Tailoring the Structure of Cell Penetrating DNA and RNA Binding Nucleopeptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis
2.2. Conformational Studies and Nucleic Acid Binding Properties of Nucleopeptides
2.3. Cell Penetration Study
3. Materials and Methods
3.1. Materials and Instruments
3.2. Circular Dicroism Procedures
3.3. Synthesis of Nucleopeptides 16–20, 31–33
3.4. Synthesis of Nucleopeptides 34–35
3.5. Cleavage, Purification and Characterization
3.6. Cellular and Nuclear Uptake Procedures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.; Ren, J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem. Commun. 2010, 46, 7283–7294. [Google Scholar] [CrossRef] [PubMed]
- Belmont, P.; Constant, J.F.; Demeunynck, M. Nucleic acid conformation diversity: From structure to function and regulation. Chem. Soc. Rev. 2001, 30, 70–81. [Google Scholar] [CrossRef]
- Feinberg, A.P. Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447, 433–440. [Google Scholar] [CrossRef]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef]
- Lundin, K.E.; Gissberg, O.; Smith, C.I.E. Oligonucleotide Therapies: The Past and the Present. Hum. Gene Ther. 2015, 26, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Wan, W.B.; Seth, P.P. The Medicinal Chemistry of Therapeutic Oligonucleotides. J. Med. Chem. 2016, 59, 9645–9667. [Google Scholar] [CrossRef]
- Upadhya, A.; Sangave, P.C. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. J. Pept. Sci. 2016, 22, 647–659. [Google Scholar] [CrossRef]
- Wilson, C.; Keefe, A.D. Building oligonucleotide therapeutics using non-natural chemistries. Curr. Opin. Chem. Biol. 2006, 10, 607–614. [Google Scholar] [CrossRef]
- Deleavey, G.F.; Damha, M.J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 2012, 19, 237–954. [Google Scholar] [CrossRef] [Green Version]
- Durso, M.; Gaglione, M.; Piras, L.; Mercurio, M.E.; Terreri, S.; Olivieri, M.; Marinelli, L.; Novellino, E.; Incoronato, M.; Grieco, P.; et al. Chemical modifications in the seed region of miRNAs 221/222 increase the silencing performances in gastrointestinal stromal tumor cells. Eur. J. Med. Chem. 2016, 111, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016, 44, 6518–6548. [Google Scholar] [CrossRef]
- de Koning, H.; Pandit, U.K. Unconventional nucleotide analogues. VI. Synthesis of Purinyl- and Pyrimidinyl-Peptides. Recl. Trav. Chim. Pays-Bas 1971, 91, 1069–1080. [Google Scholar] [CrossRef]
- Buttrey, J.D.; Jones, A.S.; Walker, R.T. Synthetic analogues of polynucleotides—XIII: The resolution of dl-β-(thymin-1-yl)alanine and polymerisation of the β-(thymin-1-yl) alanines. Tetrahedron 1975, 31, 73–75. [Google Scholar] [CrossRef]
- Szafranski, P.; Bagdasarian, M. Possible Role of Nucleopeptides in Protein Biosynthesis. Nature 1961, 190, 719–720. [Google Scholar] [CrossRef]
- Lidak, M.Y.; Paégle, R.A.; Straume, V.É.; Shnore, D.É.; Shvachkin, Y.P. Peptides of DL-willardiine. homo- and heterodipeptides from willardiine. Chem. Heterocycl. Compd. 1970, 6, 934–935. [Google Scholar] [CrossRef]
- Geotti-Bianchini, P.; Beyrath, J.; Chaloin, O.; Formaggio, F.; Bianco, A. Design and synthesis of intrinsically cell-penetrating nucleopeptides. Org. Biomol. Chem. 2008, 6, 3661–3663. [Google Scholar] [CrossRef]
- Mercurio, M.E.; Tomassi, S.; Gaglione, M.; Russo, R.; Chambery, A.; Lama, S.; Stiuso, P.; Cosconati, S.; Novellino, E.; Di Maro, S.; et al. Switchable Protecting Strategy for Solid Phase Synthesis of DNA and RNA Interacting Nucleopeptides. J. Org. Chem. 2016, 81, 11612–11625. [Google Scholar] [CrossRef]
- Tomassi, S.; Ieranò, C.; Mercurio, M.E.; Nigro, E.; Daniele, A.; Russo, R.; Chambery, A.; Baglivo, I.; Pedone, P.V.; Rea, G.; et al. Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg. Med. Chem. 2018, 26, 2539–2550. [Google Scholar] [CrossRef]
- Tomassi, S.; Montalban, F.F.; Russo, R.; Novellino, E.; Messere, A.; Di Maro, S. Investigation of the Stereochemical-Dependent DNA and RNA Binding of Arginine-Based Nucleopeptides. Symmetry 2019, 11, 567. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Kuang, Y.; Lin, H.C.; Gao, Y.; Shi, J.; Xu, B. Supramolecular nanofibers and hydrogels of nucleopeptides. Angew. Chem. Int. Ed. Engl. 2011, 50, 9365–9369. [Google Scholar] [CrossRef]
- Yuan, D.; Du, X.; Shi, J.; Zhou, N.J.; Xu, B. Mixing Biomimetic Heterodimers of Nucleopeptides to Generate Biocompatible and Biostable Supramolecular Hydrogels. Angew. Chem. Int. Ed. 2015, 54, 5705–5708. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, Z.; Qin, Y.; Wang, J.; Xu, B. Nucleopeptide Assemblies Selectively Sequester ATP in Cancer Cells to Increase the Efficacy of Doxorubicin. Angew. Chem. Int. Ed. Engl. 2018, 57, 4931–4935. [Google Scholar] [CrossRef] [PubMed]
- Diederichsen, U.; Schmitt, H.W. Self-pairing PNA with alternating alanyl/homoalanyl backbone. Tetrahedron Lett. 1996, 37, 475–478. [Google Scholar] [CrossRef]
- Diederichsen, U.; Weicherding, D.; Diezemann, N. Side chain homologation of alanyl peptide nucleic acids: Pairing selectivity and stacking. Org. Biomol. Chem. 2005, 3, 1058–1066. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, X.; Zhang, W.; Guo, S.; Jin, F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 2014, 174, 126–136. [Google Scholar] [CrossRef]
- Merlino, F.; Tomassi, S.; Yousif, A.M.; Messere, A.; Marinelli, L.; Grieco, P.; Novellino, E.; Cosconati, S.; Di Maro, S. Boosting Fmoc Solid-Phase Peptide Synthesis by Ultrasonication. Org. Lett. 2019, 21, 6378–6382. [Google Scholar] [CrossRef] [PubMed]
- Khadake, J.R.; Rao, M.R. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Biochemistry 1997, 36, 1041–1051. [Google Scholar] [CrossRef]
- Kirillova, Y.; Boyarskaya, N.; Dezhenkov, A.; Tankevich, M.; Prokhorov, I.; Varizhuk, A.; Eremin, S.; Esipov, D.; Smirnov, D.; Pozmogova, G. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding. PLoS ONE 2015, 10, e0140468–e0140487. [Google Scholar] [CrossRef]
- Bae, Y.M.; Kim, M.H.; Yu, G.S.; Um, B.H.; Park, H.K.; Lee, H.I.; Lee, K.T.; Suh, Y.D.; Choi, J.S. Enhanced splicing correction effect by an oligo-aspartic acid–PNA conjugate and cationic carrier complexes. J. Control. Release 2014, 175, 54–62. [Google Scholar] [CrossRef]
- Avitabile, C.; Moggio, L.; Malgieri, G.; Capasso, D.; Gaetano, S.D.; Saviano, M.; Pedone, C.; Romanelli, A. γ sulphate PNA (PNA S): Highly Selective DNA Binding Molecule Showing Promising Antigene Activity. PLoS ONE 2012, 7, e35774–e35784. [Google Scholar] [CrossRef] [Green Version]
- Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 2001, 276, 5836–5840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragin, A.D.; Morgan, R.A.; Chmielewski, J. Cellular import mediated by nuclear localization signal Peptide sequences. Chem. Biol. 2002, 9, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Mueller, J.; Kretzschmar, I.; Volkmer, R.; Boisguerin, P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug. Chem. 2008, 19, 2363–2374. [Google Scholar] [CrossRef]
Entry | Sequence | PolydA (Tm) | PolyA (Tm) |
---|---|---|---|
T6 | 3′-TTTTTT-5′ | 25 | 35 |
16 | Ac-Lys(T)-Asp-Lys(T)-Asp-Lys(T)-Asp-Lys(T)-Asp-Lys(T)-Asp-Lys(T)-Asp-CONH2 | 35 | 42 |
17 | Ac-Lys(T)-Glu-Lys(T)-Glu-Lys(T)-Glu-Lys(T)-Glu-Lys(T)-Glu-Lys(T)-Glu-CONH2 | 36 | 35 |
18 | Ac-Lys(T)-Lys-Lys(T)-Lys-Lys(T)-Lys-Lys(T)-Lys-Lys(T)-Lys-Lys(T)-Lys-CONH2 | 26 | 35 |
19 | Ac-Lys(T)-His-Lys(T)-His-Lys(T)-His-Lys(T)-His-Lys(T)-His-Lys(T)-His-CONH2 | 37 | 25 |
20 | Ac-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-CONH2 | 36 | 45 |
Entry | Sequence | PolydA (Tm) | PolyA (Tm) |
---|---|---|---|
T6 | 3′-TTTTTT-5′ | 25 | 35 |
31 | Ac-Dap(T)-Arg-Dap(T)-Arg-Dap(T)-Arg-Dap(T)-Arg-Dap(T)-Arg-Dap(T)-Arg-CONH2 | <10 | 30 |
32 | Ac-Dab(T)-Arg-Dab(T)-Arg-Dab(T)-Arg-Dab(T)-Arg-Dab(T)-Arg-Dab(T)-Arg-CONH2 | 59 | 54 |
33 | Ac-Orn(T)-Arg-Orn(T)-Arg-Orn(T)-Arg-Orn(T)-Arg-Orn(T)-Arg-Orn(T)-Arg-CONH2 | 40 | 60 |
20 | Ac-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-Lys(T)-Arg-CONH2 | 36 | 45 |
Entry | Yield (%) | tR (min) | Purity | Mass Calcd | Mass Found |
---|---|---|---|---|---|
16 | 56% | 9.93 | ≥ 95% | 2515.43 | 2538.11 * 2513.92 ** |
17 | 61% | 10.32 | ≥ 95% | 2599.58 | 2622.13 * 2598.01 ** |
18 | 72% | 8.76 | ≥ 95% | 2593.94 | 2594.17 *** |
19 | 68% | 9.27 | ≥ 95% | 2647.74 | 2648.11 *** |
20 | 79% | 9.29 | ≥ 95% | 2763.04 | 2762.45 *** |
31 | 69% | 8.68 | ≥ 95% | 2509.54 | 2510.14 *** |
32 | 71% | 9.12 | ≥ 95% | 2509.70 | 2594.42 *** |
33 | 77% | 9.47 | ≥ 95% | 2677.86 | 2678.52 *** |
34 | 60% | 11.71 | ≥ 95% | 3054.25 | 3054.71 *** |
35 | 63% | 9.40 | ≥ 95% | 3136.45 | 3137.77 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomassi, S.; Ieranò, C.; Del Bene, A.; D’Aniello, A.; Napolitano, M.; Rea, G.; Auletta, F.; Portella, L.; Capiluongo, A.; Mazzarella, V.; et al. Tailoring the Structure of Cell Penetrating DNA and RNA Binding Nucleopeptides. Int. J. Mol. Sci. 2022, 23, 8504. https://doi.org/10.3390/ijms23158504
Tomassi S, Ieranò C, Del Bene A, D’Aniello A, Napolitano M, Rea G, Auletta F, Portella L, Capiluongo A, Mazzarella V, et al. Tailoring the Structure of Cell Penetrating DNA and RNA Binding Nucleopeptides. International Journal of Molecular Sciences. 2022; 23(15):8504. https://doi.org/10.3390/ijms23158504
Chicago/Turabian StyleTomassi, Stefano, Caterina Ieranò, Alessandra Del Bene, Antonia D’Aniello, Maria Napolitano, Giuseppina Rea, Federica Auletta, Luigi Portella, Anna Capiluongo, Vincenzo Mazzarella, and et al. 2022. "Tailoring the Structure of Cell Penetrating DNA and RNA Binding Nucleopeptides" International Journal of Molecular Sciences 23, no. 15: 8504. https://doi.org/10.3390/ijms23158504
APA StyleTomassi, S., Ieranò, C., Del Bene, A., D’Aniello, A., Napolitano, M., Rea, G., Auletta, F., Portella, L., Capiluongo, A., Mazzarella, V., Russo, R., Chambery, A., Scala, S., Di Maro, S., & Messere, A. (2022). Tailoring the Structure of Cell Penetrating DNA and RNA Binding Nucleopeptides. International Journal of Molecular Sciences, 23(15), 8504. https://doi.org/10.3390/ijms23158504