Rapid Colorimetric Detection of Wound Infection with a Fluidic Paper Device
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design of the Paper-Based Fluidic Device
2.2. Fluidic Device In Vitro Validation
2.2.1. Validation of the Fluidic Device with Commercial MPO
2.2.2. Semi-Quantitative Analysis of Color Intensity
2.2.3. Evaluation of Cross-Reactions
2.3. Ex Vivo Validation of the Foldable Fluidic Device with Wound Fluids
3. Materials and Methods
3.1. Materials
3.2. Fluidic Paper Device Fabrication and Functionalization
3.3. MPO Activity Evaluation
3.4. MPO Colorimetric Evaluation with the Fluidic Device
3.4.1. MPO Colorimetric Detection
3.4.2. Sample Preparation for Validation of the Fluidic Device
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iqbal, A.; Jan, A.; Wajid, M.A.; Tariq, S. Management of Chronic Non-Healing Wounds by Hirudotherapy. World J. Plast. Surg. 2017, 6, 9–17. [Google Scholar]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care 2019, 8, 39–48. [Google Scholar] [CrossRef]
- Gupta, S.; Sagar, S.; Kisaka, T.; Tripathi, S.; Gupta, S.; Care, I.; Delhi, N.; Sagar, S.; Delhi, N.; Jaypee, G.M.; et al. Chronic Wounds: Magnitude, Socioeconomic Burden and Consequences Chronic. Wounds Asia 2021, 4, 8–14. [Google Scholar]
- Cutting, K.F.; White, R.J. Criteria for Identifying Wound Infection-Revisited. Ostomy Wound Manag. 2005, 51, 28–34. [Google Scholar]
- Gardner, S.E.; Frantz, R.A.; Doebbeling, B.N. The Validity of the Clinical Signs and Symptoms Used to Identify Localized Chronic Wound Infection. Wound Repair Regen. 2001, 9, 178–186. [Google Scholar] [CrossRef]
- Stefanov, I.; Hinojosa-Caballero, D.; Maspoch, S.; Hoyo, J.; Tzanov, T. Enzymatic Synthesis of a Thiolated Chitosan-Based Wound Dressing Crosslinked with Chicoric Acid. J. Mater. Chem. B 2018, 6, 7943–7953. [Google Scholar] [CrossRef]
- Francesko, A.; Ivanova, K.; Hoyo, J.; Pérez-Rafael, S.; Petkova, P.; Fernandes, M.M.; Heinze, T.; Mendoza, E.; Tzanov, T. Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. Biomacromolecules 2018, 19, 3628–3636. [Google Scholar] [CrossRef]
- Stefanov, I.; Pérez-Rafael, S.; Hoyo, J.; Cailloux, J.; Santana Pérez, O.O.O.; Hinojosa-Caballero, D.; Tzanov, T. Multifunctional Enzymatically Generated Hydrogels for Chronic Wound Application. Biomacromolecules 2017, 18, 1544–1555. [Google Scholar] [CrossRef]
- Hampton, M.B.; Kettle, A.J.; Winterbourn, C.C. Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. J. Am. Soc. Hematol. 1998, 92, 3007–3017. [Google Scholar] [CrossRef]
- Hasmann, A.; Wehrschuetz-Sigl, E.; Marold, A.; Wiesbauer, H.; Schoeftner, R.; Gewessler, U.; Kandelbauer, A.; Schiffer, D.; Schneider, K.P.; Binder, B.; et al. Analysis of Myeloperoxidase Activity in Wound Fluids as a Marker of Infection. Ann. Clin. Biochem. 2013, 50, 245–254. [Google Scholar] [CrossRef]
- Bassegoda, A.; Ferreres, G.; Pérez-Rafael, S.; Hinojosa-Caballero, D.; Torrent-Burgués, J.; Tzanov, T. New Myeloperoxidase Detection System Based on Enzyme-Catalysed Oxidative Synthesis of a Dye for Paper-Based Diagnostic Devices. Talanta 2019, 194, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Hoyo, J.; Bassegoda, A.; Tzanov, T. Electrochemical Quantification of Biomarker Myeloperoxidase. Z. Für Naturforsch. C 2022, 77, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.C.; Kunduru, V.; Bothara, M.; Rege, K.; Prasad, S.; Ramakrishna, B.L. Biogenic Nanoporous Silica-Based Sensor for Enhanced Electrochemical Detection of Cardiovascular Biomarkers Proteins. Biosens. Bioelectron. 2010, 25, 2336–2342. [Google Scholar] [CrossRef]
- Fietz, S.; Bondzio, A.; Moschos, A.; Hertsch, B.; Einspanier, R. Measurement of Equine Myeloperoxidase (MPO) Activity in Synovial Fluid by a Modified MPO Assay and Evaluation of Joint Diseases-An Initial Case Study. Res. Vet. Sci. 2008, 84, 347–353. [Google Scholar] [CrossRef]
- Pulli, B.; Ali, M.; Forghani, R.; Schob, S.; Hsieh, K.L.C.; Wojtkiewicz, G.; Linnoila, J.J.; Chen, J.W. Measuring Myeloperoxidase Activity in Biological Samples. PLoS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Hristov, D.R.; Rodriguez-Quijada, C.; Gomez-Marquez, J.; Hamad-Schifferli, K. Designing Paper-Based Immunoassays for Biomedical Applications. Sensors 2019, 19, 554. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Baldi, A.; Merlos, Á.; Fernández-Sánchez, C. Array of Individually Addressable Two-Electrode Electrochemical Cells Sharing a Single Counter/Reference Electrode for Multiplexed Enzyme Activity Measurements. Biosens. Bioelectron. 2022, 201, 113952. [Google Scholar] [CrossRef]
- Moral-Vico, J.; Barallat, J.; Abad, L.; Olivé-Monllau, R.; Muñoz-Pascual, F.X.; Galán Ortega, A.; del Campo, F.J.; Baldrich, E. Dual Chronoamperometric Detection of Enzymatic Biomarkers Using Magnetic Beads and a Low-Cost Flow Cell. Biosens. Bioelectron. 2015, 69, 328–336. [Google Scholar] [CrossRef]
- Hajnsek, M.; Schiffer, D.; Harrich, D.; Koller, D.; Verient, V.; Palen, J.V.D.; Heinzle, A.; Binder, B.; Sigl, E.; Sinner, F.; et al. An Electrochemical Sensor for Fast Detection of Wound Infection Based on Myeloperoxidase Activity. Sens. Actuators B Chem. 2015, 209, 265–274. [Google Scholar] [CrossRef]
- Nandeshwar, R.; Tallur, S. Integrated Low Cost Optical Biosensor for High Resolution Sensing of Myeloperoxidase (MPO) Activity through Carbon Nanotube Degradation. IEEE Sens. J. 2021, 21, 1236–1243. [Google Scholar] [CrossRef]
- Altundemir, S.; Uguz, A.K.; Ulgen, K. A Review on Wax Printed Microfluidic Paper-Based Devices for International Health. Biomicrofluidics 2017, 11, 041501. [Google Scholar] [CrossRef]
- Pandey, C.; Augustine, S.; Kumar, S.; Kumar, S.; Nara, S.; Srivastava, S.; Malhotra, B. Microfluidics Based Point-of-Care Diagnostics. Biotechnol. J. 2018, 13, 1700047. [Google Scholar] [CrossRef]
- Rattanarat, P.; Dungchai, W.; Cate, D.; Volckens, J.; Chailapakul, O.; Henry, C.S. Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals. Anal. Chem. 2014, 86, 3555–3562. [Google Scholar] [CrossRef]
- Caglayan, M.G.; Sheykhi, S.; Mosca, L.; Anzenbacher, P. Fluorescent Zinc and Copper Complexes for Detection of Adrafinil in Paper-Based Microfluidic Devices. Chem. Commun. 2016, 52, 8279–8282. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yeo, M.K. A Fabricated Microfluidic Paper-Based Analytical Device (ΜPAD) for in Situ Rapid Colorimetric Detection of Microorganisms in Environmental Water Samples. Mol. Cell. Toxicol. 2016, 12, 101–109. [Google Scholar] [CrossRef]
- Tsai, T.T.; Shen, S.W.; Cheng, C.M.; Chen, C.F. Paper-Based Tuberculosis Diagnostic Devices with Colorimetric Gold Nanoparticles. Sci. Technol. Adv. Mater. 2013, 14, 044404. [Google Scholar] [CrossRef]
- Bassegoda, A.; Hoyo, J.; Tzanov, T.; Fernández-Sánchez, C.; Gutiérrez-Capitan, M.; Baldi, A. A Foldable Fluidic Device and Method for Biomarker Detection in Body Fluids. 2020. Available online: https://patentscope2.wipo.int/search/es/detail.jsf;jsessionid=95F5EED3CE2DEE52E32DC5888407E250.wapp2nA?docId=WO2021219335&_cid=P20-L3YG84-70223-93 (accessed on 1 August 2022).
- Jacqueline, L.; Jamicich, L.; Phillips, E.; Byers, K.; Bird, A. Fluidic control elements for signal readout enhancement in two-dimension paper networks (2DPN). U.S. Patent US11047853B2, 29 June 2021. [Google Scholar]
- Chen, C.; Yeh, W.-S. Test Platform System and Detection Method by Using the Same. U.S. Patent US11131667B2, 28 September 2021. [Google Scholar]
- Wang, C.; Whitesides, G. Three-Dimensional Microfluidic Devices with Pop-up Feature. WO Patent WO2016161430A1, 6 October 2016. [Google Scholar]
- Schiffer, D.; Tegl, G.; Vielnascher, R.; Weber, H.; Schoeftner, R.; Wiesbauer, H.; Sigl, E.; Heinzle, A.; Guebitz, G.M. Fast Blue RR-Siloxane Derivatized Materials Indicatewound Infection Due to a Deep Blue Color Development. Materials 2015, 8, 6633–6639. [Google Scholar] [CrossRef]
- Capeillère-Blandin, C. Oxidation of Guaiacol by Myeloperoxidase: A Two-Electron-Oxidized Guaiacol Transient Species as a Mediator of NADPH Oxidation. Biochem. J. 1998, 336 Pt 2, 395–404. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoyo, J.; Bassegoda, A.; Ferreres, G.; Hinojosa-Caballero, D.; Gutiérrez-Capitán, M.; Baldi, A.; Fernández-Sánchez, C.; Tzanov, T. Rapid Colorimetric Detection of Wound Infection with a Fluidic Paper Device. Int. J. Mol. Sci. 2022, 23, 9129. https://doi.org/10.3390/ijms23169129
Hoyo J, Bassegoda A, Ferreres G, Hinojosa-Caballero D, Gutiérrez-Capitán M, Baldi A, Fernández-Sánchez C, Tzanov T. Rapid Colorimetric Detection of Wound Infection with a Fluidic Paper Device. International Journal of Molecular Sciences. 2022; 23(16):9129. https://doi.org/10.3390/ijms23169129
Chicago/Turabian StyleHoyo, Javier, Arnau Bassegoda, Guillem Ferreres, Dolores Hinojosa-Caballero, Manuel Gutiérrez-Capitán, Antoni Baldi, César Fernández-Sánchez, and Tzanko Tzanov. 2022. "Rapid Colorimetric Detection of Wound Infection with a Fluidic Paper Device" International Journal of Molecular Sciences 23, no. 16: 9129. https://doi.org/10.3390/ijms23169129
APA StyleHoyo, J., Bassegoda, A., Ferreres, G., Hinojosa-Caballero, D., Gutiérrez-Capitán, M., Baldi, A., Fernández-Sánchez, C., & Tzanov, T. (2022). Rapid Colorimetric Detection of Wound Infection with a Fluidic Paper Device. International Journal of Molecular Sciences, 23(16), 9129. https://doi.org/10.3390/ijms23169129