Cranial Base Synchondrosis: Chondrocytes at the Hub
Abstract
1. Introduction
2. Overview of the Cranial Base Morphology
2.1. Developmental Origins of the Chondrocranium
2.2. Development and Growth of the Cranial Base and Its Synchondroses
2.3. Craniofacial Anomalies Associated with Cranial Base Malformation
3. Molecular Regulation of the Cranial Base
3.1. Role of Parathyroid Hormone Related Protein in Synchondrosis Organization
3.2. Indian Hedgehog Is a Critical Regulator of Cranial Base Development
3.3. Primary Cilia EVC/EVC2 as a Regulator of Cranial Base through Hedgehog Modulation
3.4. Fibroblast Growth Factor Receptor 3 Regulates Proliferation of Synchondrosis Chondrocytes
3.5. Discoidin Domain Receptors Play Critical Roles in the Organization and Maintenance of Cranial Base Synchondrosis Chondrocytes
3.6. Bone Morphogenic Proteins Are Expressed in the Cranial Base Synchondroses
3.7. Canonical and Non-Canonical Wnt/β-Catenin Signaling in Synchondrosis Formation
3.8. Runt Related Transcription Factor 2 Is a Novel Regulator of Cranial Base Development
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Koski, K. Cranial growth centers: Facts or fallacies? Am. J. Orthod. 1968, 54, 566–583. [Google Scholar] [CrossRef]
- Hallett, S.A.; Ono, W.; Ono, N. Growth plate chondrocytes: Skeletal development, growth and beyond. Int. J. Mol. Sci. 2019, 20, 6009. [Google Scholar] [CrossRef] [PubMed]
- McBratney-Owen, B.; Iseki, S.; Bamforth, S.D.; Olsen, B.R.; Morriss-Kay, G.M. Development and tissue origins of the mammalian cranial base. Dev. Biol. 2008, 322, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Dierbach, A.R. Morphogenesis of the cranium of Cavia porcellus L. II: Comparative part and literature. Gegenbaurs Morphol. Jahrb. 1985, 131, 617–642. [Google Scholar] [PubMed]
- Tam, P.P.; Meier, S. The establishment of a somitomeric pattern in the mesoderm of the gastrulating mouse embryo. Am. J. Anat. 1982, 164, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Tam, P.P.L.; Meier, S.; Jacobson, A.G. Differentiation of the Metameric Pattern in the Embryonic Axis of the Mouse: II. Somitomeric Organization of the Presomitic Mesoderm. Differentiation 1982, 21, 109–122. [Google Scholar] [CrossRef]
- Müller, F.; O’Rahilly, R. The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am. J. Anat. 1980, 159, 33–58. [Google Scholar] [CrossRef]
- Jeffery, N. A high-resolution MRI study of linear growth of the human fetal skull base. Neuroradiology 2002, 44, 358–366. [Google Scholar] [CrossRef]
- Lieberman, D.E.; Ross, C.F.; Ravosa, M.J. The primate cranial base: Ontogeny, function, and integration. Am. J. Phys. Anthropol. 2000, 113 (Suppl. S31), 117–169. [Google Scholar] [CrossRef]
- Wei, X.; Hu, M.; Mishina, Y.; Liu, F. Developmental regulation of the growth plate and cranial synchondrosis. J. Dent. Res. 2016, 95, 1221–1229. [Google Scholar] [CrossRef]
- Kronenberg, H.M. Developmental regulation of the growth plate. Nature 2003, 423, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Kaucka, M.; Zikmund, T.; Tesarova, M.; Gyllborg, D.; Hellander, A.; Jaros, J.; Kaiser, J.; Petersen, J.; Szarowska, B.; Newton, P.T.; et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife 2017, 6, e25902. [Google Scholar] [CrossRef] [PubMed]
- Thilander, B.; Ingervall, B. The human spheno-occipital synchondrosis II. A histological and microradiographic study of its growth. Acta Odontol. Scand. 1973, 31, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Hallett, S.A.; Ono, W.; Ono, N. The hypertrophic chondrocyte: To be or not to be. Histol. Histopathol. 2021, 36, 1021–1036. [Google Scholar] [CrossRef]
- Alhazmi, A.; Vargas, E.; Palomo, J.M.; Hans, M.; Latimer, B.; Simpson, S. Timing and rate of spheno-occipital synchondrosis closure and its relationship to puberty. PLoS ONE 2017, 12, e0183305. [Google Scholar] [CrossRef]
- Madeline, L.A.; Elster, A.D. Postnatal development of the central skull base: Normal variants. Radiology 1995, 196, 757–763. [Google Scholar] [CrossRef]
- Scott, J.H. The cranial base. Am. J. Phys. Anthropol. 1958, 16, 319–348. [Google Scholar] [CrossRef]
- Twigg, S.R.F.; Wilkie, A.O.M. New insights into craniofacial malformations. Hum. Mol. Genet. 2015, 24, R50–R59. [Google Scholar] [CrossRef]
- Yang, J.H.; Cha, B.K.; Choi, D.S.; Park, J.H.; Jang, I. Time and pattern of the fusion of the spheno-occipital synchondrosis in patients with skeletal Class i and Class III malocclusion. Angle Orthod. 2019, 89, 470–479. [Google Scholar] [CrossRef]
- Tahiri, Y.; Paliga, J.T.; Vossough, A.; Bartlett, S.P.; Taylor, J.A. The Spheno-occipital synchondrosis fuses prematurely in patients with crouzon syndrome and midface hypoplasia compared with age- and gender-matched controls. J. Oral Maxillofac. Surg. 2014, 72, 1173–1179. [Google Scholar] [CrossRef]
- Paliga, J.T.; Goldstein, J.A.; Vossough, A.; Bartlett, S.P.; Taylor, J.A. Premature closure of the spheno-occipital synchondrosis in pfeiffer syndrome: A link to midface hypoplasia. J. Craniofac. Surg. 2014, 25, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.L.; Kreiborg, S. Craniofacial growth in cleidocranial dysplasia--a roentgencephalometric study. J. Craniofac. Genet. Dev. Biol. 1995, 15, 35–43. [Google Scholar] [PubMed]
- Cohen, M.M.J.; Walker, G.F.; Phillips, C. A morphometric analysis of the craniofacial configuration in achondroplasia. J. Craniofac. Genet. Dev. Biol. Suppl. 1985, 1, 139–165. [Google Scholar]
- Andria, L.M.; Leite, L.P.; Prevatte, T.M.; King, L.B. Correlation of the cranial base angle and its components with other dental/skeletal variables and treatment time. Angle Orthod. 2004, 74, 361–366. [Google Scholar] [CrossRef]
- Mullikcn, J.B.; Steinberger, D.; Kunze, S.; Müller, U. Molecular diagnosis of bilateral coronal synostosis. Plast. Reconstr. Surg. 1999, 104, 1603–1615. [Google Scholar] [CrossRef]
- Rosenberg, P.; Arlis, H.R.; Haworth, R.D.; Heier, L.; Hoffman, L.; LaTrenta, G. The role of the cranial base in facial growth: Experimental craniofacial synostosis in the rabbit. Plast. Reconstr. Surg. 1997, 99, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Allareddy, V.; Ching, N.; Macklin, E.A.; Voelz, L.; Weintraub, G.; Davidson, E.; Prock, L.A.; Rosen, D.; Brunn, R.; Skotko, B.G. Craniofacial features as assessed by lateral cephalometric measurements in children with Down syndrome. Prog. Orthod. 2016, 17, 35. [Google Scholar] [CrossRef]
- Quintanilla, J.S.; Biedma, B.M.; Rodríguez, M.Q.; Mora, M.T.J.; Cunqueiro, M.M.S.; Pazos, M.A. Cephalometrics in children with Down’s syndrome. Pediatr. Radiol. 2002, 32, 635–643. [Google Scholar] [CrossRef]
- Brkic, H.; Kaic, Z.; Poje, Z.; Singer, Z. Shape of the craniofacial complex in patients with Klinefelter syndrome. Angle Orthod. 1994, 64, 371–376. [Google Scholar] [CrossRef]
- Newton, P.T.; Li, L.; Zhou, B.; Schweingruber, C.; Hovorakova, M.; Xie, M.; Sun, X.; Sandhow, L.; Artemov, A.V.; Ivashkin, E.; et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 2019, 567, 234–238. [Google Scholar] [CrossRef]
- Mizuhashi, K.; Ono, W.; Matsushita, Y.; Sakagami, N.; Takahashi, A.; Saunders, T.L.; Nagasawa, T.; Kronenberg, H.M.; Ono, N. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 2018, 563, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Muruganandan, S.; Pierce, R.; Teguh, D.A.; Perez, R.F.; Bell, N.; Nguyen, B.; Hohl, K.; Snyder, B.D.; Grinstaff, M.W.; Alberico, H.; et al. A FoxA2+ long-term stem cell population is necessary for growth plate cartilage regeneration after injury. Nat. Commun. 2022, 13, 2515. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy Venugopalan, S.; Van Otterloo, E. The Skull’s Girder: A Brief Review of the Cranial Base. J. Dev. Biol. 2021, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Funato, N. New Insights Into Cranial Synchondrosis Development: A Mini Review. Front. Cell Dev. Biol. 2020, 8, 706. [Google Scholar] [CrossRef] [PubMed]
- Nie, X. Cranial base in craniofacial development: Developmental features, influence on facial growth, anomaly, and molecular basis. Acta Odontol. Scand. 2005, 63, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Suva, L.J.; Winslow, G.A.; Wettenhall, R.E.H.; Hammonds, R.G.; Moseley, J.M.; Diefenbach-Jagger, H.; Rodda, C.P.; Kemp, B.E.; Rodriguez, H.; Chen, E.Y.; et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: Cloning and expression. Science 1987, 237, 893–896. [Google Scholar] [CrossRef]
- Lanske, B.; Karaplis, A.C.; Lee, K.; Luz, A.; Vortkamp, A.; Pirro, A.; Karperien, M.; Defize, L.H.K.; Ho, C.; Mulligan, R.C.; et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996, 273, 663–666. [Google Scholar] [CrossRef]
- Vortkamp, A.; Lee, K.; Lanske, B.; Segre, G.V.; Kronenberg, H.M.; Tabin, C.J. Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-related protein. Science 1996, 273, 613–622. [Google Scholar] [CrossRef]
- Young, B.; Minugh-Purvis, N.; Shimo, T.; St-Jacques, B.; Iwamoto, M.; Enomoto-Iwamoto, M.; Koyama, E.; Pacifici, M. Indian and sonic hedgehogs regulate synchondrosis growth plate and cranial base development and function. Dev. Biol. 2006, 299, 272–282. [Google Scholar] [CrossRef]
- Ishii-Suzuki, M.; Suda, N.; Yamazaki, K.; Kuroda, T.; Senior, P.V.; Beck, F.; Hammond, V.E. Differential responses to parathyroid hormone-related protein (PTHrP) deficiency in the various craniofacial cartilages. Anat. Rec. 1999, 255, 452–457. [Google Scholar] [CrossRef]
- Karaplis, A.C.; Luz, A.; Glowacki, J.; Bronson, R.T.; Tybulewicz, V.L.; Kronenberg, H.M.; Mulligan, R.C. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994, 8, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Hallett, S.A.; Zhou, A.; Herzog, C.; Arbiv, A.; Ono, W.; Ono, N. Cranial base synchondrosis lacks PTHrP-expressing col-umn-forming chondrocytes. Int. J. Mol. Sci. 2022, submitted.
- Long, F.; Chung, U.I.; Ohba, S.; McMahon, J.; Kronenberg, H.M.; McMahon, A.P. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 2004, 131, 1309–1318. [Google Scholar] [CrossRef]
- St-Jacques, B.; Hammerschmidt, M.; McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999, 13, 2072–2086. [Google Scholar] [CrossRef]
- Alvarez, J.; Horton, J.; Sohn, P.; Serra, R. The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2001, 221, 311–321. [Google Scholar] [CrossRef]
- Serra, R.; Karaplis, A.; Sohn, P. Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. J. Cell Biol. 1999, 145, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Koyama, E.; Shimazu, A.; Leatherman, J.L.; Golden, E.B.; Nah, H.D.; Pacifici, M. Expression of syndecan-3 and tenascin-C: Possible involvement in periosteum development. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1996, 14, 403–412. [Google Scholar] [CrossRef]
- Olsen, B.R.; Kolpakova, E.; McBratney-Owen, B.; Li, X.; Zhou, J.; Fukai, N. Genetic and epigenetic determinants of skeletal morphogenesis–role of cellular polarity and ciliary function in skeletal development and growth. Oral Biosci. Med 2005, 2, 57–65. [Google Scholar]
- Huangfu, D.; Anderson, K. V Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 2005, 102, 11325–11330. [Google Scholar] [CrossRef]
- Dorn, K.V.; Hughes, C.E.; Rohatgi, R. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev. Cell 2012, 23, 823–835. [Google Scholar] [CrossRef]
- Caparrós-Martín, J.A.; Valencia, M.; Reytor, E.; Pacheco, M.; Fernandez, M.; Perez-Aytes, A.; Gean, E.; Lapunzina, P.; Peters, H.; Goodship, J.A.; et al. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. Hum. Mol. Genet. 2013, 22, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.W.; van Creveld, S. A Syndrome Characterized by Ectodermal Dysplasia, Polydactyly, Chondro-Dysplasia and Congenital Morbus Cordis: Report of Three Cases. Arch. Dis. Child. 1940, 15, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Badri, M.K.; Zhang, H.; Ohyama, Y.; Venkitapathi, S.; Alamoudi, A.; Kamiya, N.; Takeda, H.; Ray, M.; Scott, G.; Tsuji, T.; et al. Expression of Evc2 in craniofacial tissues and craniofacial bone defects in Evc2 knockout mouse. Arch. Oral Biol. 2016, 68, 142–152. [Google Scholar] [CrossRef][Green Version]
- Kulkarni, A.K.; Louie, K.W.; Yatabe, M.; de Ruellas, A.C.O.; Mochida, Y.; Cevidanes, L.H.S.; Mishina, Y.; Zhang, H. A Ciliary Protein EVC2/LIMBIN Plays a Critical Role in the Skull Base for Mid-Facial Development. Front. Physiol. 2018, 9, 1484. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.K.; Louie, K.; Kulkarni, A.; Yatabe, M.; de Ruellas, A.C.O.; Snider, T.N.; Mochida, Y.; Cevidanes, L.H.S.; Mishina, Y.; Zhang, H. The Role of Ellis-Van Creveld 2(EVC2) in Mice During Cranial Bone Development. Anat. Rec. (Hoboken) 2018, 301, 46–55. [Google Scholar] [CrossRef]
- Badri, M.K.; Zhang, H.; Ohyama, Y.; Venkitapathi, S.; Kamiya, N.; Takeda, H.; Ray, M.; Scott, G.; Tsuji, T.; Kunieda, T.; et al. Ellis Van Creveld2 is Required for Postnatal Craniofacial Bone Development. Anat. Rec. (Hoboken) 2016, 299, 1110–1120. [Google Scholar] [CrossRef]
- Susami, T.; Kuroda, T.; Yoshimasu, H.; Suzuki, R. Ellis-van Creveld syndrome: Craniofacial morphology and multidisciplinary treatment. Cleft Palate-Craniofac. J. 1999, 36, 345–352. [Google Scholar] [CrossRef]
- Zhang, H.; Louie, K.W.; Kulkarni, A.K.; Zapien-Guerra, K.; Yang, J.; Mishina, Y. The Posterior Part Influences the Anterior Part of the Mouse Cranial Base Development. JBMR Plus 2022, 6, e10589. [Google Scholar] [CrossRef]
- Minina, E.; Kreschel, C.; Naski, M.C.; Ornitz, D.M.; Vortkamp, A. Interaction of FGF, Ihh/Pthlh, and BMP Signaling Integrates Chondrocyte Proliferation and Hypertrophic Differentiation. Dev. Cell 2002, 3, 439–449. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef]
- Ornitz, D.M. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005, 16, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ohbayashi, N.; Shibayama, M.; Kurotaki, Y.; Imanishi, M.; Fujimori, T.; Itoh, N.; Takada, S. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 2002, 16, 870–879. [Google Scholar] [CrossRef]
- Coffin, J.D.; Florkiewicz, R.Z.; Neumann, J.; Mort-Hopkins, T.; Dorn, G.W., 2nd; Lightfoot, P.; German, R.; Howles, P.N.; Kier, A.; O’Toole, B.A. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol. Biol. Cell 1995, 6, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Montero, A.; Okada, Y.; Tomita, M.; Ito, M.; Tsurukami, H.; Nakamura, T.; Doetschman, T.; Coffin, J.D.; Hurley, M.M. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J. Clin. Investig. 2000, 105, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, S.; Kliger-Spatz, M.; Cooke, J.L.; Wolstin, O.; Lunstrum, G.P.; Moshkovitz, S.M.; Horton, W.A.; Yayon, A. Skeletal Dysplasia and Defective Chondrocyte Differentiation by Targeted Overexpression of Fibroblast Growth Factor 9 in Transgenic Mice. J. Bone Miner. Res. 1999, 14, 1909–1915. [Google Scholar] [CrossRef]
- Carlton, M.B.; Colledge, W.H.; Evans, M.J. Crouzon-like craniofacial dysmorphology in the mouse is caused by an insertional mutation at the Fgf3/Fgf4 locus. Dev. Dyn. 1998, 212, 242–249. [Google Scholar] [CrossRef]
- Legeai-Mallet, L.; Benoist-Lasselin, C.; Munnich, A.; Bonaventure, J. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone 2004, 34, 26–36. [Google Scholar] [CrossRef]
- Su, W.C.S.; Kitagawa, M.; Xue, N.; Xie, B.; Garofalo, S.; Cho, J.; Deng, C.; Horton, W.A.; Fu, X.Y. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997, 386, 288–292. [Google Scholar] [CrossRef]
- Raucci, A.; Laplantine, E.; Mansukhani, A.; Basilico, C. Activation of the ERK1/2 and p38 Mitogen-activated Protein Kinase Pathways Mediates Fibroblast Growth Factor-induced Growth Arrest of Chondrocytes. J. Biol. Chem. 2004, 279, 1747–1756. [Google Scholar] [CrossRef]
- De Frutos, C.A.; Vega, S.; Manzanares, M.; Flores, J.M.; Huertas, H.; Martínez-Frías, M.L.; Nieto, M.A. Snail1 Is a Transcriptional Effector of FGFR3 Signaling during Chondrogenesis and Achondroplasias. Dev. Cell 2007, 13, 872–883. [Google Scholar] [CrossRef]
- Shiang, R.; Thompson, L.M.; Zhu, Y.Z.; Church, D.M.; Fielder, T.J.; Bocian, M.; Winokur, S.T.; Wasmuth, J.J. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994, 78, 335–342. [Google Scholar] [CrossRef]
- Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; Le Merrer, M.; Munnich, A.; Maroteaux, P. Common mutations in the gene encoding fibroblast growth factor receptor 3 account for achondroplasia, hypochondroplasia and thanatophoric dysplasia. Acta Paediatr. Suppl. 1996, 417, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Xie, Y.; Tang, J.; Huang, J.; Huang, Q.; Xu, W.; Wang, Z.; Luo, F.; Wang, Q.; Chen, H.; et al. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling. PLoS Genet. 2015, 11, e1005214. [Google Scholar] [CrossRef] [PubMed]
- Webster, M.K.; D’Avis, P.Y.; Robertson, S.C.; Donoghue, D.J. Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol. Cell. Biol. 1996, 16, 4081–4087. [Google Scholar] [CrossRef] [PubMed]
- Tavormina, P.L.; Shiang, R.; Thompson, L.M.; Zhu, Y.Z.; Wilkin, D.J.; Lachman, R.S.; Wilcox, W.R.; Rimoin, D.L.; Cohn, D.H.; Wasmuth, J.J. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat. Genet. 1995, 9, 321–328. [Google Scholar] [CrossRef]
- Chen, C.P.; Chang, T.Y.; Lin, M.H.; Chern, S.R.; Su, J.W.; Wang, W. Rapid detection of K650E mutation in FGFR3 using uncultured amniocytes in a pregnancy affected with fetal cloverleaf skull, occipital pseudoencephalocele, ventriculomegaly, straight short femurs, and thanatophoric dysplasia type II. Taiwan J. Obstet. Gynecol. 2013, 52, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Wilcox, W.R.; Chan, Y.Y.; Kawanami, A.; Bükülmez, H.; Balmes, G.; Krejci, P.; Mekikian, P.B.; Otani, K.; Yamaura, I.; et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum. Mol. Genet. 2009, 18, 227–240. [Google Scholar] [CrossRef]
- Wang, Y.; Spatz, M.K.; Kannan, K.; Hayk, H.; Avivi, A.; Gorivodsky, M.; Pines, M.; Yayon, A.; Lonai, P.; Givol, D. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc. Natl. Acad. Sci. USA 1999, 96, 4455–4460. [Google Scholar] [CrossRef]
- Murakami, S.; Balmes, G.; McKinney, S.; Zhang, Z.; Givol, D.; De Crombrugghe, B. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 2004, 18, 290–305. [Google Scholar] [CrossRef]
- Chen, L.; Adar, R.; Yang, X.; Monsonego, E.O.; Li, C.; Hauschka, P.V.; Yayon, A.; Deng, C.X. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J. Clin. Investig. 1999, 104, 1517–1525. [Google Scholar] [CrossRef]
- Laurita, J.; Koyama, E.; Chin, B.; Taylor, J.A.; Lakin, G.E.; Hankenson, K.D.; Bartlett, S.P.; Nah, H.-D. The Muenke syndrome mutation (FgfR3P244R) causes cranial base shortening associated with growth plate dysfunction and premature perichondrial ossification in murine basicranial synchondroses. Dev. Dyn. 2011, 240, 2584–2596. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, C.; Qiao, W.; Xu, X.; Deng, C. A Ser365→Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum. Mol. Genet. 2001, 10, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Schell, U.; Hehr, A.; Feldman, G.J.; Robin, N.H.; Zackai, E.H.; de Die-Smulders, C.; Viskochil, D.H.; Stewart, J.M.; Wolff, G.; Ohashi, H. Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome. Hum. Mol. Genet. 1995, 4, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Muenke, M.; Schell, U.; Hehr, A.; Robin, N.H.; Losken, H.W.; Schinzel, A.; Pulleyn, L.J.; Rutland, P.; Reardon, W.; Malcolm, S. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat. Genet. 1994, 8, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Adel, M.; Yamaguchi, T.; Tomita, D.; Nakawaki, T.; Kim, Y.-I.; Hikita, Y.; Haga, S.; Takahashi, M.; Nadim, M.A.; Kawaguchi, A.; et al. Contribution of FGFR1 Variants to Craniofacial Variations in East Asians. PLoS ONE 2017, 12, e0170645. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.M.J.; Kreiborg, S.; Lammer, E.J.; Cordero, J.F.; Mastroiacovo, P.; Erickson, J.D.; Roeper, P.; Martínez-Frías, M.L. Birth prevalence study of the Apert syndrome. Am. J. Med. Genet. 1992, 42, 655–659. [Google Scholar] [CrossRef]
- Cohen, M.M., Jr.; Kreiborg, S. Skeletal abnormalities in the Apert syndrome. Am. J. Med. Genet. 1993, 47, 624–632. [Google Scholar] [CrossRef]
- Yin, L.; Du, X.; Li, C.; Xu, X.; Chen, Z.; Su, N.; Zhao, L.; Qi, H.; Li, F.; Xue, J.; et al. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone 2008, 42, 631–643. [Google Scholar] [CrossRef]
- Nagata, M.; Nuckolls, G.H.; Wang, X.; Shum, L.; Seki, Y.; Kawase, T.; Takahashi, K.; Nonaka, K.; Takahashi, I.; Noman, A.A.; et al. The primary site of the acrocephalic feature in Apert syndrome is a dwarf cranial base with accelerated chondrocytic differentiation due to aberrant activation of the FGFR2 signaling. Bone 2011, 48, 847–856. [Google Scholar] [CrossRef]
- Passos-Bueno, M.R.; Richieri-Costa, A.; Sertié, A.L.; Kneppers, A. Presence of the Apert canonical S252W FGFR2 mutation in a patient without severe syndactyly. J. Med. Genet. 1998, 35, 677–679. [Google Scholar] [CrossRef][Green Version]
- Chen, P.; Zhang, L.; Weng, T.; Zhang, S.; Sun, S.; Chang, M.; Li, Y.; Zhang, B.; Zhang, L. A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation. PLoS ONE 2014, 9, e87311. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.; Gerety, P.A.; Derderian, C.A.; Steinbacher, D.M.; Vossough, A.; Bartlett, S.P.; Nah, H.-D.; Taylor, J.A. Differential Closure of the Spheno-occipital Synchondrosis in Syndromic Craniosynostosis. Plast. Reconstr. Surg. 2012, 130, 681e–689e. [Google Scholar] [CrossRef] [PubMed]
- Holmes, G.; Basilico, C. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev. Biol. 2012, 368, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Ornitz, D.M.; Legeai-Mallet, L. Achondroplasia: Development, pathogenesis, and therapy. Dev. Dyn. 2017, 246, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.; Rignol, G.; Dellugat, P.; Hartmann, G.; Sarrazy Garcia, S.; Stavenhagen, J.; Santarelli, L.; Gouze, E.; Czech, C. In vitro and in vivo characterization of Recifercept, a soluble fibroblast growth factor receptor 3, as treatment for achondroplasia. PLoS ONE 2021, 15, e0244368. [Google Scholar] [CrossRef] [PubMed]
- Rignol, G.; Garcia, S.; Authier, F.; Smith, K.; Tosello, L.; Marsault, R.; Dellugat, P.; Goncalves, D.; Brouillard, M.; Stavenhagen, J.; et al. Longitudinal Imaging of the Skull Base Synchondroses Demonstrate Prevention of a Premature Ossification After Recifercept Treatment in Mouse Model of Achondroplasia. JBMR Plus 2022, 6, e10568. [Google Scholar] [CrossRef]
- Yamashita, A.; Morioka, M.; Kishi, H.; Kimura, T.; Yahara, Y.; Okada, M.; Fujita, K.; Sawai, H.; Ikegawa, S.; Tsumaki, N. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 2014, 513, 507–511. [Google Scholar] [CrossRef]
- Matsushita, M.; Kitoh, H.; Ohkawara, B.; Mishima, K.; Kaneko, H.; Ito, M.; Masuda, A.; Ishiguro, N.; Ohno, K. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS ONE 2013, 8, e81569. [Google Scholar] [CrossRef]
- Matsushita, M.; Hasegawa, S.; Kitoh, H.; Mori, K.; Ohkawara, B.; Yasoda, A.; Masuda, A.; Ishiguro, N.; Ohno, K. Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene. Endocrinology 2015, 156, 548–554. [Google Scholar] [CrossRef]
- Matsushita, M.; Esaki, R.; Mishima, K.; Ishiguro, N.; Ohno, K.; Kitoh, H. Clinical dosage of meclozine promotes longitudinal bone growth, bone volume, and trabecular bone quality in transgenic mice with achondroplasia. Sci. Rep. 2017, 7, 7371. [Google Scholar] [CrossRef]
- Yasoda, A.; Kitamura, H.; Fujii, T.; Kondo, E.; Murao, N.; Miura, M.; Kanamoto, N.; Komatsu, Y.; Arai, H.; Nakao, K. Systemic Administration of C-Type Natriuretic Peptide as a Novel Therapeutic Strategy for Skeletal Dysplasias. Endocrinology 2009, 150, 3138–3144. [Google Scholar] [CrossRef] [PubMed]
- Yasoda, A.; Komatsu, Y.; Chusho, H.; Miyazawa, T.; Ozasa, A.; Miura, M.; Kurihara, T.; Rogi, T.; Tanaka, S.; Suda, M.; et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat. Med. 2004, 10, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Radziejewski, C.; Campbell, E.; Kovac, L.; McGlynn, M.; Ryan, T.E.; Davis, S.; Goldfarb, M.P.; Glass, D.J.; Lemke, G.; et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1997, 1, 25–34. [Google Scholar] [CrossRef]
- Vogel, W.; Gish, G.D.; Alves, F.; Pawson, T. The Discoidin Domain Receptor Tyrosine Kinases Are Activated by Collagen. Mol. Cell 1997, 1, 13–23. [Google Scholar] [CrossRef]
- Foehr, E.D.; Tatavos, A.; Tanabe, E.; Raffioni, S.; Goetz, S.; Dimarco, E.; De Luca, M.; Bradshaw, R.A. Discoidin domain receptor 1 (DDR1) signaling in PC12 cells: Activation of juxtamembrane domains in PDGFR/DDR/TrkA chimeric receptors. FASEB J. 2000, 14, 973–981. [Google Scholar] [CrossRef]
- Johansson, F.K.; Göransson, H.; Westermark, B. Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 2005, 24, 3896–3905. [Google Scholar] [CrossRef]
- Yamanaka, R.; Arao, T.; Yajima, N.; Tsuchiya, N.; Homma, J.; Tanaka, R.; Sano, M.; Oide, A.; Sekijima, M.; Nishio, K. Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene 2006, 25, 5994–6002. [Google Scholar] [CrossRef]
- Chou, L.-Y.; Chen, C.-H.; Lin, Y.-H.; Chuang, S.-C.; Chou, H.-C.; Lin, S.-Y.; Fu, Y.-C.; Chang, J.-K.; Ho, M.-L.; Wang, C.-Z. Discoidin domain receptor 1 regulates endochondral ossification through terminal differentiation of chondrocytes. FASEB J. 2020, 34, 5767–5781. [Google Scholar] [CrossRef]
- Yilmaz Gulec, E.; Ali, B.R.; John, A.; Tuysuz, B. Spondylometaepiphyseal Dysplasia Short Limb-Abnormal Calcification Type in Turkish Patients Reveals a Novel Mutation and New Features. Mol. Syndromol. 2022, 13, 23–37. [Google Scholar] [CrossRef]
- Ürel-Demir, G.; Şimşek-Kiper, P.; Akgün-Doğan, .; Göçmen, R.; Wang, Z.; Matsumoto, N.; Miyake, N.; Utine, G.E.; Nishimura, G.; Ikegawa, S.; et al. Further expansion of the mutational spectrum of spondylo-meta-epiphyseal dysplasia with abnormal calcification. J. Hum. Genet. 2018, 63, 1003–1007. [Google Scholar] [CrossRef]
- Bargal, R.; Cormier-Daire, V.; Ben-Neriah, Z.; Le Merrer, M.; Sosna, J.; Melki, J.; Zangen, D.H.; Smithson, S.F.; Borochowitz, Z.; Belostotsky, R.; et al. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am. J. Hum. Genet. 2009, 84, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Al-Kindi, A.; Kizhakkedath, P.; Xu, H.; John, A.; Sayegh, A.A.; Ganesh, A.; Al-Awadi, M.; Al-Anbouri, L.; Al-Gazali, L.; Leitinger, B.; et al. A novel mutation in DDR2 causing spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL) results in defective intra-cellular trafficking. BMC Med. Genet. 2014, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.F.; Ge, C.; Cowling, R.T.; Lucas, D.; Hallett, S.A.; Ono, N.; Binrayes, A.-A.; Greenberg, B.; Franceschi, R.T. The collagen receptor, discoidin domain receptor 2, functions in Gli1-positive skeletal progenitors and chondrocytes to control bone development. Bone Res. 2022, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.F.; Ge, C.; Cowling, R.T.; Ono, N.; Binrayes, A.-A.; Greenberg, B.; Kaartinen, V.M.; Franceschi, R.T. Control of Craniofacial Development by the Collagen Receptor, Discoidin Domain Receptor 2. bioRxiv 2022. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, J.; Ho, T.-V.; Grimes, W.; Urata, M.; Chai, Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat. Cell Biol. 2015, 17, 386–396. [Google Scholar] [CrossRef]
- Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016, 12, 203–221. [Google Scholar] [CrossRef]
- Rao, S.M.; Ugale, G.M.; Warad, S.B. Bone morphogenetic proteins: Periodontal regeneration. N. Am. J. Med. Sci. 2013, 5, 161–168. [Google Scholar] [CrossRef]
- Garrison, K.R.; Shemilt, I.; Donell, S.; Ryder, J.J.; Mugford, M.; Harvey, I.; Song, F.; Alt, V. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst. Rev. 2010, 2010, CD006950. [Google Scholar] [CrossRef]
- Kettunen, P.; Nie, X.; Kvinnsland, I.H.; Luukko, K. Histological development and dynamic expression of Bmp2–6 mRNAs in the embryonic and postnatal mousecranial base. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2006, 288A, 1250–1258. [Google Scholar] [CrossRef]
- Verschueren, K.; Dewulf, N.; Goumans, M.-J.; Lonnoy, O.; Feijen, A.; Grimsby, S.; Vande Spiegle, K.; ten Dijke, P.; Moren, A.; Vanscheeuwijck, P.; et al. Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mech. Dev. 1995, 52, 109–123. [Google Scholar] [CrossRef]
- Dewulf, N.; Verschueren, K.; Lonnoy, O.; Morén, A.; Grimsby, S.; Vande Spiegle, K.; Miyazono, K.; Huylebroeck, D.; Ten Dijke, P. Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology 1995, 136, 2652–2663. [Google Scholar] [CrossRef] [PubMed]
- Ueharu, H.; Pan, H.; Yang, J.; Mishina, Y. Augmentation of BMP signaling in cranial neural crest cells deforms skull base due to premature fusion of intersphenoidal synchondrosis. Genesis 2022, submitted.
- Regard, J.B.; Zhong, Z.; Williams, B.O.; Yang, Y. Wnt signaling in bone development and disease: Making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 2012, 4, a007997. [Google Scholar] [CrossRef]
- Enomoto-Iwamoto, M.; Kitagaki, J.; Koyama, E.; Tamamura, Y.; Wu, C.; Kanatani, N.; Koike, T.; Okada, H.; Komori, T.; Yoneda, T.; et al. The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev. Biol. 2002, 251, 142–156. [Google Scholar] [CrossRef]
- Day, T.F.; Guo, X.; Garrett-Beal, L.; Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 2005, 8, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Chen, M.H.; Day, T.F.; Chuang, P.T.; Yang, Y. Wnt/β-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 2006, 133, 3695–3707. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Zhu, G.; Wang, Y.; Jules, J.; Lu, Y.; McConnell, M.; Wang, Y.J.; Shao, J.Z.; Li, Y.P.; et al. Deletion of core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development. Bone. 2014, 65, 49–59. [Google Scholar] [CrossRef]
- Nagayama, M.; Iwamoto, M.; Hargett, A.; Kamiya, N.; Tamamura, Y.; Young, B.; Morrison, T.; Takeuchi, H.; Pacifici, M.; Enomoto-Iwamoto, M.; et al. Wnt/beta-catenin signaling regulates cranial base development and growth. J. Dent. Res. 2008, 87, 244–249. [Google Scholar] [CrossRef]
- Hallett, S.A.; Matsushita, Y.; Ono, W.; Sakagami, N.; Mizuhashi, K.; Tokavanich, N.; Nagata, M.; Zhou, A.; Hirai, T.; Kronenberg, H.M.; et al. Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment. Elife 2021, 10, e64513. [Google Scholar] [CrossRef]
- Li, L.; Newton, P.T.; Bouderlique, T.; Sejnohova, M.; Zikmund, T.; Kozhemyakina, E.; Xie, M.; Krivanek, J.; Kaiser, J.; Qian, H.; et al. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J. 2017, 31, 1067–1084. [Google Scholar] [CrossRef]
- Gao, B.; Yang, Y. Planar cell polarity in vertebrate limb morphogenesis. Curr. Opin. Genet. Dev. 2013, 23, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M.; Katoh, M. Identification and characterization of human PRICKLE1 and PRICKLE2 genes as well as mouse Prickle1 and Prickle2 genes homologous to Drosophila tissue polarity gene prickle. Int. J. Mol. Med. 2003, 11, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, B.C.; Damerla, R.R.; Vladar, E.K.; Chatterjee, B.; Wan, Y.; Liu, X.; Cui, C.; Gabriel, G.C.; Zahid, M.; Yagi, H.; et al. Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects. Biol. Open 2016, 5, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Szabo-Rogers, H.L. Chondrocyte Polarity During Endochondral Ossification Requires Protein–Protein Interactions Between Prickle1 and Dishevelled2/3. J. Bone Miner. Res. 2021, 36, 2399–2412. [Google Scholar] [CrossRef] [PubMed]
- Komori, T.; Yagi, H.; Nomura, S.; Yamaguchi, A.; Sasaki, K.; Deguchi, K.; Shimizu, Y.; Bronson, R.T.; Gao, Y.H.; Inada, M.; et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997, 89, 755–764. [Google Scholar] [CrossRef]
- Komori, T. Molecular Mechanism of Runx2-Dependent Bone Development. Mol. Cells 2020, 43, 168–175. [Google Scholar] [CrossRef]
- Pan, C.Y.; Tseng, Y.C.; Lan, T.H.; Chang, H.P. Craniofacial features of cleidocranial dysplasia. J. Dent. Sci. 2017, 12, 313–318. [Google Scholar] [CrossRef]
- Kaissi, A.A.; Chehida, F.B.; Kenis, V.; Ganger, R.; Radler, C.; Hofstaetter, J.G.; Klaushofer, K.; Grill, F. Broad Spectrum of Skeletal Malformation Complex in Patients with Cleidocranial Dysplasia Syndrome: Radiographic and Tomographic Study. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2013, 6, 45–55. [Google Scholar] [CrossRef]
- Takeda, S.; Bonnamy, J.P.; Owen, M.J.; Ducy, P.; Karsenty, G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001, 15, 467–481. [Google Scholar] [CrossRef]
- Funato, N.; Srivastava, D.; Shibata, S.; Yanagisawa, H. TBX1 Regulates Chondrocyte Maturation in the Spheno-occipital Synchondrosis. J. Dent. Res. 2020, 99, 1182–1191. [Google Scholar] [CrossRef]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.S.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.E.; et al. 22q11. 2 deletion syndrome. Nat. Rev. Dis. Prim. 2015, 1, 15071. [Google Scholar] [CrossRef] [PubMed]
- Inada, M.; Yasui, T.; Nomura, S.; Miyake, S.; Deguchi, K.; Himeno, M.; Sato, M.; Yamagiwa, H.; Kimura, T.; Yasui, N.; et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev. Dyn. 1999, 214, 279–290. [Google Scholar] [CrossRef]
- Vega, R.B.; Matsuda, K.; Oh, J.; Barbosa, A.C.; Yang, X.; Meadows, E.; McAnally, J.; Pomajzl, C.; Shelton, J.M.; Richardson, J.A.; et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004, 119, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Kozhemyakina, E.; Cohen, T.; Yao, T.-P.; Lassar, A.B. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol. Cell. Biol. 2009, 29, 5751–5762. [Google Scholar] [CrossRef]
- Xiao, G.; Jiang, D.; Thomas, P.; Benson, M.D.; Guan, K.; Karsenty, G.; Franceschi, R.T. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J. Biol. Chem. 2000, 275, 4453–4459. [Google Scholar] [CrossRef]
- Kawane, T.; Qin, X.; Jiang, Q.; Miyazaki, T.; Komori, H.; Yoshida, C.A.; dos Matsuura-Kawata, V.K.S.; Sakane, C.; Matsuo, Y.; Nagai, K.; et al. Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci. Rep. 2018, 8, 1–17. [Google Scholar] [CrossRef]
- Matsushita, Y.; Ono, W.; Ono, N. Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology. Biocell Off. J. Soc. Latinoam. Microsc. Electron. 2022, 46, 1157–1162. [Google Scholar] [CrossRef]
- Dy, P.; Wang, W.; Bhattaram, P.; Wang, Q.; Wang, L.; Ballock, R.T.; Lefebvre, V. Sox9 Directs Hypertrophic Maturation and Blocks Osteoblast Differentiation of Growth Plate Chondrocytes. Dev. Cell 2012, 22, 597–609. [Google Scholar] [CrossRef]
- Qi, S.; Wang, Y.; Wei, X.; Xie, D.; Mohsen, R.; Hsieh, Y.-L.; Mishina, Y.; Liu, F. Expression of Cre recombinase in chondrocytes causes abnormal craniofacial and skeletal development. Transgenic Res. 2022, 31, 399–411. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallett, S.A.; Ono, W.; Franceschi, R.T.; Ono, N. Cranial Base Synchondrosis: Chondrocytes at the Hub. Int. J. Mol. Sci. 2022, 23, 7817. https://doi.org/10.3390/ijms23147817
Hallett SA, Ono W, Franceschi RT, Ono N. Cranial Base Synchondrosis: Chondrocytes at the Hub. International Journal of Molecular Sciences. 2022; 23(14):7817. https://doi.org/10.3390/ijms23147817
Chicago/Turabian StyleHallett, Shawn A., Wanida Ono, Renny T. Franceschi, and Noriaki Ono. 2022. "Cranial Base Synchondrosis: Chondrocytes at the Hub" International Journal of Molecular Sciences 23, no. 14: 7817. https://doi.org/10.3390/ijms23147817
APA StyleHallett, S. A., Ono, W., Franceschi, R. T., & Ono, N. (2022). Cranial Base Synchondrosis: Chondrocytes at the Hub. International Journal of Molecular Sciences, 23(14), 7817. https://doi.org/10.3390/ijms23147817