C-Reactive Protein Velocity (CRPv) as a New Biomarker for the Early Detection of Acute Infection/Inflammation
Abstract
:1. Introduction
2. Defining Early CRP Dynamics
3. Using CRP Dynamics in the Diagnosis of Infectious Diseases
4. Using CRP Dynamics in Non-Infectious, Inflammatory Disorders
5. Future Directions for CRP Dynamics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Du Clos, T.W. Function of C-reactive protein. Ann. Med. 2000, 32, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, D.H.; Wyllie, D. Bacteraemia prediction in emergency medical admissions: Role of C reactive protein. J. Clin. Pathol. 2005, 58, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Chiu, I.; Huang, Y.; Su, C.; Kung, C.; Li, C.; Chen, C.; Tang, K.; Kuo, K. C-reactive protein concentration can help to identify bacteremia in children visiting the emergency department: A single medical center experience. Pediatr. Emerg. Care 2020, 36, 291–295. [Google Scholar] [CrossRef]
- Tsalik, E.; Jaggers, L.; Glickman, S.W.; Langley, R.J.; Velkinburgh, J.C.V.; Park, L.P.; Fowler, V.G.; Cairns, C.B.; Kingsmore, S.K.; Woods, C.W. Discriminative value of inflammatory biomarkers for suspected sepsis. J. Emerg. Med. 2012, 43, 97–106. Available online: https://www.sciencedirect.com/science/article/pii/S0736467911006494 (accessed on 28 November 2020). [CrossRef] [Green Version]
- Tokuda, Y.; Miyasato, H.; Stein, G.H. A simple prediction algorithm for bacteraemia in patients with acute febrile illness. Int. J. Med. 2005, 98, 813–820. [Google Scholar]
- Wang, G.; Wu, C.; Zhang, Q.; Wu, F.; Yu, B.; Lv, J.; Li, Y.; Li, T.; Zhang, S.; Wu, C.; et al. C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect. Dis. 2020, 7, ofaa153. [Google Scholar] [CrossRef]
- Póvoa, P.; Coelho, L.; Almeida, E.; Fernandes, A.; Mealha, R.; Moreira, P.; Sabino, H. Pilot study evaluating C-reactive protein levels in the assessment of response to treatment of severe bloodstream infection. Clin. Infect. Dis. 2005, 40, 1855–1857. Available online: https://academic.oup.com/cid/article-abstract/40/12/1855/315503 (accessed on 28 November 2020). [CrossRef] [Green Version]
- Cals, J.; Butler, C.; Hopstaken, R.; Hood, K.; Dinant, G. Effect of point of care testing for C reactive protein and training in communication skills on antibiotic use in lower respiratory tract infections: Cluster randomised trial. Br. Med. J. 2009, 338, 1112–1116. Available online: https://www.bmj.com/content/338/bmj.b1374.long (accessed on 28 November 2020). [CrossRef] [PubMed] [Green Version]
- Butler, C.C.; Gillespie, D.; White, P.; Bates, J.; Lower, R.; Thomas-Jones, E.; Wootton, M.; Hood, K.; Phillips, R.; Melbye, H.; et al. C-Reactive Protein Testing to Guide Antibiotic Prescribing for COPD Exacerbations. N. Engl. J. Med. 2019, 381, 111–120. [Google Scholar] [CrossRef]
- Povoa, P.; Teixeira-Pinto, A.; Carneiro, A. C-reactive protein as an early marker of sepsis resolution: Results from the Portuguese Community-acquired Sepsis Study (SACiUCI study). Crit. Care 2011, 15, 272. [Google Scholar] [CrossRef] [Green Version]
- Keshet, R.; Boursi, B.; Maoz, R.; Shnell, M.; Guzner-Gur, H. Diagnostic and prognostic significance of serum C-reactive protein levels in patients admitted to the Department of Medicine. Am. J. Med. Sci. 2009, 337, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.J.; Kushner, I. Serum C-reactive protein levels in disease. Ann. N. Y. Acad. Sci. 1982, 389, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.; Guo, J.; Li, J.; Su, L. Procalcitonin and C-reactive protein in early diagnosis of sepsis caused by either Gram-negative or Gram-positive bacteria. Ir. J. Med. Sci. 2017, 186, 207–212. Available online: https://link.springer.com/content/pdf/10.1007/s11845-016-1457-z.pdf (accessed on 28 November 2020). [CrossRef]
- Lee, C.; Hong, M.; Lee, N.; Chen, P.; Chang, C.; Ko, W. Pitfalls in using serum C-reactive protein to predict bacteremia in febrile adults in the ED. Am. J. Emerg. Med. 2012, 30, 562–569. Available online: https://www.sciencedirect.com/science/article/pii/S0735675711000775 (accessed on 28 November 2020). [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Paran, Y.; Yablecovitch, D.; Choshen, G.; Zeitlin, I.; Rogowski, O.; Ben-Ami, R.; Katzir, M.; Saranga, H.; Rosenzweig, T.; Justo, D.; et al. C-reactive protein velocity to distinguish febrile bacterial infections from non-bacterial febrile illnesses in the emergency department. Crit. Care 2009, 13, 50. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, A.; Karov, R.; Shenhar-Tsarfaty, S.; Paran, Y.; Zeltzer, D.; Shapira, I.; Trotzky, D.; Halpern, P.; Meilik, A.; Raykhshtat, E.; et al. Septic patients presenting with apparently normal C-reactive protein: A point of caution for the ER physician. Medicine 2019, 98, e13989. [Google Scholar] [CrossRef]
- Coster, D.; Wasserman, A.; Fisher, E.; Rogowski, O.; Zeltser, D.; Shapira, I.; Bernstein, D.; Meilik, A.; Raykhshtat, E.; Halpern, P.; et al. Using the kinetics of C-reactive protein response to improve the differential diagnosis between acute bacterial and viral infections. Infection 2020, 48, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Levinson, T.; Tamir, N.; Shenhar-Tsarfaty, S.; Paran, Y.; Zeltzer, D.; Shapira, I. The potential benefit of a second C-reactive protein measurement in patients with gram-negative bacteraemia presenting to the emergency medicine department. Biomarkers 2020, 25, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.; Coster, D.; Berliner, S.; Shapira, I.; Zeltser, D.; Rogowski, O.; Adler, A.; Halutz, O.; Levinson, T.; Ritter, O.; et al. C-reactive protein velocity discriminates between acute viral and bacterial infections in patients who present with relatively low CRP concentrations. BMC Infect. Dis. 2021, 21, 1210. [Google Scholar] [CrossRef]
- Meilik, R.; Ben-Assayag, H.; Meilik, A.; Berliner, S.; Zeltser, D.; Shapira, I.; Rogowski, O.; Goldiner, I.; Shenhar-Tsarfaty, S.; Wasserman, A.; et al. Sepsis Related Mortality Associated with an Inflammatory Burst in Patients Admitting to the Department of Internal Medicine with Apparently Normal C-Reactive Protein Concentration. J. Clin. Med. 2022, 11, 3151. [Google Scholar] [CrossRef]
- Feigin, E.; Levinson, T.; Berliner, S.; Zeltser, D.; Itzhak, S.; Shenhar-Tsarfaty, S.; Egoz, E.; Meilik, A.; Goldiner, I.; Rogowski, O.; et al. Patients who are admitted to the Department of Internal Medicine with a very low C-reactive protein concentration. Eur. J. Inflamm. 2021, 19, 1–7. [Google Scholar] [CrossRef]
- Justo, D.; Lachmi, S.; Saar, N.; Joffe, E.; Atzmony, L.; Mashav, N.; Henis, O.; Sade, B.; Chundadze, T.; Steinvil, A.; et al. C-reactive protein velocity following antibiotics in patients with chronic obstructive pulmonary disease exacerbation and community acquired pneumonia. Eur. J. Intern. Med. 2009, 20, 518–521. [Google Scholar] [CrossRef]
- Póvoa, P.; Martin-Loeches, I.; Ramirez, P.; Bos, L.D.; Esperatti, M.; Silvestre, J.; Gili, G.; Goma, G.; Berlanga, E.; Espasa, M.; et al. Biomarker kinetics in the prediction of VAP diagnosis: Results from the BioVAP study. Ann. Intensive Care 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Rouxinol-Dias, A.L.; Vieira, T.; Paiva, J.A.; Pereira, J.M. Usefulness of Early C-Reactive Protein Kinetics in Response and Prognostic Assessment in Infected Critically Ill Patients: An Observational Retrospective Study. Acta Med. Port. 2019, 32, 737–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Póvoa, P.; Garvik, O.S.; Vinholt, P.J.; Pedersen, C.; Jensen, T.G.; Kolmos, H.J.; Lassen, A.T.; Gradel, K.O. C-reactive protein and albumin kinetics after antibiotic therapy in community-acquired bloodstream infection. Int. J. Infect. Dis. 2020, 95, 50–58. [Google Scholar] [CrossRef]
- Nahum, E.; Livni, G.; Schiller, O.; Bitan, S.; Ashkenazi, S.; Dagan, O. Role of C-reactive protein velocity in the diagnosis of early bacterial infections in children after cardiac surgery. J. Intensive Care Med. 2012, 27, 191–196. [Google Scholar] [CrossRef]
- Holzknecht, M.; Tiller, C.; Reindl, M.; Lechner, I.; Troger, F.; Hosp, M.; Mayr, A.; Brenner, C.; Klug, G.; Bauer, A.; et al. C-reactive protein velocity predicts microvascular pathology after acute ST-elevation myocardial infarction. Int. J. Cardiol. 2021, 338, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Nian, M.; Lee, P.; Khaper, N.; Liu, P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 2004, 94, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- Milwidsky, A.; Ziv-Baran, T.; Letourneau-Shesaf, S.; Keren, G.; Taieb, P.; Berliner, S.; Shacham, Y. CRP velocity and short-term mortality in ST segment elevation myocardial infarction. Biomarkers 2017, 22, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Holzknecht, M.; Tiller, C.; Reindl, M.; Lechner, I.; Fink, P.; Lunger, P.; Mayr, A.; Henninger, B.; Brenner, C.; Klug, G.; et al. Association of C-Reactive Protein Velocity with Early Left Ventricular Dysfunction in Patients with First ST-Elevation Myocardial Infarction. J. Clin. Med. 2021, 10, 5494. [Google Scholar] [CrossRef]
- Banai, A.; Levit, D.; Morgan, S.; Loewenstein, I.; Merdler, I.; Hochstadt, A.; Szekely, Y.; Topilsky, Y.; Banai, S.; Shacham, Y. Association between C-Reactive Protein Velocity and Left Ventricular Function in Patients with ST-Elevated Myocardial Infarction. J. Clin. Med. 2022, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Ries, W.; Torzewski, J.; Heigl, F.; Pfluecke, C.; Kelle, S.; Darius, H.; Ince, H.; Mitzner, S.; Nordbeck, P.; Butter, C.; et al. C-Reactive Protein Apheresis as Anti-inflammatory Therapy in Acute Myocardial Infarction: Results of the CAMI-1 Study. Front. Cardiovasc. Med. 2021, 8, 591714. [Google Scholar] [CrossRef]
- Zahler, D.; Merdler, I.; Rozenfeld, K.; Shenberg, G.; Milwidsky, A.; Berliner, S.; Banai, S.; Arbel, Y.; Shacham, Y. C-Reactive Protein Velocity and the Risk of New Onset Atrial Fibrillation among ST Elevation Myocardial Infarction Patients. Isr. Med. Assoc. J. 2021, 23, 169–173. Available online: https://europepmc.org/article/med/33734630 (accessed on 14 June 2022). [PubMed]
- Zahler, D.; Merdler, I.; Rozenfeld, K.; Shenberg, G.; Milwidsky, A.; Berliner, S.; Banai, S.; Arbel, Y.; Shacham, Y. C-reactive protein velocity and the risk of acute kidney injury among ST elevation myocardial infarction patients undergoing primary percutaneous intervention. J. Nephrol. 2019, 32, 437–443. [Google Scholar] [CrossRef]
- Borges, I.; Carneiro, R.; Bergo, R.; Martins, L.; Colosimo, E.; Oliveira, C.; Saturnino, S.; Andrade, M.V.; Ravetti, C.; Nobre, V.; et al. Duration of antibiotic therapy in critically ill patients: A randomized controlled trial of a clinical and C-reactive protein-based protocol versus an evidence-based best practice strategy without biomarkers. Crit. Care 2020, 24, 281. [Google Scholar] [CrossRef]
- Von Dach, E.; Albrich, W.C.; Brunel, A.; Prendki, V.; Cuvelier, C.; Flury, D.; Gayet-Ageron, A.; Huttner, B.; Kohler, P.; Lemmenmeier, E.; et al. Effect of C-Reactive Protein-Guided Antibiotic Treatment Duration, 7-Day Treatment, or 14-Day Treatment on 30-Day Clinical Failure Rate in Patients with Uncomplicated Gram-Negative Bacteremia: A Randomized Clinical Trial. J. Am. Med. Assoc. 2020, 323, 2160–2169. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhou, W.; Yan, X.; Guo, T.; Wang, B.; Xia, H.; Ye, L.; Xiong, J.; Jiang, Z.; Liu, Y.; et al. Prognostic Value of C-Reactive Protein in Patients With Coronavirus 2019. Clin. Infect. Dis. 2020, 71, 2174–2179. [Google Scholar] [CrossRef] [PubMed]
Paran et al., 2009 | CRPv improved differentiation between bacterial and non-bacterial infections |
Nahum et al., 2012 | CRPv improves the diagnostic ability of postsurgical infections from non-infectious inflammation following cardiac surgery |
Povoa et al., 2016 | CRP kinetics differentiates between survivors and non-survivors of ventilator associated pneumonia |
Wasserman et al., 2019 | Septic patients with first low CRP had increased CRPv within 24 h of hospitalization |
Pereira et al., 2019 | No significant association between CRP kinetics and early or late mortality and antibiotic treatment duration in patients with pneumonia |
Coster et al., 2020 | CRPv increased the diagnostic accuracy between bacterial and viral infections in hospitalized patients |
Povoa et al., 2020 | CRP kinetics is useful in identifying patients with poor outcome after community acquired blood stream infection and predict short- and long-term mortality up to a year |
Bernstein et al., 2021 | CRPv is significantly higher in patients with acute bacterial infections compared to acute viral infection in patients presenting with first low CRP (≤31.9 mg/L) |
Milwidsky et al., 2017 | CRPv is an independent predictor of 30-day mortality in patients with STEMI |
Zahler et al., 2019 | CRPv is independently associated with acute kidney injury in STEMI patients |
Holzknecht et al., 2021 | CRPv is independently associated with early left ventricular dysfunction following STEMI |
Holzknecht et al., 2021 | CRPv is significantly associated with microvascular obstruction in STEMI patients |
Zahler et al., 2021 | CRPv is significantly higher in STEMI patients who develop new onset atrial fibrillation |
Banai et al., 2022 | CRPv is predictive for both systolic and diastolic dysfunction in STEMI patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levinson, T.; Wasserman, A. C-Reactive Protein Velocity (CRPv) as a New Biomarker for the Early Detection of Acute Infection/Inflammation. Int. J. Mol. Sci. 2022, 23, 8100. https://doi.org/10.3390/ijms23158100
Levinson T, Wasserman A. C-Reactive Protein Velocity (CRPv) as a New Biomarker for the Early Detection of Acute Infection/Inflammation. International Journal of Molecular Sciences. 2022; 23(15):8100. https://doi.org/10.3390/ijms23158100
Chicago/Turabian StyleLevinson, Tal, and Asaf Wasserman. 2022. "C-Reactive Protein Velocity (CRPv) as a New Biomarker for the Early Detection of Acute Infection/Inflammation" International Journal of Molecular Sciences 23, no. 15: 8100. https://doi.org/10.3390/ijms23158100
APA StyleLevinson, T., & Wasserman, A. (2022). C-Reactive Protein Velocity (CRPv) as a New Biomarker for the Early Detection of Acute Infection/Inflammation. International Journal of Molecular Sciences, 23(15), 8100. https://doi.org/10.3390/ijms23158100