Prognostic Role of sST2 in Acute Heart Failure and COVID-19 Infection—A Narrative Review on Pathophysiology and Clinical Prospective
Abstract
:1. Introduction
2. The Molecular Setting
2.1. IL-33/ST2L Axis Signaling
2.2. IL-33/sST2 Molecular Role
3. The Clinical Setting
3.1. Acute Heart Failure
3.2. Ischemic Heart Failure
3.3. Heart Disease and SARS-CoV-2 Infection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schmitz, J.; Owyang, A.; Oldham, E. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, E.O.; Shimpo, M.; Hurwitz, S.; Tominaga, S.-I.; Rouleau, J.-L.; Lee, R.T. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 2003, 107, 721–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotsiou, O.S.; Gourgoulianis, K.I.; Zarogiannis, S.G. IL-33/ST2 axis in organ fibrosis. Front Immunol. 2018, 9, 2432. [Google Scholar] [CrossRef] [Green Version]
- Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 2008, 358, 2148–2159. [Google Scholar] [CrossRef] [Green Version]
- Aboughdir, M.; Kirwin, T.; Khader, A.A.; Wang, B. Prognostic value of cardiovascular biomarkers in COVID-19: A review. Viruses 2020, 12, 527. [Google Scholar] [CrossRef] [PubMed]
- Griesenauer, B.; Paczesny, S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed]
- Millar, N.L.; O’Donnell, C.; McInnes, I.B.; Brint, E. Wounds that heal and wounds that don’t—The role of the IL-33/ST2 pathway in tissue repair and tumorigenesis. Semin. Cell Dev. Biol. 2017, 61, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Figal, D.A.; Januzzi, J.L. The biology of ST2: The international ST2 consensus panel. Am. J. Cardiol. 2015, 115, 3B–7B. [Google Scholar] [CrossRef]
- Moussion, C.; Ortega, N.; Girard, J.P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: A novel ‘Alarmin’? PLoS ONE 2008, 3, e3331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.; Mohs, A.; Thomas, M. The Dual Function Cytokine IL-33 Interacts with the Transcription Factor NF-κB To Dampen NF-κB–Stimulated Gene Transcription. J. Immunol. 2011, 187, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, Y.; Zhang, J. The prognostic value of plasma soluble ST2 in hospitalized Chinese patients with heart failure. PLoS ONE 2014, 9, e110976. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, C.; Mahmoud, A.; Keane, J. An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. Br. J. Cancer. 2016, 114, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, G.; Lipsky, B.P.; Smithgall, M.D. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine 2008, 42, 358–364. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer. Circulation 2017, 136, e137–e161. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Genis, A.; Zamora, E.; de Antonio, M. Soluble ST2 serum concentration and renal function in heart failure. J. Card. Fail. 2013, 19, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Miftode, R.S.; Constantinescu, D.; Cianga, C.M. A novel paradigm based on ST2 and its contribution towards a multimarker approach in the diagnosis and prognosis of heart failure: A prospective study during the pandemic storm. Life 2021, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Peacock, W.F.; Maisel, A.S. Measurement of the Interleukin Family Member ST2 in Patients with Acute Dyspnea. Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) Study. J. Am. Coll. Cardiol. 2007, 50, 607–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M.; Seo, Y.; Ishizua, T. Comparison of Soluble ST2, Pentraxin-3, Galectin-3, and High-Sensitivity Troponin T of Cardiovascular Outcomes in Patients with Acute Decompensated Heart Failure. J. Card. Fail. 2021, 27, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Emdin, M.; Aimo, A.; Vergaro, G. sST2 Predicts Outcome in Chronic Heart Failure Beyond NT–proBNP and High-Sensitivity Troponin T. J. Am. Coll. Cardiol. 2018, 72, 2309–2320. [Google Scholar] [CrossRef]
- Lassus, J.; Gayat, E.; Mueller, C. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int. J. Cardiol. 2013, 168, 2186–2194. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Wu, Y.; Grodin, J.L. Prognostic value of baseline and changes in circulating soluble ST2 levels and the effects of nesiritide in acute decompensated heart failure. JACC Hear Fail. 2016, 4, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Zhao, Z.; Li, L.; Xia, Y. Correlation between Levels of Serum Lipoprotein-Associated Phospholipase A2 and Soluble Suppression of Tumorigenicity 2 and Condition of Acute Heart Failure Patients and Their Predictive Value for Prognosis. J. Health Eng. 2021, 2021, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Filali, Y.; Kesäniemi, Y.A.; Ukkola, O. Soluble ST2, a biomarker of fibrosis, is associated with multiple risk factors, chronic diseases and total mortality in the OPERA study. Scand. J. Clin. Lab. Investig. 2021, 81, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Broch, K.; Ueland, T.; Nymo, S.H. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur. J. Heart Fail. 2012, 14, 268–277. [Google Scholar] [CrossRef]
- Aimo, A.; Januzzi, J.L.; Bayes-Genis, A. Clinical and Prognostic Significance of sST2 in Heart Failure: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 2193–2203. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, M.; Ma, S. Association of soluble suppression of tumorigenicity with no-reflow phenomenon and long-term prognosis in patients with non-ST-segment elevation acute coronary syndrome after percutaneous coronary intervention. J. Atheroscler. Thromb. 2021, 28, 1289–1297. [Google Scholar] [CrossRef]
- Hjort, M.; Eggers, K.M.; Lindhagen, L. Differences in biomarker concentrations and predictions of long-term outcome in patients with ST-elevation and non-ST-elevation myocardial infarction. Clin. Biochem. 2021, 98, 17–23. [Google Scholar] [CrossRef]
- Park, S.; Kim, I.C.; Kim, H.; Cho, Y.K.; Lee, C.H.; Hur, S.H. Ability of soluble ST2 to predict left ventricular remodeling in patients with acute coronary syndrome. Heart Vessel. 2022, 37, 173–183. [Google Scholar] [CrossRef]
- Zeng, Z.; Hong, X.Y.; Li, Y. Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark. Med. 2020, 14, 1619–1629. [Google Scholar] [CrossRef]
- Sánchez-Marteles, M.; Rubio-Gracia, J.; Peña-Fresneda, N. Early measurement of blood sST2 is a good predictor of death and poor outcomes in patients admitted for COVID-19 infection. J. Clin. Med. 2021, 10, 3534. [Google Scholar] [CrossRef]
- Zizzo, G.; Cohen, P.L. Imperfect storm: Is interleukin-33 the Achilles heel of COVID-19? Lancet Rheumatol. 2020, 2, e779–e790. [Google Scholar] [CrossRef]
- Chen, C.C.; Kobayashi, T.; Iijima, K.; Hsu, F.C.; Kita, H. IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs. J. Allergy Clin. Immunol. 2017, 140, 1351–1363.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luft, T.; Wendtner, C.M.; Kosely, F. EASIX for Prediction of Outcome in Hospitalized SARS-CoV-2 Infected Patients. Front. Immunol. 2021, 12, 634416. [Google Scholar] [CrossRef]
- Guo, T.; Fan, Y.; Chen, M. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020, 116, 1097–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, T.Y.; Redwood, S.; Prendergast, B.; Chen, M. Coronaviruses and the cardiovascular system: Acute and long-term implications. Eur. Heart J. 2020, 41, 1798–1800. [Google Scholar] [CrossRef] [Green Version]
- Gaggin, H.K.; Motiwala, S.; Bhardwaj, A.; Parks, K.A.; Januzzi, J.L. Soluble concentrations of the interleukin receptor family member ST2 and β-Blocker therapy in chronic heart failure. Circ. Hear Fail. 2013, 6, 1209–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.K.; Banerjee, S.; Umar, S. In the eye of the storm: The right ventricle in COVID-19. Pulm. Circ. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, J.; Szymonifka, J.; Lavender, Z. Relationship of soluble ST2 to pulmonary hypertension severity in patients undergoing cardiac resynchronization therapy. J. Thorac. Dis. 2019, 11, 5362–5371. [Google Scholar] [CrossRef]
Study | Sample | Disease | Follow-Up | sST2 Cut-Off Value or X-times of the Mean Value | Major Findings |
---|---|---|---|---|---|
Miftode et al., 2021 [16] | 120 | AHF | 1 month | 60 ng/mL | Prognostic for fatal events. OR 3.3. |
Jannuzzi et al., 2007 [17] | 593 | AHF | 1 year | 35 ng/mL | Prognostic for death. OR increases linearly with sST2 concentration. |
Yamammoto et al., 2021 [18] | 616 | AHF | 3 years | 17 pg/mL | Prognostic of CV death and HF rehospitalization. OR 1.422 per unit increase in the natural logarithm of the sST2. |
Edmin et al., 2018 [19] | 4268 | CHF | 2.4 years | 28 ng/mL | Prognostic for CV death and HF hospitalization. |
Lassus et al., 2013 [20] | 5306 | AHF | 30 days 1 year | 76 ng/mL | Risk stratification for death. |
Tang et al., 2016 [21] | 858 | AHF | 6 months | 71.2 ng/mL | Prognostic for increased death risk. OR 2.21. |
Zhang et al., 2021 [22] | 105 | AHF | 1 year | 2122.65 ng/mL | Prognostic for HF re-admission or death. Correlation between lipoprotein-associated phospholipase and sST2. |
Filali et al. [23] | 600 | MULTIPLE | 21 years | 23.7 ng/mL | Prognostic for total mortality. OR 9.9 per unit increase in the logarithm of the sST2. |
Aimo et al., 2017 [25] | 4835 | AHF | 13.5 months | 2 X | Prognostic for all-cause (OR 2.06) and cardiovascular (OR 2.20) death, HF hospitalization (OR 1.54). |
Zhang et al., 2021 [26] | 205 | NSTE_ ACS | 1 year | 34.2 ng/mL | Prognostic for MACE. OR 10.22. |
Hjort et al., 2021 [27] | 1082 | NSTEMI-STEMI | 6.6 years | 4.6 ng/mL (STEMI) 4.2 ng/mL (NSTEMI) | Prognostic for all-cause mortality (OR 1.36), MACE (OR 1.32). |
Park et al., 2021 [28] | 95 | ACS | 3 months | 32 ng/mL | Predictive for LV remodeling. OR 1.24. |
Zheng et al., 2022 [29] | 80 | COVID-19 | no | 147 pg/mL | Serum sST2 associated positively to CRP and negatively to lymphocytes T (CD4+, CD8+). OR 5.87 per unit increase in the logarithm of the sST2. |
Sanchez et al., 2021 [30] | 152 | COVID-19 | no | 58.9 ng/mL | Predictive for ICU admission or death |
Luft et al., 2021 [33] | 100 | COVID-19 | 2X of endothelial activation and stress index | sST2 positively associated with endothelial activation and stress index. OR 3.4 for worse outcomes. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, L.; Concistrè, A.; Suppa, M.; Galardo, G.; Rosa, A.; Bertazzoni, G.; Pugliese, F.; Letizia, C.; Petramala, L. Prognostic Role of sST2 in Acute Heart Failure and COVID-19 Infection—A Narrative Review on Pathophysiology and Clinical Prospective. Int. J. Mol. Sci. 2022, 23, 8230. https://doi.org/10.3390/ijms23158230
Marino L, Concistrè A, Suppa M, Galardo G, Rosa A, Bertazzoni G, Pugliese F, Letizia C, Petramala L. Prognostic Role of sST2 in Acute Heart Failure and COVID-19 Infection—A Narrative Review on Pathophysiology and Clinical Prospective. International Journal of Molecular Sciences. 2022; 23(15):8230. https://doi.org/10.3390/ijms23158230
Chicago/Turabian StyleMarino, Luca, Antonio Concistrè, Marianna Suppa, Gioacchino Galardo, Antonello Rosa, Giuliano Bertazzoni, Francesco Pugliese, Claudio Letizia, and Luigi Petramala. 2022. "Prognostic Role of sST2 in Acute Heart Failure and COVID-19 Infection—A Narrative Review on Pathophysiology and Clinical Prospective" International Journal of Molecular Sciences 23, no. 15: 8230. https://doi.org/10.3390/ijms23158230
APA StyleMarino, L., Concistrè, A., Suppa, M., Galardo, G., Rosa, A., Bertazzoni, G., Pugliese, F., Letizia, C., & Petramala, L. (2022). Prognostic Role of sST2 in Acute Heart Failure and COVID-19 Infection—A Narrative Review on Pathophysiology and Clinical Prospective. International Journal of Molecular Sciences, 23(15), 8230. https://doi.org/10.3390/ijms23158230