Transcriptome Analysis Reveals Contrasting Plant Responses of Sorghum bicolor upon Colonization by Two Formae Speciales of Sporisorium reilianum
Abstract
:1. Introduction
2. Results
2.1. Illumina Sequencing of Sorghum Leaves Colonized by Two Different Formae Speciales of S. reilianum
2.2. Identification of Differentially Expressed Genes in Sorghum
2.3. GO-Term Analysis Reveals Fundamentally Different Strategies of Plant Response to Each Forma Specialis of S. reilianum
2.4. MapMan Analysis of SRS- and SRZ-Upregulated Sorghum Genes
2.5. SRS Stimulates Glycolysis and Fatty Acid, Phytosterol and Cuticle Biosynthesis
2.6. SRZ Induces Membrane Reorganization through Exchange of Phospholipids by Cell-Death-Inducing Sphingolipids, as Well as Generation of Defense Terpenes and Phytoalexins
3. Discussion
4. Materials and Methods
4.1. Plant Lines, Fungal Isolates and Growth Conditions
4.2. RNA Isolation and RNAseq
4.3. Read Processing, Mapping and Expression Analysis
4.4. Analyzing Differential Gene Expression Using MapMan and GO Enrichment
4.5. Gene Expression Validation by Real-Time PCR
4.6. Accession Numbers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, S.; Islam, N.; Rahman, M.; Mostofa, M.G.; Khan, A.R. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. J. Agri. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Halisky, P. Head smut of sorghum, sudangrass, and corn, caused by Sphacelotheca reiliana (Kühn) Clint. Hilgardia 1963, 34, 287–304. [Google Scholar] [CrossRef]
- Matyac, C.A.; Kommedahl, T. Survival of teliospores of Sphacelotheca reiliana in soil. Phytopathology 1986, 76, 487–490. [Google Scholar] [CrossRef]
- Schirawski, J.; Heinze, B.; Wagenknecht, M.; Kahmann, R. Mating type loci of Sporisorium reilianum: Novel pattern with three a and multiple b specificities. Eukaryot. Cell 2005, 4, 1317–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poloni, A.; Schirawski, J. Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum. Mol. Plant Pathol. 2016, 17, 741–754. [Google Scholar] [CrossRef]
- Sohaily, A.L.; Mankin, H.J. Reaction of corn and sorghum to corn and sudan grass head smuts. Plant Dis. Rep. 1960, 40, 113–114. [Google Scholar]
- Zuther, K.; Kahnt, J.; Utermark, J.; Imkampe, J.; Uhse, S.; Schirawski, J. Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor. Mol. Plant Microbe Interact. 2012, 25, 1230–1237. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [Google Scholar] [CrossRef]
- Chinchilla, D.; Bauer, Z.; Regenass, M.; Boller, T.; Felix, G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 2006, 18, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Miya, A.; Albert, P.; Shinya, T.; Desaki, Y.; Ichimura, K.; Shirasu, K.; Narusaka, Y.; Kawakami, N.; Kaku, H.; Shibuya, N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 19613–19618. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.; Zipfel, C. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 2012, 15, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Underwood, W. The plant cell wall: A dynamic barrier against pathogen invasion. Front. Plant Sci. 2012, 3, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loon, L.C.; Rep, M.; Pieterse, C.M. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipfel, C.; Robatzek, S.; Navarro, L.; Oakeley, E.J.; Jones, J.D.; Felix, G.; Boller, T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 2004, 428, 764–767. [Google Scholar] [CrossRef]
- Pasini, L.; Bergonti, M.; Fracasso, A.; Marocco, A.; Amaducci, S. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. J. Plant Physiol. 2014, 171, 537–548. [Google Scholar] [CrossRef]
- Buchanan, C.D.; Lim, S.; Salzman, R.A.; Kagiampakis, I.; Morishige, D.T.; Weers, B.D.; Klein, R.R.; Pratt, L.H.; Cordonnier-Pratt, M.M.; Klein, P.E.; et al. Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol. Biol. 2005, 58, 699–720. [Google Scholar] [CrossRef]
- Salzman, R.A.; Brady, J.A.; Finlayson, S.A.; Buchanan, C.D.; Summer, E.J.; Sun, F.; Klein, P.E.; Klein, R.R.; Pratt, L.H.; Cordonnier-Pratt, M.M.; et al. Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol. 2005, 138, 352–368. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Huang, Y.; Ayoubi, P. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 2006, 223, 932–947. [Google Scholar] [CrossRef]
- Zhu-Salzman, K.; Salzman, R.A.; Ahn, J.E.; Koiwa, H. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 2004, 134, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Cooper, E.A.; Brenton, Z.W.; Flinn, B.S.; Jenkins, J.; Shu, S.; Flowers, D.; Luo, F.; Wang, Y.; Xia, P.; Barry, K.; et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC Genom. 2019, 20, 420. [Google Scholar] [CrossRef] [Green Version]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugas, D.V.; Monaco, M.K.; Olsen, A.; Klein, R.R.; Kumari, S.; Ware, D.; Klein, P.E. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom. 2011, 12, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, R.; Burow, G.; Hayes, C.; Emendack, Y.; Xin, Z.G.; Burke, J. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. BMC Genom. 2015, 16, 1040. [Google Scholar] [CrossRef] [Green Version]
- Gelli, M.; Duo, Y.; Konda, A.R.; Zhang, C.; Holding, D.; Dweikat, I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genom. 2014, 15, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doring, F.; Streubel, M.; Brautigam, A.; Gowik, U. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. J. Exp. Bot. 2016, 67, 3053–3064. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.Y.; Hu, W.J.; Luo, H.; Xia, Y.; Zhao, Y.; Wang, L.D.; Zhang, L.M.; Luo, J.C.; Jing, H.C. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Plant Mol. Biol. 2016, 92, 555–580. [Google Scholar] [CrossRef]
- Mizuno, H.; Kawahigashi, H.; Kawahara, Y.; Kanamori, H.; Ogata, J.; Minami, H.; Itoh, T.; Matsumoto, T. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolaris sorghicola interaction. BMC Plant Biol. 2012, 12, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazawa, T.; Kawahigashi, H.; Matsumoto, T.; Mizuno, H. Simultaneous transcriptome analysis of sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly. PLoS ONE 2013, 8, e62460. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, S.E.; Hamilton, M.; Jacobi, J.L.; Ngam, P.; Devitt, N.; Schilkey, F.; Ben-Hur, A.; Reddy, A.S.N. A survey of the sorghum transcriptome using single-molecule long reads. Nat. Commun. 2016, 7, 11706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varoquaux, N.; Cole, B.; Gao, C.; Pierroz, G.; Baker, C.R.; Patel, D.; Madera, M.; Jeffers, T.; Hollingsworth, J.; Sievert, J.; et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl. Acad. Sci. USA 2019, 116, 27124–27132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jiang, F.; Shen, Y.; Zhan, Q.; Bai, B.; Chen, W.; Chi, Y. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol. 2019, 19, 306. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [Green Version]
- McCormick, R.F.; Truong, S.K.; Sreedasyam, A.; Jenkins, J.; Shu, S.; Sims, D.; Kennedy, M.; Amirebrahimi, M.; Weers, B.D.; McKinley, B.; et al. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018, 93, 338–354. [Google Scholar] [CrossRef] [Green Version]
- Thimm, O.; Blasing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Kruger, P.; Selbig, J.; Muller, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Henstrand, J.M.; Handa, A.K.; Herrmann, K.M.; Weller, S.C. Impaired wound induction of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase and altered stem development in transgenic potato plants expressing a DAHP synthase antisense construct. Plant Physiol. 1995, 108, 1413–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proels, R.K.; Hückelhoven, R. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol. Plant Pathol. 2014, 15, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Wang, H.; Hemmerlin, A.; Nagegowda, D.A.; Bach, T.J.; Wang, M.; Chye, M.L. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Plant Cell Rep. 2014, 33, 1005–1022. [Google Scholar] [CrossRef] [PubMed]
- Bourdenx, B.; Bernard, A.; Domergue, F.; Pascal, S.; Leger, A.; Roby, D.; Pervent, M.; Vile, D.; Haslam, R.P.; Napier, J.A.; et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol. 2011, 156, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Han, G.S.; Dietrich, C.R.; Dunn, T.M.; Cahoon, E.B. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 2006, 18, 3576–3593. [Google Scholar] [CrossRef] [Green Version]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. Adv. Exp. Med. Biol. 2010, 688, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Berkey, R.; Bendigeri, D.; Xiao, S.Y. Sphingolipids and plant defense/disease: The “death” connection and beyond. Front. Plant Sci. 2012, 3, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poloni, A.; Schirawski, J. Red card for pathogens: Phytoalexins in sorghum and maize. Molecules 2014, 19, 9114–9133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, T.T.; Linthorst, H.J.; Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 2011, 10, 397–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone Ferreyra, M.L.; Emiliani, J.; Rodriguez, E.J.; Campos-Bermudez, V.A.; Grotewold, E.; Casati, P. The identification of maize and Arabidopsis type I FLAVONE SYNTHASEs links flavones with hormones and biotic interactions. Plant Physiol. 2015, 169, 1090–1107. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, A.; Yabuta, Y.; Shigeoka, S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008, 147, 1251–1263. [Google Scholar] [CrossRef] [Green Version]
- Walder, F.; Brule, D.; Koegel, S.; Wiemken, A.; Boller, T.; Courty, P.E. Plant phosphorus acquisition in a common mycorrhizal network: Regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol. 2015, 205, 1632–1645. [Google Scholar] [CrossRef]
- Seifi, H.S.; Van Bockhaven, J.; Angenon, G.; Hofte, M. Glutamate metabolism in plant disease and defense: Friend or foe? Mol. Plant Microbe Interact. 2013, 26, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Kariola, T.; Brader, G.; Li, J.; Palva, E.T. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 2005, 17, 282–294. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, K.; Suzuki, K.; Nakanishi, H.; Yamaguchi, H.; Nishizawa, N.K.; Mori, S. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 1999, 119, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Greenshields, D.L.; Liu, G.; Wei, Y. Roles of iron in plant defence and fungal virulence. Plant Signal. Behav. 2007, 2, 300–302. [Google Scholar] [CrossRef] [Green Version]
- Suleman, M.; Ma, M.; Ge, G.; Hua, D.; Li, H. The role of alternative oxidase in plant hypersensitive response. Plant Biol. 2021, 23, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Doehlemann, G.; Wahl, R.; Horst, R.J.; Voll, L.M.; Usadel, B.; Poree, F.; Stitt, M.; Pons-Kuhnemann, J.; Sonnewald, U.; Kahmann, R.; et al. Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 2008, 56, 181–195. [Google Scholar] [CrossRef]
- Lievens, L.; Pollier, J.; Goossens, A.; Beyaert, R.; Staal, J. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 2017, 8, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.J.; Shimono, M.; Sugano, S.; Kojima, M.; Yazawa, K.; Yoshida, R.; Inoue, H.; Hayashi, N.; Sakakibara, H.; Takatsuji, H. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol. Plant Microbe Interact. 2010, 23, 791–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, K.A.; Gotfredsen, C.H.; Buch-Pedersen, M.J.; Ammitzbøll, H.; Mattsson, O.; Duus, J.Ø.; Nicholson, R.L. Inclusions of flavonoid 3-deoxyanthocyanidins in Sorghum bicolor self-organize into spherical structures. Physiol. Mol. Plant Pathol. 2004, 65, 187–196. [Google Scholar] [CrossRef]
- Fu, F.; Girma, G.; Mengiste, T. Global mRNA and microRNA expression dynamics in response to anthracnose infection in sorghum. BMC Genom. 2020, 21, 760. [Google Scholar] [CrossRef]
- Hartl, F.U.; Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 2009, 16, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Howell, S.H. The unfolded protein response supports plant development and defense as well as responses to abiotic stress. Front. Plant Sci. 2017, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Breeze, E.; Vale, V.; McLellan, H.; Godiard, L.; Grant, M.; Frigerio, L. The plant endoplasmic reticulum is both receptive and responsive to pathogen effectors. bioRxiv 2020. [Google Scholar] [CrossRef]
- Bernard, A.; Domergue, F.; Pascal, S.; Jetter, R.; Renne, C.; Faure, J.-D.; Haslam, R.P.; Napier, J.A.; Lessire, R.; Joubès, J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 2012, 24, 3106–3118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaker, P.D.; Palhares, A.C.; Taniguti, L.M.; Peters, L.P.; Creste, S.; Aitken, K.S.; Van Sluys, M.A.; Kitajima, J.P.; Vieira, M.L.; Monteiro-Vitorello, C.B. RNAseq transcriptional profiling following whip development in sugarcane smut disease. PLoS ONE 2016, 11, e0162237. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.; Su, Y.; Guo, J.; Wu, Q.; Xu, L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS ONE 2014, 9, e106476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Ariza, J.; Campo, S.; Rufat, M.; Estopa, M.; Messeguer, J.; San Segundo, B.; Coca, M. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol. Plant Microbe Interact. 2007, 20, 832–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, T.; Kaku, H.; Honkura, R.; Nakamura, S.; Ochiai, H.; Sasaki, T.; Ohashi, Y. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol. Plant Microbe Interact. 2002, 15, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Jach, G.; Gornhardt, B.; Mundy, J.; Logemann, J.; Pinsdorf, E.; Leah, R.; Schell, J.; Maas, C. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 1995, 8, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Maher, E.A.; Masoud, S.; Dixon, R.A.; Lamb, C.J. Enhanced protection against fungal attack by constitutive co–expression of chitinase and glucanase genes in transgenic tobacco. Nat. Biotechnol. 1994, 12, 807–812. [Google Scholar] [CrossRef]
- Schirawski, J.; Mannhaupt, G.; Munch, K.; Brefort, T.; Schipper, K.; Doehlemann, G.; Di Stasio, M.; Rossel, N.; Mendoza-Mendoza, A.; Pester, D.; et al. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 2010, 330, 1546–1548. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef]
- Reddy, D.S.; Bhatnagar-Mathur, P.; Reddy, P.S.; Sri Cindhuri, K.; Sivaji Ganesh, A.; Sharma, K.K. Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild Cicer species. PLoS ONE 2016, 11, e0148451. [Google Scholar] [CrossRef] [Green Version]
Sample | Sb-SRS | Sb-SRZ | Sb-H2O | |||
---|---|---|---|---|---|---|
Number of Reads (%) | Number of Reads (%) | Number of Reads (%) | ||||
All | 44.513.277 | (100.0) a | 46.807.963 | (100.0) a | 88.930.659 | (100.0) a |
Mapped | 42.365.430 | (95.2) a | 43.347.104 | (92.6) a | 85.460.918 | (96.1) a |
Non-unique | 2.857.609 | (6.7) b | 1.953.455 | (4.5) b | 4.306.028 | (5.0) b |
Mapped > 20× | 6.871 | (0.2) c | 7.876 | (0.4) c | 17.373 | (0.4) c |
Unique | 39.507.871 | (93.3) b | 41.393.649 | (95.5) b | 81.154.890 | (95.0) b |
Log2 (Fold Change) in the Comparison | ||||
---|---|---|---|---|
Transcript ID | Gene ID | Possible Function | Sb-SRZ vs. Sb-H2O | Sb-SRS vs. Sb-H2O |
eer97763 | SORBI_3002G423600 | Galactinol synthase | 3.83 | |
oqu88584 | SORBI_3002G057900 | H-type thioredoxin | 2.78 | |
eer94707 | SORBI_3001G342600 | Nucleoredoxin | 2.47 | |
kxg30341 | SORBI_3004G166700 | Acid beta-fructofuranosidase (CWIN) | 3.67 | 4.02 |
oqu75996 | SORBI_3010G072300 | Sucrose synthase | 2.56 | |
kxg36452 | SORBI_3002G334500 | D-glucan synthase (CSLF) | 3.65 | |
kxg33870 | SORBI_3003G384700 | Pectin acetylesterase | 3.33 | |
ees17845 | SORBI_3009G071800 | ATP-dependent phosphofructokinase | 4.35 | |
kxg33170 | SORBI_3003G265100 | Phosphatidate phosphatase (LPP-alpha) | 3.96 | |
ees14083 | SORBI_3007G168000 | Chlorophyllase (CLH) | 2.81 | |
eer92546 | SORBI_3001G434900 | Catalytic subunit 1 of serine C-palmitoyltransferase complex | 3.56 | |
eer98437 | SORBI_3002G122700 | Small regulatory subunit of serine C-palmitoyltransferase complex | 3.5 | |
ees06132 | SORBI_3004G008300 | Sphingobase hydroxylase | 16.14 | |
kxg23697 | SORBI_3008G129000 | Inositol phosphorylceramide synthase (IPCS) | 3.74 | |
oqu92667 | SORBI_3001G386400 | Active component ALA of ALA-ALIS flippase complex | 3.9 | |
ees17516 | SORBI_3009G000200 | Active component ALA of ALA-ALIS flippase complex | 4.74 | |
ees14950 | SORBI_3007G119800 | Fatty acid transporter (ABCA) | 3.14 | |
oqu87824 | SORBI_3003G348700 | Monoacylglycerol lipase | 6.91 | |
eer89541 | SORBI_3010G104600 | Caleosin | 5.88 | |
ees18897 | SORBI_3009G014600 | Phospholipase A1 (PC-PLA1) | 7.28 | |
oqu88219 | SORBI_3003G432600 | Phospholipase A1 (PC-PLA1) | 6.2 | |
ees10106 | SORBI_3005G186100 | Phospholipase A2 (pPLA2-II) | 5.8 | |
ees08840 | SORBI_3005G186200 | Phospholipase A2 (pPLA2-II) | 4.11 | |
kxg39221 | SORBI_3001G349800 | Phospholipase D (PLD-alpha) | 4.83 | |
ees10287 | SORBI_3005G222500 | Phospholipase D (PLD-alpha) | 15.79 | |
eer94131 | SORBI_3001G230100 | 3-Ketoacyl-CoA thiolase (KAT) | 3.27 | |
ees14522 | SORBI_3007G035700 | NAD(P)H dehydrogenase (NDB) | 2.9 | |
ees12783 | SORBI_3006G203000 | Alternative oxidase (Aox) | 5.82 | |
ees12781 | SORBI_3006G202500 | Alternative oxidase (Aox) | 3.68 | |
ees10479 | SORBI_3006G026900 | Phosphate transporter (PHT1) | 4.28 | |
kxg34441 | SORBI_3002G041200 | Nicotianamine amino transferase | 4.8 | |
ees04390 | SORBI_3004G018900 | Mono-/sesquiterpene-/diterpene synthase | 18.06 | |
ees04394 | SORBI_3004G019300 | Mono-/sesquiterpene-/diterpene synthase | 5.11 | |
ees04392 | SORBI_3004G019100 | Mono-/sesquiterpene-/diterpene synthase | 5.31 | |
oqu81208 | SORBI_3006G027500 | Mono-/sesquiterpene-/diterpene synthase | 4.28 | |
kxg24531 | SORBI_3007G055600 | Mono-/sesquiterpene-/diterpene synthase | 7.79 | |
kxg24530 | SORBI_3007G055500 | Mono-/sesquiterpene-/diterpene synthase | 8.79 | |
eer94760 | SORBI_3001G351000 | 3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase | 2.98 | 2.89 |
ees03803 | SORBI_3003G337400 | Cinnamate 4-hydroxylase (C4H) | 3.59 | |
kxg29016 | SORBI_3005G136800 | Chalcone synthase | 18.34 | |
ees09862 | SORBI_3005G137000 | Chalcone synthase | 7.98 | |
ees09858 | SORBI_3005G136300 | Chalcone synthase | 6.1 | |
ees09863 | SORBI_3005G137100 | Chalcone synthase | 7.5 | |
eer92960 | SORBI_3001G526900 | Type-I flavone synthase | 5.66 | |
eer94585 | SORBI_3001G314300 | Type-I flavone synthase | 6.01 | |
eer95206 | SORBI_3001G443800 | Glutamate decarboxylase | 3.65 | |
kxg20563 | SORBI_3010G221800 | Phosphoglycerate kinase | 3.66 | |
oqu93373 | SORBI_3001G530100 | 3-Hydroxy-3-methylglutaryl-CoA synthase | 3.21 | |
kxg30650 | SORBI_3004G218100 | Aldehyde decarbonylase component CER1 | 3.3 | |
eer88750 | SORBI_3010G212600 | Aldehyde-generating component CER3 | 4.39 | |
eer95458 | SORBI_3001G495500 | 3-Ketoacyl-CoA synthase (KCS) | 5.31 |
Transcript Identifier | Protein Family | Log2 FC Sb-SRZ vs. Sb-H2O | Log2 FC Sb-SRS vs. Sb-H2O |
---|---|---|---|
Membrane-spanning kinases | |||
Eer97932 | L-type lectin | 4.4 | n.d. 1 |
Ees03486 | MAP3K/MEKK | 14.7 | n.d. |
Oqu85116 | 4.1 | n.d. | |
Oqu80963 | WAK-like | 4.6 | n.d. |
Oqu81999 | 14.5 | n.d. | |
Oqu88391 | 5.2 | n.d. | |
Kxg36444 | S-domain | 5.5 | n.d. |
Eer99485 | 4.6 | n.d. | |
Eer99486 | 3.9 | n.d. | |
Oqu82405 | 3.9 | n.d. | |
Kxg39626 | CMGC | 2.5 | n.d. |
Kxg33373 | PERK | 3.2 | n.d. |
Eer99485 | DUF26 | 4.6 | n.d. |
Eer99486 | 3.9 | n.d. | |
Eer97562 | SNF-1 related (SnRK2) | 3.1 | n.d. |
Oqu88438 | 3.5 | n.d. | |
Oqu87587 | 14.8 | n.d. | |
Ees03800 | LRR-VIII-1 | 3.3 | n.d. |
Kxg23128 | LRR-Xc | 3.2 | n.d. |
Kxg25252 | LRR-XI | 4.0 | n.d. |
Ees12871 | LRR-XII | 4.3 | 5.5 |
Kxg20259 | 4.5 | n.d. | |
Cytoplasmic kinases | |||
Eer90813 | LRR-XIV | 3.0 | n.d. |
Oqu87509 | LRR-XV | 5.0 | n.d. |
Ees01457 | 6.4 | n.d. | |
Ees06537 | 4.4 | n.d. | |
Ees03807 | RLCK-II | 4.2 | n.d. |
Eer99248 | RLCK-VIIa | 3.3 | n.d. |
Kxg19254 | RLCK-IXb | 3.3 | n.d. |
Oqu83247 | DLSV | 4.0 | n.d. |
Kxg28202 | 4.0 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poloni, A.; Garde, R.; Dittiger, L.D.; Heidrich, T.; Müller, C.; Drechsler, F.; Zhao, Y.; Mazumdar, T.; Schirawski, J. Transcriptome Analysis Reveals Contrasting Plant Responses of Sorghum bicolor upon Colonization by Two Formae Speciales of Sporisorium reilianum. Int. J. Mol. Sci. 2022, 23, 8864. https://doi.org/10.3390/ijms23168864
Poloni A, Garde R, Dittiger LD, Heidrich T, Müller C, Drechsler F, Zhao Y, Mazumdar T, Schirawski J. Transcriptome Analysis Reveals Contrasting Plant Responses of Sorghum bicolor upon Colonization by Two Formae Speciales of Sporisorium reilianum. International Journal of Molecular Sciences. 2022; 23(16):8864. https://doi.org/10.3390/ijms23168864
Chicago/Turabian StylePoloni, Alana, Ravindra Garde, Lukas Dorian Dittiger, Theresa Heidrich, Christian Müller, Frank Drechsler, Yulei Zhao, Tilottama Mazumdar, and Jan Schirawski. 2022. "Transcriptome Analysis Reveals Contrasting Plant Responses of Sorghum bicolor upon Colonization by Two Formae Speciales of Sporisorium reilianum" International Journal of Molecular Sciences 23, no. 16: 8864. https://doi.org/10.3390/ijms23168864
APA StylePoloni, A., Garde, R., Dittiger, L. D., Heidrich, T., Müller, C., Drechsler, F., Zhao, Y., Mazumdar, T., & Schirawski, J. (2022). Transcriptome Analysis Reveals Contrasting Plant Responses of Sorghum bicolor upon Colonization by Two Formae Speciales of Sporisorium reilianum. International Journal of Molecular Sciences, 23(16), 8864. https://doi.org/10.3390/ijms23168864