U. A Serrate-Expressing Signaling Center Controls Drosophila Hematopoiesis. Genes Dev. 2003, 17, 348. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.H.; Evans, C.J.; Uemura, C.; Banerjee, U. The Drosophila Lymph Gland as a Developmental Model of Hematopoiesis. Development 2005, 132, 2521–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crozatier, M.; Ubeda, J.M.; Vincent, A.; Meister, M. Cellular Immune Response to Parasitization in Drosophila Requires the EBF Orthologue Collier. PLoS Biol. 2004, 2, e196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, L.; Martinez-Agosto, J.A.; Evans, C.J.; Hartenstein, V.; Banerjee, U. A Hedgehog- and Antennapedia-Dependent Niche Maintains Drosophila Haematopoietic Precursors. Nature 2007, 446, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Schofield, R. The Relationship between the Spleen Colony-Forming Cell and the Haemopoietic Stem Cell. Blood Cells 1978, 4, 7–25. [Google Scholar]
- Krzemień, J.; Dubois, L.; Makki, R.; Meister, M.; Vincent, A.; Crozatier, M. Control of Blood Cell Homeostasis in Drosophila Larvae by the Posterior Signalling Centre. Nature 2007, 446, 325–328. [Google Scholar] [CrossRef]
- Dey, N.S.; Ramesh, P.; Chugh, M.; Mandal, S.; Mandal, L. Dpp Dependent Hematopoietic Stem Cells Give Rise to Hh Dependent Blood Progenitors in Larval Lymph Gland of Drosophila. eLife 2016, 5, e18295. [Google Scholar] [CrossRef]
- Mondal, B.C.; Mukherjee, T.; Mandal, L.; Evans, C.J.; Sinenko, S.A.; Martinez-Agosto, J.A.; Banerjee, U. Interaction between Differentiating Cell and Niche-Derived Signals in Hematopoietic Progenitor Maintenance. Cell 2011, 147, 1589. [Google Scholar] [CrossRef] [Green Version]
- Sinenko, S.A.; Shim, J.; Banerjee, U. Oxidative Stress in the Haematopoietic Niche Regulates the Cellular Immune Response in Drosophila. EMBO Rep. 2012, 13, 83. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Sharma, S.K.; Mandal, S.; Mandal, L. Lar Maintains the Homeostasis of the Hematopoietic Organ in Drosophila by Regulating Insulin Signaling in the Niche. Development 2019, 146, dev178202. [Google Scholar] [CrossRef] [PubMed]
- Pennetier, D.; Oyallon, J.; Morin-Poulard, I.; Dejean, S.; Vincent, A.; Crozatier, M. Size Control of the Drosophila Hematopoietic Niche by Bone Morphogenetic Protein Signaling Reveals Parallels with Mammals. Proc. Natl. Acad. Sci. USA 2012, 109, 3389–3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinenko, S.A.; Mandal, L.; Martinez-Agosto, J.A.; Banerjee, U. Dual Role of Wingless Signaling in Stem-like Hematopoietic Precursor Maintenance in Drosophila. Dev. Cell 2009, 16, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benmimoun, B.; Polesello, C.; Waltzer, L.; Haenlin, M. Dual Role for Insulin/TOR Signaling in the Control of Hematopoietic Progenitor Maintenance in Drosophila. Development 2012, 139, 1713–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Niu, C.; Ye, L.; Huang, H.; He, X.; Tong, W.G.; Ross, J.; Haug, J.; Johnson, T.; Feng, J.Q.; et al. Identification of the Haematopoietic Stem Cell Niche and Control of the Niche Size. Nature 2003, 425, 836–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin-Poulard, I.; Sharma, A.; Louradour, I.; Vanzo, N.; Vincent, A.; Crozatier, M. Vascular Control of the Drosophila Haematopoietic Microenvironment by Slit/Robo Signalling. Nat. Commun. 2016, 7, 11637. [Google Scholar] [CrossRef] [Green Version]
- Destalminil-Letourneau, M.; Morin-Poulard, I.; Tian, Y.; Vanzo, N.; Crozatier, M. The Vascular Niche Controls Drosophila Hematopoiesis via Fibroblast Growth Factor Signaling. eLife 2021, 10, e64672. [Google Scholar] [CrossRef]
- Gao, H.; Wu, X.; Fossett, N. Upregulation of the Drosophila Friend of GATA Gene U-Shaped by JAK/STAT Signaling Maintains Lymph Gland Prohemocyte Potency. Mol. Cell. Biol. 2009, 29, 6086–6096. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Wu, X.; Fossett, N. Drosophila E-Cadherin Functions in Hematopoietic Progenitors to Maintain Multipotency and Block Differentiation. PLoS ONE 2013, 8, e74684. [Google Scholar] [CrossRef] [Green Version]
- Ohgushi, M.; Matsumura, M.; Eiraku, M.; Murakami, K.; Aramaki, T.; Nishiyama, A.; Muguruma, K.; Nakano, T.; Suga, H.; Ueno, M.; et al. Molecular Pathway and Cell State Responsible for Dissociation-Induced Apoptosis in Human Pluripotent Stem Cells. Cell Stem Cell 2010, 7, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Soncin, F.; Mohamet, L.; Eckardt, D.; Ritson, S.; Eastham, A.M.; Bobola, N.; Russell, A.; Davies, S.; Kemler, R.; Merry, C.L.R.; et al. Abrogation of E-Cadherin-Mediated Cell-Cell Contact in Mouse Embryonic Stem Cells Results in Reversible LIF-Independent Self-Renewal. Stem Cells 2009, 27, 2069–2080. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.L.; Khadilkar, R.J.; Carr, R.L.; Tanentzapf, G. A Gap-Junction-Mediated, Calcium-Signaling Network Controls Blood Progenitor Fate Decisions in Hematopoiesis. Curr. Biol. 2021, 31, 4697–4712.e6. [Google Scholar] [CrossRef] [PubMed]
- Benmimoun, B.; Polesello, C.; Haenlin, M.; Waltzer, L. The EBF Transcription Factor Collier Directly Promotes Drosophila Blood Cell Progenitor Maintenance Independently of the Niche. Proc. Natl. Acad. Sci. USA 2015, 112, 9052–9057. [Google Scholar] [CrossRef] [Green Version]
- Oyallon, J.; Vanzo, N.; Krzemień, J.; Morin-Poulard, I.; Vincent, A.; Crozatier, M. Two Independent Functions of Collier/Early B Cell Factor in the Control of Drosophila Blood Cell Homeostasis. PLoS ONE 2016, 11, e0148978. [Google Scholar] [CrossRef]
- Blanco-Obregon, D.; Katz, M.J.; Durrieu, L.; Gándara, L.; Wappner, P. Context-Specific Functions of Notch in Drosophila Blood Cell Progenitors. Dev. Biol. 2020, 462, 101–115. [Google Scholar] [CrossRef]
- Benmimoun, B.; Haenlin, M.; Waltzer, L. Haematopoietic Progenitor Maintenance by EBF/Collier: Beyond the Niche. Cell Cycle 2015, 14, 3517. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.; Mukherjee, T.; Banerjee, U. Direct Sensing of Systemic and Nutritional Signals by Hematopoietic Progenitors in Drosophila. Nat. Cell Biol. 2012, 14, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.; Mukherjee, T.; Mondal, B.C.; Liu, T.; Young, G.C.; Wijewarnasuriya, D.P.; Banerjee, U. Olfactory Control of Blood Progenitor Maintenance. Cell 2013, 155, 1141. [Google Scholar] [CrossRef] [Green Version]
- Madhwal, S.; Shin, M.; Kapoor, A.; Goyal, M.; Joshi, M.K.; Rehman, P.M.U.; Gor, K.; Shim, J.; Mukherjee, T. Metabolic Control of Cellular Immune-Competency by Odors in Drosophila. eLife 2020, 9, e60376. [Google Scholar] [CrossRef]
- Cho, B.; Spratford, C.M.; Yoon, S.; Cha, N.; Banerjee, U.; Shim, J. Systemic Control of Immune Cell Development by Integrated Carbon Dioxide and Hypoxia Chemosensation in Drosophila. Nat. Commun. 2018, 9, 2679. [Google Scholar] [CrossRef]
- Owusu-Ansah, E.; Banerjee, U. Reactive Oxygen Species Prime Drosophila Haematopoietic Progenitors for Differentiation. Nature 2009, 461, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, A.; Padmavathi, A.; Madhwal, S.; Mukherjee, T. Dual Control of Dopamine in Drosophila Myeloid-like Progenitor Cell Proliferation and Regulation of Lymph Gland Growth. EMBO Rep. 2022, 23, e52951. [Google Scholar] [CrossRef]
- Grigorian, M.; Mandal, L.; Hartenstein, V. Hematopoiesis at the Onset of Metamorphosis: Terminal Differentiation and Dissociation of the Drosophila Lymph Gland. Dev. Genes Evol. 2011, 221, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, A.; Kadowaki, T.; Kitagawa, Y. Drosophila Hemolectin Gene Is Expressed in Embryonic and Larval Hemocytes and Its Knock down Causes Bleeding Defects. Dev. Biol. 2003, 264, 582–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.E.; Fessler, L.I.; Takagi, Y.; Blumberg, B.; Keene, D.R.; Olson, P.F.; Parker, C.G.; Fessler, J.H. Peroxidasin: A Novel Enzyme-Matrix Protein of Drosophila Development. EMBO J. 1994, 13, 3438–3447. [Google Scholar] [CrossRef]
- Kocks, C.; Cho, J.H.; Nehme, N.; Ulvila, J.; Pearson, A.M.; Meister, M.; Strom, C.; Conto, S.L.; Hetru, C.; Stuart, L.M.; et al. Eater, a Transmembrane Protein Mediating Phagocytosis of Bacterial Pathogens in Drosophila. Cell 2005, 123, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Kurucz, É.; Márkus, R.; Zsámboki, J.; Folkl-Medzihradszky, K.; Darula, Z.; Vilmos, P.; Udvardy, A.; Krausz, I.; Lukacsovich, T.; Gateff, E.; et al. Nimrod, a Putative Phagocytosis Receptor with EGF Repeats in Drosophila Plasmatocytes. Curr. Biol. 2007, 17, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Bretscher, A.J.; Honti, V.; Binggeli, O.; Burri, O.; Poidevin, M.; Kurucz, É.; Zsámboki, J.; Andó, I.; Lemaitre, B. The Nimrod Transmembrane Receptor Eater Is Required for Hemocyte Attachment to the Sessile Compartment in Drosophila Melanogaster. Biol. Open 2015, 4, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Binggeli, O.; Neyen, C.; Poidevin, M.; Lemaitre, B. Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila. PLoS Pathog. 2014, 10, e1004067. [Google Scholar] [CrossRef]
- Dudzic, J.P.; Kondo, S.; Ueda, R.; Bergman, C.M.; Lemaitre, B. Drosophila Innate Immunity: Regional and Functional Specialization of Prophenoloxidases. BMC Biol. 2015, 13, 81. [Google Scholar] [CrossRef] [Green Version]
- Lebestky, T.; Chang, T.; Hartenstein, V.; Banerjee, U. Specification of Drosophila Hematopoietic Lineage by Conserved Transcription Factors. Science 2000, 288, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Kim, W.S.; Mandal, L.; Banerjee, U. Interaction Between Notch and Hif-α in Development and Survival of Drosophila Blood Cells. Science 2011, 332, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terriente-Felix, A.; Li, J.; Collins, S.; Mulligan, A.; Reekie, I.; Bernard, F.; Krejci, A.; Bray, S. Notch Cooperates with Lozenge/Runx to Lock Haemocytes into a Differentiation Programme. Development 2013, 140, 926–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, H.-J.; Jang, I.-H.; Asano, T.; Lee, W.-J. Involvement of Pro-Phenoloxidase 3 in Lamellocyte-Meidated Spontaneous Melanization in Drosophila. Mol. Cells 2008, 26, 606–610. [Google Scholar]
- Braun, A.; Lemaitre, B.; Lanot, R.; Zachary, D.; Meister, M. Drosophila Immunity: Analysis of Larval Hemocytes by P-Element-Mediated Enhancer Trap. Genetics 1997, 147, 623–634. [Google Scholar] [CrossRef]
- Tokusumi, T.; Shoue, D.A.; Tokusumi, Y.; Stoller, J.R.; Schulz, R.A. New Hemocyte-Specific Enhancer-Reporter Transgenes for the Analysis of Hematopoiesis in Drosophila. Genesis 2009, 47, 771–774. [Google Scholar] [CrossRef]
- Yu, S.; Luo, F.; Jin, L.H. Rab5 and Rab11 Maintain Hematopoietic Homeostasis by Restricting Multiple Signaling Pathways in Drosophila. eLife 2021, 10, e60870. [Google Scholar] [CrossRef]
- Cho, B.; Yoon, S.H.; Lee, D.; Koranteng, F.; Tattikota, S.G.; Cha, N.; Shin, M.; Do, H.; Hu, Y.; Oh, S.Y.; et al. Single-Cell Transcriptome Maps of Myeloid Blood Cell Lineages in Drosophila. Nat. Commun. 2020, 11, 4483. [Google Scholar] [CrossRef]
- Girard, J.R.; Goins, L.M.; Vuu, D.M.; Sharpley, M.S.; Spratford, C.M.; Mantri, S.R.; Banerjee, U. Paths and Pathways That Generate Cell-Type Heterogeneity and Developmental Progression in Hematopoiesis. eLife 2021, 10, e67516. [Google Scholar] [CrossRef]
- Minakhina, S.; Steward, R. Hematopoietic Stem Cells in Drosophila. Development 2010, 137, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Krzemien, J.; Oyallon, J.; Crozatier, M.; Vincent, A. Hematopoietic Progenitors and Hemocyte Lineages in the Drosophila Lymph Gland. Dev. Biol. 2010, 346, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drevon, C.; Jaffredo, T. Cell Interactions and Cell Signaling during Hematopoietic Development. Exp. Cell Res. 2014, 329, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durand, C.; Robin, C.; Bollerot, K.; Baron, M.H.; Ottersbach, K.; Dzierzak, E. Embryonic Stromal Clones Reveal Developmental Regulators of Definitive Hematopoietic Stem Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 20838. [Google Scholar] [CrossRef] [Green Version]
- Spratford, C.M.; Goins, L.M.; Chi, F.; Girard, J.R.; Macias, S.N.; Ho, V.W.; Banerjee, U. Intermediate Progenitor Cells Provide a Transition between Hematopoietic Progenitors and Their Differentiated Descendants. Development 2021, 148, dev200216. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F.; Schmidt, S.L.; Christensen, B.M. Hemocyte-Mediated Phagocytosis and Melanization in the Mosquito Armigeres Subalbatus Following Immune Challenge by Bacteria. Cell Tissue Res. 2003, 313, 117–127. [Google Scholar] [CrossRef]
- Severo, M.S.; Landry, J.J.M.; Lindquist, R.L.; Goosmann, C.; Brinkmann, V.; Collier, P.; Hauser, A.E.; Benes, V.; Henriksson, J.; Teichmann, S.A.; et al. Unbiased Classification of Mosquito Blood Cells by Single-Cell Genomics and High-Content Imaging. Proc. Natl. Acad. Sci. USA 2018, 115, E7568–E7577. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, D.; Renaud, Y.; Vijayraghavan, K.; Waltzer, L.; Inamdar, M.S. Differential Activation of JAK-STAT Signaling Reveals Functional Compartmentalization in Drosophila Blood Progenitors. eLife 2021, 10, e61409. [Google Scholar] [CrossRef]
- Miller, M.; Chen, A.; Gobert, V.; Augé, B.; Beau, M.; Burlet-Schiltz, O.; Haenlin, M.; Waltzer, L. Control of RUNX-Induced Repression of Notch Signaling by MLF and Its Partner DnaJ-1 during Drosophila Hematopoiesis. PLoS Genet. 2017, 13, e1006932. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, R.P.; Carton, Y.; Govind, S. Cellular Immune Response to Parasite Infection in the Drosophila Lymph Gland Is Developmentally Regulated. Dev. Biol. 2002, 243, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Leitão, A.B.; Sucena, É. Drosophila Sessile Hemocyte Clusters Are True Hematopoietic Tissues That Regulate Larval Blood Cell Differentiation. eLife 2015, 4, e06166. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.J.; Hartenstein, V.; Banerjee, U. Thicker Than Blood: Conserved Mechanisms in Drosophila and Vertebrate Hematopoiesis. Dev. Cell 2003, 5, 673–690. [Google Scholar] [CrossRef] [Green Version]
- Haas, S.; Trumpp, A.; Milsom, M.D. Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. Cell Stem Cell 2018, 22, 627–638. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Chen, H.; Huang, D.; Chen, H.; Fei, L.; Cheng, C.; Huang, H.; Yuan, G.C.; Guo, G. Mapping Human Pluripotent Stem Cell Differentiation Pathways Using High Throughput Single-Cell RNA-Sequencing. Genome Biol. 2018, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Laurenti, E.; Göttgens, B. From Haematopoietic Stem Cells to Complex Differentiation Landscapes. Nature 2018, 553, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Geutskens, S.B.; Andrews, W.D.; van Stalborch, A.M.D.; Brussen, K.; Holtrop-De Haan, S.E.; Parnavelas, J.G.; Hordijk, P.L.; van Hennik, P.B. Control of Human Hematopoietic Stem/Progenitor Cell Migration by the Extracellular Matrix Protein Slit3. Lab. Investig. 2012, 92, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Smith-Berdan, S.; Nguyen, A.; Hong, M.A.; Forsberg, E.C. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking. Stem Cell Rep. 2015, 4, 255. [Google Scholar] [CrossRef] [Green Version]
- Duvic, B.; Hoffmann, J.A.; Meister, M.; Royet, J. Notch Signaling Controls Lineage Specification during Drosophila Larval Hematopoiesis. Curr. Biol. 2002, 12, 1923–1927. [Google Scholar] [CrossRef] [Green Version]
- Stier, S.; Cheng, T.; Dombkowski, D.; Carlesso, N.; Scadden, D.T. Notch1 Activation Increases Hematopoietic Stem Cell Self-Renewal in Vivo and Favors Lymphoid over Myeloid Lineage Outcome. Blood 2002, 99, 2369–2378. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.W.; Rattis, F.M.; DiMascio, L.N.; Congdon, K.L.; Pazianos, G.; Zhao, C.; Yoon, K.; Cook, J.M.; Willert, K.; Gaiano, N.; et al. Integration of Notch and Wnt Signaling in Hematopoietic Stem Cell Maintenance. Nat. Immunol. 2005, 6, 314–322. [Google Scholar] [CrossRef]
- Karanu, F.N.; Murdoch, B.; Gallacher, L.; Wu, D.M.; Koremoto, M.; Sakano, S.; Bhatia, M. The Notch Ligand Jagged-1 Represents a Novel Growth Factor of Human Hematopoietic Stem Cells. J. Exp. Med. 2000, 192, 1365–1372. [Google Scholar] [CrossRef]
- Akada, H.; Akada, S.; Hutchison, R.E.; Sakamoto, K.; Wagner, K.U.; Mohi, G. Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells. Stem Cells 2014, 32, 1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleppe, M.; Spitzer, M.H.; Li, S.; Hill, C.E.; Dong, L.; Papalexi, E.; de Groote, S.; Bowman, R.L.; Keller, M.; Koppikar, P.; et al. Jak1 Integrates Cytokine Sensing to Regulate Hematopoietic Stem Cell Function and Stress Hematopoiesis. Cell Stem Cell 2017, 21, 489–501.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, G.; Murdoch, B.; Wu, D.; Baker, D.P.; Williams, K.P.; Chadwick, K.; Ling, L.E.; Karanu, F.N.; Bhatia, M. Sonic Hedgehog Induces the Proliferation of Primitive Human Hematopoietic Cells via BMP Regulation. Nat. Immunol. 2001, 2, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, J.S.G.; de Haan, G. Fibroblast Growth Factors as Regulators of Stem Cell Self-Renewal and Aging. Mech. Ageing Dev. 2007, 128, 17–24. [Google Scholar] [CrossRef]
- Bhatia, M.; Bonnet, D.; Wu, D.; Murdoch, B.; Wrana, J.; Gallacher, L.; Dick, J.E. Bone Morphogenetic Proteins Regulate the Developmental Program of Human Hematopoietic Stem Cells. J. Exp. Med. 1999, 189, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Reya, T.; Duncan, A.W.; Ailles, L.; Domen, J.; Scherer, D.C.; Willert, K.; Hintz, L.; Nusse, R.; Weissman, I.L. A Role for Wnt Signalling in Self-Renewal of Haematopoietic Stem Cells. Nature 2003, 423, 409–414. [Google Scholar] [CrossRef]
- Zhu, F.; Feng, M.; Sinha, R.; Murphy, M.P.; Luo, F.; Kao, K.S.; Szade, K.; Seita, J.; Weissman, I.L. The GABA Receptor GABRR1 Is Expressed on and Functional in Hematopoietic Stem Cells and Megakaryocyte Progenitors. Proc. Natl. Acad. Sci. USA 2019, 116, 18416–18422. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Elujoba-Bridenstine, A.; Zink, K.E.; Sanchez, L.M.; Cox, B.J.; Pollok, K.E.; Sinn, A.L.; Bailey, B.J.; Sims, E.C.; Cooper, S.H. The Neurotransmitter Receptor Gabbr1 Regulates Proliferation and Function of Hematopoietic Stem and Progenitor Cells. Blood 2021, 137, 775–787. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Jeong, H.-W.; Han, D.; Fabian, J.; Drexler, H.C.A.; Stehling, M.; Schöler, H.R.; Adams, R.H. Dopamine Signaling Regulates Hematopoietic Stem and Progenitor Cell Function. Blood J. Am. Soc. Hematol. 2021, 138, 2051–2065. [Google Scholar] [CrossRef]
- Presley, C.A.; Lee, A.W.; Kastl, B.; Igbinosa, I.; Yamada, Y.; Fishman, G.I.; Gutstein, D.E.; Cancelas, J.A. Bone Marrow Connexin-43 Expression Is Critical for Hematopoietic Regeneration after Chemotherapy. Cell Commun. Adhes. 2005, 12, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Rosendaal, M.; Mayen, A.; de Koning, A.; Dunina-Barkovskaya, T.; Krenacs, T.; Ploemacher, R. Does Transmembrane Communication through Gap Junctions Enable Stem Cells to Overcome Stromal Inhibition? Leukemia 1997, 11, 1281–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Wu, X.; Simon, L.T.; Fossett, N. Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation. PLoS ONE 2014, 9, e107768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.; Murphy, M.J.; Oskarsson, T.; Kaloulis, K.; Bettess, M.D.; Oser, G.M.; Pasche, A.C.; Knabenhans, C.; MacDonald, H.R.; Trumpp, A. C-Myc Controls the Balance between Hematopoietic Stem Cell Self-Renewal and Differentiation. Genes Dev. 2004, 18, 2747–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haug, J.S.; He, X.C.; Grindley, J.C.; Wunderlich, J.P.; Gaudenz, K.; Ross, J.T.; Paulson, A.; Wagner, K.P.; Xie, Y.; Zhu, R.; et al. N-Cadherin Expression Level Distinguishes Reserved versus Primed States of Hematopoietic Stem Cells. Cell Stem Cell 2008, 2, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Kiel, M.J.; Acar, M.; Radice, G.L.; Morrison, S.J. Hematopoietic Stem Cells Do Not Depend on N-Cadherin to Regulate Their Maintenance. Cell Stem Cell 2009, 4, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Greenbaum, A.M.; Revollo, L.D.; Woloszynek, J.R.; Civitelli, R.; Link, D.C. N-Cadherin in Osteolineage Cells Is Not Required for Maintenance of Hematopoietic Stem Cells. Blood 2012, 120, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, O.; Frisch, B.J.; Weber, J.M.; Porter, R.L.; Civitelli, R.; Calvi, L.M. Osteoblastic N-Cadherin Is Not Required for Microenvironmental Support and Regulation of Hematopoietic Stem and Progenitor Cells. Blood 2012, 120, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Hirao, A.; Arai, F.; Matsuoka, S.; Takubo, K.; Hamaguchi, I.; Nomiyama, K.; Hosokawa, K.; Sakurada, K.; Nakagata, N.; et al. Regulation of Oxidative Stress by ATM Is Required for Self-Renewal of Haematopoietic Stem Cells. Nature 2004, 431, 997–1002. [Google Scholar] [CrossRef]
- Hosokawa, K.; Arai, F.; Yoshihara, H.; Takubo, K.; Ito, K.; Matsuoka, S.; Suda, T. Reactive Oxygen Species Control Hematopoietic Stem Cell-Niche Interaction through the Regulation of N-Cadherin. Blood 2006, 108, 86. [Google Scholar] [CrossRef]
- Yilmaz, Ö.H.; Valdez, R.; Theisen, B.K.; Guo, W.; Ferguson, D.O.; Wu, H.; Morrison, S.J. Pten Dependence Distinguishes Haematopoietic Stem Cells from Leukaemia-Initiating Cells. Nature 2006, 441, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Grindley, J.C.; Yin, T.; Jayasinghe, S.; He, X.C.; Ross, J.T.; Haug, J.S.; Rupp, D.; Porter-Westpfahl, K.S.; Wiedemann, L.M.; et al. PTEN Maintains Haematopoietic Stem Cells and Acts in Lineage Choice and Leukaemia Prevention. Nature 2006, 441, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Eudy, E.; Bell, R.; Loberg, M.A.; Stearns, T.; Sharma, D.; Velten, L.; Haas, S.; Filippi, M.D.; Trowbridge, J.J. Decline in IGF1 in the Bone Marrow Microenvironment Initiates Hematopoietic Stem Cell Aging. Cell Stem Cell 2021, 28, 1473–1482.e7. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharrat, B.; Csordás, G.; Honti, V. Peeling Back the Layers of Lymph Gland Structure and Regulation. Int. J. Mol. Sci. 2022, 23, 7767. https://doi.org/10.3390/ijms23147767
Kharrat B, Csordás G, Honti V. Peeling Back the Layers of Lymph Gland Structure and Regulation. International Journal of Molecular Sciences. 2022; 23(14):7767. https://doi.org/10.3390/ijms23147767
Chicago/Turabian StyleKharrat, Bayan, Gábor Csordás, and Viktor Honti. 2022. "Peeling Back the Layers of Lymph Gland Structure and Regulation" International Journal of Molecular Sciences 23, no. 14: 7767. https://doi.org/10.3390/ijms23147767
APA StyleKharrat, B., Csordás, G., & Honti, V. (2022). Peeling Back the Layers of Lymph Gland Structure and Regulation. International Journal of Molecular Sciences, 23(14), 7767. https://doi.org/10.3390/ijms23147767