Combined Toxicological Effects of Di (2-Ethylhexyl) Phthalate and UV-B Irradiation through Endoplasmic Reticulum Stress—Tight Junction Disruption in Human HaCaT Keratinocytes
Abstract
:1. Introduction
2. Results
2.1. Effect of DEHP, UVB, and Co-Treatment with DEHP and UV-B on Cell Viability of Human Keratinocytes
2.2. Combined Effects of DEHP and UV-B in Acute ER Stress Responses and Tight Junction Disruption
2.3. Combined Effect of DEHP and UV-B on Induction of Apoptosis-Related Proteins and MAPK Signaling
2.4. Combined Effect of DEHP and UV-B on NF-κB/p65 Activation, Nrf2 Antioxidant Signaling, and Proinflammatory Cytokine Production
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Treatment with DEHP
4.3. Exposure of HaCaT Cells to UV-B Radiation
4.4. Cell Viability
4.5. Western Blotting
4.6. ELISA
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latini, G. Monitoring phthalate exposure in humans. Clin. Chim. Acta 2005, 361, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Silva, M.J.; Reidy, J.A.; Hurtz, D., 3rd; Malek, N.A.; Needham, L.L.; Nakazawa, H.; Barr, D.B.; Calafat, A.M. Mono(2-ethyl- 5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate. Environ. Health Perspect. 2004, 112, 327–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.H.; Zheng, L.X.; Chen, B.H. Phthalate exposure and human semen quality in Shanghai: A cross-sectional study. Biomed. Environ. Sci. 2006, 19, 205–209. [Google Scholar]
- Johns, L.E.; Cooper, G.S.; Galizia, A.; Meeker, J.D. Exposure assessment issues in epidemiology studies of phthalates. Environ. Int. 2015, 85, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Brüning, T. Assessing exposure to phthalates—The human biomonitoring approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A review of biomonitoring of phthalate exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankidy, R.; Wiseman, S.; Ma, H.; Giesy, J.P. Biological impact of phthalates. Toxicol. Lett. 2013, 217, 50–58. [Google Scholar] [CrossRef]
- Guo, Y.; Kannan, K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ. Sci. Technol. 2013, 47, 14442–14449. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Kannan, K. Phthalates and parabens in personal care products from China: Concentrations and human exposure. Arch. Environ. Contam. Toxicol. 2014, 66, 113–119. [Google Scholar] [CrossRef]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Schettler, T. Human exposure to phthalates via consumer products. Int. J. Androl. 2006, 29, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.K.; Armstrong, C.A.; Ansel, J.C. The skin as an immune organ. West J. Med. 1994, 160, 146–152. [Google Scholar]
- Nguyen, A.V.; Soulika, A.M. The dynamics of the skin’s immune system. Int. J. Mol. Sci. 2019, 20, 1811. [Google Scholar] [CrossRef] [Green Version]
- Maverakis, E.; Miyamura, Y.; Bowen, M.P.; Correa, G.; Ono, Y.; Goodarzi, H. Light, including ultraviolet. J. Autoimmun. 2010, 34, J247–J257. [Google Scholar] [CrossRef] [Green Version]
- Valacchi, G.; Sticozzi, C.; Pecorelli, A.; Cervellati, F.; Cervellati, C.; Maioli, E. Cutaneous responses to environmental stressors. Ann. N. Y. Acad. Sci. 2012, 1271, 75–81. [Google Scholar] [CrossRef]
- Vernez, D.; Milon, A.; Vuilleumier, L.; Bulliard, J.L. Anatomical exposure patterns of skin to sunlight: Relative contributions of direct, diffuse and reflected ultraviolet radiation. Br. J. Dermatol. 2012, 167, 383–390. [Google Scholar] [CrossRef]
- Thieden, E.; Philipsen, P.A.; Sandby-Møller, J.; Heydenreich, J.; Wulf, H.C. Proportion of lifetime UV dose received by children, teenagers and adults based on time-stamped personal dosimetry. J. Investig. Dermatol. 2004, 123, 1147–1150. [Google Scholar] [CrossRef] [Green Version]
- Narbutt, J.; Lesiak, A.; Sysa-Jedrzejowska, A.; Wozniacka, A.; Cierniewska-Cieslak, A.; Boncela, J.; Jochymski, C.; Kozlowski, W.; Zalewska, A.; Skibinska, M.; et al. Repeated low-dose ultraviolet (UV) B exposures of humans induce limited photoprotection against the immune effects of erythemal UVB radiation. Br. J. Dermatol. 2007, 156, 539–547. [Google Scholar] [CrossRef]
- Ichihashi, M.; Ando, H. The maximal cumulative solar UVB dose allowed to maintain healthy and young skin and prevent premature photoaging. Exp. Dermatol. 2014, 23, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Munakata, N.; Watanabe, S. UV exposure of elementary school children in five Japanese cities. Photochem. Photobiol. 2005, 81, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.O.; Shin, K.R.; Jang, B.C.; Kim, Y.C. Action mechanism of anti-wrinkle effect of methanol extract in human dermal fibroblast and keratinocyte cell lines. Toxicol. Res. 2019, 36, 69–77. [Google Scholar] [CrossRef]
- Muthusamy, V.; Piva, T.J. A comparative study of UV-induced cell signalling pathways in human keratinocyte-derived cell lines. Arch. Dermatol. Res. 2013, 305, 817–833. [Google Scholar] [CrossRef]
- Crallan, R.A.; Ingham, E.; Routledge, M.N. Wavelength dependent responses of primary human keratinocytes to combined treatment with benzo[a]pyrene and UV light. Mutagenesis 2005, 20, 305–310. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, R.S.; Fu, W.; Xu, L.; Lam, P.K. Production of reactive oxygen species and 8-hydroxy-2′deoxyguanosine in KB cells co-exposed to benzo[a]pyrene and UV-A radiation. Chemosphere 2004, 55, 1303–1308. [Google Scholar] [CrossRef]
- Burke, K.E.; Wei, H. Synergistic damage by UVA radiation and pollutants. Toxicol. Ind. Health 2009, 25, 219–224. [Google Scholar] [CrossRef]
- Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016, 529, 326–335. [Google Scholar] [CrossRef]
- Oakes, S.A.; Papa, F.R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 2015, 10, 173–194. [Google Scholar] [CrossRef] [Green Version]
- Dufey, E.; Sepúlveda, D.; Rojas-Rivera, D.; Hetz, C. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am. J. Physiol. Cell Physiol. 2014, 307, C582–C594. [Google Scholar] [CrossRef]
- Peropadre, A.; Fernández, F.P.; Pérez, M.J.M.; Herrero, Ó.; Hazen, M.J. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure. Toxicol. In Vitro 2015, 30, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Brandner, J.M.; Zorn-Kruppa, M.; Yoshida, T.; Moll, I.; Beck, L.A.; De Benedetto, A. Epidermal tight junctions in health and disease. Tissue Barriers 2015, 3, e974451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandner, J.M. Importance of tight junctions in relation to skin barrier function. Curr. Probl. Dermatol. 2016, 49, 27–37. [Google Scholar]
- Bäsler, K.; Bergmann, S.; Heisig, M.; Naegel, A.; Zorn-Kruppa, M.; Brandner, J.M. The role of tight junctions in skin barrier function and dermal absorption. J. Control Release 2016, 242, 105–118. [Google Scholar] [CrossRef]
- Alhasaniah, A.; Sherratt, M.J.; O’Neil, C.A. The Impact of Ultraviolet Radiation on Barrier Function in Human Skin: Molecular Mechanisms and Topical Therapeutics. Curr. Med. Chem. 2018, 25, 5503–5511. [Google Scholar] [CrossRef]
- Marunaka, K.; Kobayashi, M.; Shu, S.; Matsunaga, T.; Ikari, A. Brazilian green propolis rescues oxidative stress-induced mislocalization of claudin-1 in human keratinocyte-derived HaCaT cells. Int. J. Mol. Sci. 2019, 20, 3869. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008, 454, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Takagi, Y.; Nishizaka, T.; Baek, J.H.; Kim, H.J.; Lee, S.H. Subclinical cutaneous inflammation remained after permeability barrier disruption enhances UV sensitivity by altering ER stress responses and topical pseudoceramide prevents them. Arch. Dermatol. Res. 2017, 309, 541–550. [Google Scholar] [CrossRef]
- Seo, S.H.; Kim, S.E.; Lee, S.E. ER stress induced by ER calcium depletion and UVB irradiation regulates tight junction barrier integrity in human keratinocytes. J. Dermatol. Sci. 2020, 98, 41–49. [Google Scholar] [CrossRef]
- Kim, H.; Nam, K.; Oh, S.; Son, S.; Jeon, D.; Gye, M.C.; Shin, I. Toxicological assessment of phthalates and their alternatives using human keratinocytes. Environ. Res. 2019, 175, 316–322. [Google Scholar] [CrossRef]
- Pan, T.L.; Wang, P.W.; Aljuffali, I.A.; Hung, Y.Y.; Lin, C.F.; Fang, J.Y. Dermal toxicity elicited by phthalates: Evaluation of skin absorption, immunohistology, and functional proteomics. Food Chem. Toxicol. 2014, 65, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Niwa, M.; Koong, A.C. Targeting the IRE1α-XBP1 branch of the unfolded protein response in human diseases. Semin. Cancer Biol. 2015, 33, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetz, C.; Martinon, F.; Rodriguez, D.; Glimcher, L.H. The unfolded protein response: Integrating stress signals through the stress sensor IRE1α. Physiol. Rev. 2011, 91, 1219–1243. [Google Scholar] [CrossRef] [PubMed]
- Gillardon, F.; Moll, I.; Meyer, M.; Michaelidis, T.M. Alterations in cell death and cell cycle progression in the UV-irradiated epidermis of bcl-2-deficient mice. Cell Death Differ. 1999, 6, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, C.; Sharma, H.; Garg, M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res. Rev. 2020, 62, 101127. [Google Scholar] [CrossRef]
- Van, L.A.; Garmyn, M.; Agostinis, P. Starting and propagating apoptotic signals in UVB irradiated keratinocytes. Photochem. Photobiol. Sci. 2009, 8, 299–308. [Google Scholar]
- Kumar, K.J.; Yang, H.L.; Tsai, Y.C.; Hung, P.C.; Chang, S.H.; Lo, H.W.; Shen, P.C.; Chen, S.C.; Wang, H.M.; Wang, S.Y.; et al. Lucidone protects human skin keratinocytes against free radical-induced oxidative damage and inflammation through the up-regulation of HO-1/Nrf2 antioxidant genes and down-regulation of NF-κB signaling pathway. Food Chem. Toxicol. 2013, 59, 55–66. [Google Scholar] [CrossRef]
- Mera, K.; Kawahara, K.; Tada, K.; Kawai, K.; Hashiguchi, T.; Maruyama, I.; Kanekura, T. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB. Biochem. Biophy. Res. Commun. 2010, 397, 350–354. [Google Scholar] [CrossRef]
- Park, K.H.; Park, D.R.; Kim, Y.W.; Nam, T.S.; Jang, K.Y.; Chung, H.T.; Kim, U.H. The essential role of Ca2+ signals in UVB-induced IL-1β secretion in keratinocytes. J. Investig. Dermatol. 2019, 139, 1362–1372. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, Y.J.; Kang, M.K.; Lee, E.J.; Kim, D.Y.; Oh, H.; Kang, Y.H. Oleuropein curtails pulmonary inflammation and tissue destruction in models of experimental asthma and emphysema. J. Agric. Food Chem. 2018, 66, 7643–7654. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.S.; Hwang, H.-J.; Choi, Y.-J. Combined Toxicological Effects of Di (2-Ethylhexyl) Phthalate and UV-B Irradiation through Endoplasmic Reticulum Stress—Tight Junction Disruption in Human HaCaT Keratinocytes. Int. J. Mol. Sci. 2022, 23, 7860. https://doi.org/10.3390/ijms23147860
Lee YS, Hwang H-J, Choi Y-J. Combined Toxicological Effects of Di (2-Ethylhexyl) Phthalate and UV-B Irradiation through Endoplasmic Reticulum Stress—Tight Junction Disruption in Human HaCaT Keratinocytes. International Journal of Molecular Sciences. 2022; 23(14):7860. https://doi.org/10.3390/ijms23147860
Chicago/Turabian StyleLee, Yong Sun, Hyo-Jeong Hwang, and Yean-Jung Choi. 2022. "Combined Toxicological Effects of Di (2-Ethylhexyl) Phthalate and UV-B Irradiation through Endoplasmic Reticulum Stress—Tight Junction Disruption in Human HaCaT Keratinocytes" International Journal of Molecular Sciences 23, no. 14: 7860. https://doi.org/10.3390/ijms23147860
APA StyleLee, Y. S., Hwang, H.-J., & Choi, Y.-J. (2022). Combined Toxicological Effects of Di (2-Ethylhexyl) Phthalate and UV-B Irradiation through Endoplasmic Reticulum Stress—Tight Junction Disruption in Human HaCaT Keratinocytes. International Journal of Molecular Sciences, 23(14), 7860. https://doi.org/10.3390/ijms23147860