Diagnostic Potential of Circulating Tumor Cells, Urinary MicroRNA, and Urinary Cell-Free DNA for Bladder Cancer: A Review
Abstract
:1. Introduction
2. Diagnostic Utility of Biomarkers Assessed by Liquid Biopsy
2.1. CTCs
2.2. umiRNA
2.3. Urine Cell-Free DNA
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ploeg, M.; Aben, K.K.H.; Kiemeney, L.A. The present and future burden of urinary bladder cancer in the world. World J. Urol. 2009, 27, 289–293. [Google Scholar] [CrossRef]
- Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The global burden of urinary bladder cancer: An update. World J. Urol. 2020, 38, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet 2016, 3, 2796–2810. [Google Scholar] [CrossRef]
- Nishi, M.; Matsumoto, K.; Kobayashi, M.; Yanagita, K.; Matsumoto, T.; Nagashio, R.; Ishii, D.; Fujita, T.; Sato, Y.; Iwamura, M. Serum expression of S100A6 is a potential detection marker in patients with urothelial carcinoma in the urinary bladder. Biomed. Res. 2014, 35, 351–356. [Google Scholar] [CrossRef]
- Matsumoto, K.; Ikeda, M.; Matsumoto, T.; Nagashio, R.; Nishimori, T.; Tomonaga, T.; Nomura, F.; Sato, Y.; Kitasato, H.; Iwamura, M. Serum Periplakin as a Potential Biomarker for Urothelial Carcinoma of the Urinary Bladder. Asian Pac. J. Cancer Prev. 2014, 15, 9927–9931. [Google Scholar] [CrossRef]
- Shimura, S.; Matsumoto, K.; Shimizu, Y.; Mochizuki, K.; Shiono, Y.; Hirano, S.; Koguchi, D.; Ikeda, M.; Sato, Y.; Iwamura, M. Serum Epiplakin Might Be a Potential Serodiagnostic Biomarker for Bladder Cancer. Cancers 2021, 13, 5150. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Matsumoto, K.; Tanaka, K.; Amano, N.; Koguchi, D.; Ikeda, M.; Shimizu, Y.; Tsuchiya, B.; Nagashio, R.; Sato, Y.; et al. DJ-1 Expression Might Serve as a Biologic Marker in Patients with Bladder Cancer. Cancers 2022, 14, 2535. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-R. Urothelial tumorigenesis: A tale of divergent pathways. Nat. Rev. Cancer 2005, 5, 713–725. [Google Scholar] [CrossRef]
- Kamoun, A.; de Reyniès, A.; Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.; Choi, W.; et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur. Urol. 2020, 77, 420–433. [Google Scholar] [CrossRef]
- Lindskrog, S.V.; Prip, F.; Lamy, P.; Taber, A.; Groeneveld, C.S.; Birkenkamp-Demtröder, K.; Jensen, J.B.; Strandgaard, T.; Nordentoft, I.; Christensen, E.; et al. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat. Commun. 2021, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Qi, N.; Zhang, C.; Xue, N.; Li, S.; Zhou, R.; Chen, Z.; Yao, R.; Zhu, H. Impact of Surgical Wait Time on Survival in Patients with Upper Urinary Tract Urothelial Carcinoma with Hydronephrosis. Front. Oncol. 2021, 11, 698594. [Google Scholar] [CrossRef]
- Isfoss, B.L. The sensitivity of fluorescent-light cystoscopy for the detection of carcinoma in situ (CIS) of the bladder: A me-ta-analysis with comments on gold standard. BJU Int. 2011, 108, 1703–1707. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.C.; Caires, H.R.; Oliveira, M.J.; Fraga, A.; Vasconcelos, M.H.; Ribeiro, R. Urinary Biomarkers in Bladder Cancer: Where Do We Stand and Potential Role of Extracellular Vesicles. Cancers 2020, 12, 1400. [Google Scholar] [CrossRef]
- Fais, S.; O’Driscoll, L.; Borras, F.E.; Buzas, E.; Camussi, G.; Cappello, F.; Carvalho, J.; Cordeiro-Da-Silva, A.; Del Portillo, H.; El Andaloussi, S.; et al. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano 2016, 10, 3886–3899. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guo, Z.; Zhang, Q.; Liu, Z.; Zhu, D. AHNAK2 promotes migration, invasion, and epithelial-mesenchymal transition in lung adenocarcinoma cells via the TGF-β/Smad3 pathway. Oncotargets Ther. 2020, 13, 12893–12903. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1889, 133, 571–573. [Google Scholar] [CrossRef]
- Crocetto, F.; Cimmino, A.; Ferro, M.; Terracciano, D. Circulating tumor cells in bladder cancer: A new horizon of liquid biopsy for precision medicine. J. Basic Clin. Physiol. Pharmacol. 2021. [Google Scholar] [CrossRef]
- Banys-Paluchowski, M.; Krawczyk, N.; Fehm, T. Liquid Biopsy in Breast Cancer. Geburtshilfe Frauenheilkd. 2020, 80, 1093–1104. [Google Scholar] [CrossRef]
- Msaouel, P.; Koutsilieris, M. Diagnostic value of circulating tumor cell detection in bladder and urothelial cancer: Systematic review and meta-analysis. BMC Cancer 2011, 11, 336. [Google Scholar] [CrossRef]
- Cristofanilli, M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Semin. Oncol. 2006, 33, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Flaig, T.W.; Wilson, S.; van Bokhoven, A.; Varella-Garcia, M.; Wolfe, P.; Maroni, P.; Genova, E.E.; Morales, D.; Lucia, M.S. Detection of Circulating Tumor Cells in Metastatic and Clinically Localized Urothelial Carcinoma. Urology 2011, 78, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, T.J.; McNeil, B.K.; Bivalacqua, T.J.; Elliott, D.J.; Sokoll, L.J.; Schoenberg, M.P. The presence of circulating tumor cells does not predict extravesical disease in bladder cancer patients prior to radical cystectomy. Urol. Oncol. Semin. Orig. Investig. 2012, 30, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Rink, M.; Chun, F.K.; Minner, S.; Friedrich, M.; Mauermann, O.; Heinzer, H.; Huland, H.; Fisch, M.; Pantel, K.; Riethdorf, S. Detection of circulating tumour cells in peripheral blood of patients with advanced non-metastatic bladder cancer. Br. J. Urol. 2010, 107, 1668–1675. [Google Scholar] [CrossRef] [PubMed]
- Soave, A.; Riethdorf, S.; Dahlem, R.; Von Amsberg, G.; Minner, S.; Weisbach, L.; Engel, O.; Fisch, M.; Pantel, K.; Rink, M. A nonrandomized, prospective, clinical study on the impact of circulating tumor cells on outcomes of urothelial carcinoma of the bladder patients treated with radical cystectomy with or without adjuvant chemotherapy. Int. J. Cancer 2016, 140, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Nayyar, R.; Saini, S.; Sharma, A.; Kurra, S.; Dogra, P.N. Systemic dissemination of tumor cells during transurethral resection in patients with bladder tumor and its clinical relevance: A follow up study. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 497.e17–497.e22. [Google Scholar] [CrossRef]
- Haga, N.; Tsubouchi, K.; Maruta, H.; Koguchi, T.; Hoshi, S.; Ogawa, S.; Akaihata, H.; Hata, J.; Kojima, Y. Increase in circu-lating tumor cells in invasive bladder cancer after transurethral resection of bladder tumor. Anticancer Res. 2020, 40, 4299–4307. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, A.; Siddiqui, M.H. Detection of circulating tumour cells in colorectal cancer: Emerging techniques and clinical implications. World J. Clin. Oncol. 2021, 12, 1169–1181. [Google Scholar] [CrossRef]
- Yang, X.; Lv, J.; Zhou, Z.; Feng, D.; Zhou, R.; Yuan, B.; Wu, Q.; Yu, H.; Han, J.; Cao, Q.; et al. Clinical Application of Circulating Tumor Cells and Circulating Endothelial Cells in Predicting Bladder Cancer Prognosis and Neoadjuvant Chemosensitivity. Front. Oncol. 2022, 11, 802188. [Google Scholar] [CrossRef]
- Grillone, K.; Riillo, C.; Scionti, F.; Rocca, R.; Tradigo, G.; Guzzi, P.H.; Alcaro, S.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter”. J. Exp. Clin. Cancer Res. 2020, 39, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Shirvani-Farsani, Z.; Ghafouri-Fard, S.; Omrani, M.D. Expression profile of microRNAs in bladder cancer and their application as biomarkers. Biomed. Pharmacother. 2020, 131, 110703. [Google Scholar] [CrossRef]
- Barutta, F.; Tricarico, M.; Corbelli, A.; Annaratone, L.; Pinach, S.; Grimaldi, S.; Bruno, G.; Cimino, D.; Taverna, D.; Deregibus, M.C.; et al. Urinary exosomal microRNAs in incipient diabetic ephropathy. PLoS ONE 2013, 8, e73798. [Google Scholar] [CrossRef]
- Dhondt, B.; Geeurickx, E.; Tulkens, J.; Van Deun, J.; Vergauwen, G.; Lippens, L.; Miinalainen, I.; Rappu, P.; Heino, J.; Ost, P.; et al. Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J. Extracell. Vesicles 2020, 9, 1736935. [Google Scholar] [CrossRef]
- Mlcochova, H.; Hezova, R.; Stanik, M.; Slaby, O. Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol. Oncol. Semin. Orig. Investig. 2013, 32, 41.e1–41.e9. [Google Scholar] [CrossRef]
- Matullo, G.; Naccarati, A.; Pardini, B. MicroRNA expression profiling in bladder cancer: The challenge of next-generation sequencing in tissues and biofluids. Int. J. Cancer 2015, 138, 2334–2345. [Google Scholar] [CrossRef]
- Matsuzaki, K.; Fujita, K.; Jingushi, K.; Kawashima, A.; Ujike, T.; Nagahara, A.; Ueda, Y.; Tanigawa, G.; Yoshioka, I.; Ueda, K.; et al. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma. Oncotarget 2017, 8, 24668–24678. [Google Scholar] [CrossRef]
- Ghorbanmehr, N.; Gharbi, S.; Korsching, E.; Tavallaei, M.; Einollahi, B.; Mowla, S.J. miR-21–5p, miR-141–3p, and miR-205–5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 2019, 79, 88–95. [Google Scholar] [CrossRef]
- Mengual, L.; Lozano, J.J.; Ingelmo-Torres, M.; Gazquez, C.; Ribal, M.J.; Alcaraz, A. Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer. Int. J. Cancer 2013, 1, 2631–2641. [Google Scholar]
- De Long, J.; Sullivan, T.B.; Humphrey, J.; Logvinenko, T.; Summerhayes, K.A.; Kozinn, S.; Harty, N.; Summerhayes, I.C.; Libertino, J.A.; Holway, A.H.; et al. A non-invasive miRNA based assay to detect bladder cancer in cell-free urine. Am. J. Transl. Res. 2015, 7, 2500–2509. [Google Scholar]
- Andreu, Z.; Oshiro, R.O.; Redruello, A.; López-Martín, S.; Gutiérrez-Vázquez, C.; Morato, E.; Marina, A.I.; Gómez, C.O.; Yáñez-Mó, M. Extracellular vesicles as a source for non-invasive biomarkers in bladder cancer progression. Eur. J. Pharm. Sci. 2017, 98, 70–79. [Google Scholar] [CrossRef]
- Hofbauer, S.L.; de Martino, M.; Lucca, I.; Haitel, A.; Susani, M.; Shariat, S.; Klatte, T. A urinary microRNA (miR) signature for diagnosis of bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 531.e1–531.e8. [Google Scholar] [CrossRef]
- Baumgart, S.; Meschkat, P.; Edelmann, P.; Heinzelmann, J.; Pryalukhin, A.; Bohle, R.; Heinzelbecker, J.; Stöckle, M.; Junker, K. MicroRNAs in tumor samples and urinary extracellular vesicles as a putative diagnostic tool for muscle-invasive bladder cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 2725–2736. [Google Scholar] [CrossRef]
- Pardini, B.; Cordero, F.; Naccarati, A.; Viberti, C.; Birolo, G.; Oderda, M.; Di Gaetano, C.; Arigoni, M.; Martina, F.; Calogero, R.A.; et al. microRNA profiles in urine by next-generation sequencing can stratify bladder cancer subtypes. Oncotarget 2018, 9, 20658–20669. [Google Scholar] [CrossRef]
- Braicu, C.; Buiga, R.; Cojocneanu, R.; Buse, M.; Raduly, L.; Pop, L.A.; Chira, S.; Budisan, L.; Jurj, A.; Ciocan, C.; et al. Con-necting the dots between different networks: MiRNAs associated with bladder cancer risk and progression. J. Exp. Clin. Cancer Res. Crit. 2019, 38, 433. [Google Scholar] [CrossRef]
- Lin, J.-T.; Tsai, K.-W. Circulating miRNAs Act as Diagnostic Biomarkers for Bladder Cancer in Urine. Int. J. Mol. Sci. 2021, 22, 4278. [Google Scholar] [CrossRef] [PubMed]
- Moisoiu, T.; Dragomir, M.P.; Iancu, S.D.; Schallenberg, S.; Birolo, G.; Ferrero, G.; Burghelea, D.; Stefancu, A.; Cozan, R.G.; Licarete, E.; et al. Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer. Mol. Med. 2022, 28, 1–13. [Google Scholar] [CrossRef]
- Urquidi, V.; Netherton, M.; Gomes-Giacoia, E.; Serie, D.J.; Eckel-Passow, J.; Rosser, C.J.; Goodison, S. A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget 2016, 7, 86290–86299. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Jiang, X.; Duan, W.; Wang, R.; Wang, L.; Zheng, G.; Yan, K.; Wang, L.; Li, J.; Zhang, X.; et al. Cell-free microRNA ex-pression signatures in urine serve as novel noninvasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Oncotarget 2017, 8, 40832–40842. [Google Scholar] [CrossRef]
- Mearini, E.; Poli, G.; Cochetti, G.; Boni, A.; Egidi, M.G.; Brancorsini, S. Expression of urinary miRNAs targeting NLRs in-flammasomes in bladder cancer. Onco Targets Ther. 2017, 10, 2665–2673. [Google Scholar] [CrossRef]
- Wang, G.; Kwan, B.C.; Lai, F.M.; Chow, K.M.; Li, P.K.; Szeto, C.C. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers 2011, 30, 171–179. [Google Scholar] [CrossRef]
- Sun, D.-K.; Wang, J.-M.; Zhang, P.; Wang, Y.-Q. MicroRNA-138 Regulates Metastatic Potential of Bladder Cancer Through ZEB2. Cell. Physiol. Biochem. 2015, 37, 2366–2374. [Google Scholar] [CrossRef]
- Yang, R.; Liu, M.; Liang, H.; Guo, S.; Guo, X.; Yuan, M.; Lian, H.; Yan, X.; Zhang, S.; Chen, X.; et al. miR-138-5p contributes to cell proliferation and invasion by targeting Survivin in bladder cancer cells. Mol. Cancer 2016, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, R.B.; Chabner, B.A. Application of Cell-free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018, 379, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224. [Google Scholar] [CrossRef]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- Ou, Z.; Li, K.; Yang, T.; Dai, Y.; Chandra, M.; Ning, J.; Wang, Y.; Xu, R.; Gao, T.; Xie, Y.; et al. Detection of bladder cancer using urinary cell-free DNA and cellular DNA. Clin. Transl. Med. 2020, 9, 4. [Google Scholar] [CrossRef]
- Lichtenstein, A.V.; Melkonyan, H.S.; Tomei, L.D.; Umansky, S.R. Circulating Nucleic Acids and Apoptosis. Ann. N. Y. Acad. Sci. 2006, 945, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Li, J. Clinical applications of urinary cell-free DNA in cancer: Current insights and promising future. Am. J. Cancer Res. 2017, 7, 2318–2332. [Google Scholar]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Glenn, T.C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 2011, 11, 759–769. [Google Scholar] [CrossRef]
- Zviran, A.; Schulman, R.C.; Shah, M.; Hill, S.T.K.; Deochand, S.; Khamnei, C.C.; Maloney, D.; Patel, K.; Liao, W.; Widman, A.J.; et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 2020, 26, 1114–1124. [Google Scholar] [CrossRef]
- Ward, D.G.; Baxter, L.; Ott, S.; Gordon, N.S.; Wang, J.; Patel, P.; Piechocki, K.; Silcock, L.; Sale, C.; Zeegers, M.P.; et al. Highly Sensitive and Specific Detection of Bladder Cancer via Targeted Ultra-deep Sequencing of Urinary DNA. Eur. Urol. Oncol. 2022, 22, S2588–S9311. [Google Scholar] [CrossRef]
- Brisuda, A.; Pazourkova, E.; Soukup, V.; Horinek, A.; Hrbáček, J.; Capoun, O.; Svobodova, I.; Pospisilova, S.; Korabecna, M.; Mares, J.; et al. Urinary Cell-Free DNA Quantification as Non-Invasive Biomarker in Patients with Bladder Cancer. Urol. Int. 2015, 96, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Yan, C.; Lee, I.-S.; Piao, X.-M.; Byun, Y.J.; Jeong, P.; Kim, W.T.; Yun, S.-J.; Kim, W.-J. Value of urinary topoisomerase-IIA cell-free DNA for diagnosis of bladder cancer. Investig. Clin. Urol. 2016, 57, 106–112. [Google Scholar] [CrossRef]
- Van Kessel, K.E.; Beukers, W.; Lurkin, I.; Der Made, A.Z.-V.; Van Der Keur, K.A.; Boormans, J.L.; Dyrskjøt, L.; Márquez, M.; Ørntoft, T.F.; Real, F.X.; et al. Validation of a DNA Methylation-Mutation Urine Assay to Select Patients with Hematuria for Cystoscopy. J. Urol. 2017, 197, 590–595. [Google Scholar] [CrossRef]
- Casadio, V.; Salvi, S.; Martignano, F.; Gunelli, R.; Ravaioli, S.; Calistri, D. Cell-Free DNA Integrity Analysis in Urine Samples. J. Vis. Exp. 2017, 119, 55049. [Google Scholar] [CrossRef]
- Dudley, J.C.; Schroers-Martin, J.; Lazzareschi, D.V.; Shi, W.Y.; Chen, S.B.; Esfahani, M.S.; Trivedi, D.; Chabon, J.J.; Chaudhuri, A.A.; Stehr, H.; et al. Detection and Surveillance of Bladder Cancer Using Urine Tumor DNA. Cancer Discov. 2019, 9, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Descotes, F.; Kara, N.; Decaussin-Petrucci, M.; Piaton, E.; Geiguer, F.; Rodriguez-Lafrasse, C.; Terrier, J.E.; Lopez, J.; Ruffion, A. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br. J. Cancer 2017, 117, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Fujita, K.; Matsuzaki, K.; Eich, M.-L.; Tomiyama, E.; Matsushita, M.; Koh, Y.; Nakano, K.; Wang, C.; Ishizuya, Y.; et al. Clinical Significance of Hotspot Mutation Analysis of Urinary Cell-Free DNA in Urothelial Bladder Cancer. Front. Oncol. 2020, 10, 755. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, A.E.; Nieuwenhuijzen, J.A.; Bosschieter, J.; van Splunter, A.P.; Lissenberg-Witte, B.I.; van der Voorn, J.P.; Segerink, L.I.; van Moorselaar, R.J.A.; Steenbergen, R.D. Comparative Analysis of Urine Fractions for Optimal Bladder Cancer Detection Using DNA Methylation Markers. Cancers 2020, 12, 859. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, J.; Ruan, W.; Huang, M.; Wang, C.; Wang, H.; Jiang, Z.; Wang, S.; Liu, Z.; Liu, C.; et al. Urine DNA meth-ylation assay enables early detection and recurrence monitoring for bladder cancer. J. Clin. Investig. 2020, 130, 6278–6289. [Google Scholar] [CrossRef]
- Ruan, W.; Chen, X.; Huang, M.; Wang, H.; Chen, J.; Liang, Z.; Zhang, J.; Yu, Y.; Chen, S.; Xu, S.; et al. A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer. Clin. Epigenet. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Zhou, Z.; Cheng, S.H.; Ding, S.C.; Heung, M.M.S.; Xie, T.; Cheng, T.H.T.; Lam, W.K.J.; Peng, W.; Teoh, J.Y.C.; Chiu, P.K.F.; et al. Jagged Ends of Urinary Cell-Free DNA: Characterization and Feasibility Assessment in Bladder Cancer Detection. Clin. Chem. 2021, 67, 621–630. [Google Scholar] [CrossRef]
- Deng, L.; Chao, H.; Deng, H.; Yu, Z.; Zhao, R.; Huang, L.; Gong, Y.; Zhu, Y.; Wang, Q.; Li, F.; et al. A novel and sensitive DNA methylation marker for the urine-based liquid biopsies to detect bladder cancer. BMC Cancer 2022, 22, 1–12. [Google Scholar] [CrossRef]
- Nadano, D.; Yasuda, T.; Kishi, K. Measurement of deoxyribonuclease I activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin. Chem. 1993, 39, 448–452. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Target (Expression in BCa) | BCa/Ctl (n) | Primary Findings | Ref. |
---|---|---|---|---|---|
Mengual et al. | 2013 | Panel of six miRNAs: | 181/136 | 84.8% SN, 86.5% SP; AUC 0.92 (overall) 77.6% SN, 86.5% SP (low-grade NMIBC) 90.3% SN, 86.5% SP (high-grade NMIBC) 87.1% SN, 86.5% SP (MIBC) | [38] |
miR-18a* (↑) | |||||
miR-25 (↑) | |||||
miR-140-5p (↓) | |||||
miR-187 (↑) | |||||
miR-142-3p (↓) | |||||
miR-204 (↓) | |||||
De Long et al. | 2015 | miR-940 (↑) | 85/45 | pT2 or greater, pT1 grade 3 > pT1 grade 1, Ctl | [39] |
miR-26a (↑) | pT2 or greater > pT1 grade 1; pT1 grade 3 > pT1 grade 1; Ctl > pT1 grade 1 | ||||
Matsuzaki et al. | 2017 | miR-21-5p (↑) | 6/3 | 72.2% SN, 95.8% SP (overall) | [36] |
Andreu et al. | 2017 | miR-146 (↑) | 36/9 | Low-grade > high-grade | [40] |
Ghorbanmehr et al. | 2018 | miR-21-5p (↑) | 45/20 | 84% SN, 59% SP; AUC 0.76 (overall) | [37] |
miR141-3p (↑) | 71% SN, 71% SP; AUC 0.74 (overall) | ||||
miR205-5p (↑) | 82% SN, 62% SP; AUC 0.73 (overall) | ||||
Hofbauer et al. | 2018 | Panel of six miRNAs: | 87/115 | AUC 0.88 (overall) AUC 0.88 (low-grade NMIBC) AUC 0.93 (high-grade NMIBC) AUC 0.91 (MIBC) | [41] |
Let-7c (↓) | |||||
miR-135a (↓) | |||||
miR-135b (↑) | |||||
miR-148a (↓) | |||||
miR-204 (↓) | |||||
miR-345 (↑) | |||||
Baumgart et al. | 2019 | miR-146 | 37/0 | grade 3 > grades 1, 2 pTa > pT1 > pT2> pT3–4 | [42] |
miR-138-5p | |||||
Next-Generation Sequencing | |||||
Pardini et al. | 2018 | Panel of three miRNAs: | 66/48 | AUC 0.70 (overall) AUC 0.73 (low-grade NMIBC) AUC 0.95 (high-grade NMIBC) AUC 0.99 (MIBC) | [43] |
let-7c-5p (↑) | |||||
miR-30a-5p (↑) | |||||
miR-486-5p (↓) | |||||
Braicu et al. | 2019 | miR-141-3p (↑) | 23/23 | AUC 0.86 (overall) AUC 0.89 (overall) BCa < Ctl BCa < Ctl BCa > Ctl | [44] |
miR-205-5p (↑) | |||||
miR-139-5p (↓) | |||||
miR-143-5p (↓) | |||||
miR-200b-3p (↑) | |||||
Lin et al. | 2021 | Let-7b-5p (↑) | 180/100 | BCa > Ctl BCa > Ctl BCa > Ctl BCa > Ctl BCa > Ctl | [45] |
miR-146a-5p (↑) | |||||
miR-149-5p (↑) | |||||
miR-193a-5p (↑) | |||||
miR-423-5p (↑) | |||||
Moisoiu et al. | 2022 | Panel of three miRNAs: | 15/16 | AUC 0.84 (miRNA alone) AUC 0.84 (SERS alone) AUC 0.92 (miRNA + SERS) | [46] |
miR-34a-5p (↑) | |||||
miR-205-5p (↑) | |||||
miR-210-3p (↑) |
Study | Year | Target (Expression in BCa) | BCa/Ctl (n) | Primary Findings | Ref. |
---|---|---|---|---|---|
Brisuda et al. | 2015 | ucfDNA concentration (↑) | 66/34 | 42.4% SN, 91.2% SP, AUC 0.73 (overall) | [63] |
Kim et al. | 2016 | Topoisomerase IIA expression (↑) | 83/115 | 73.8% SN, 68.3% SP, AUC 0.74 (overall) 70.1% SN, 63.3% SP, AUC 0.70 (NMIBC) 88.2% SN, 74.8% SP, AUC 0.84 (MIBC) | [64] |
Kessel et al. | 2017 | Panel of six genes | 97/103 | 93% SN, 86% SP, AUC 0.96 (overall) | [65] |
Mutation: | |||||
FGFR3 (↑) | |||||
TERT (↑) | |||||
HRAS (↑) | |||||
Methylation: | |||||
OTX1 (↑) | |||||
ONECUT2 (↑) | |||||
TWIST1 (↑) | |||||
Casadio et al. | 2017 | ucfDNA integrity (>250 bp) | 46/32 | 73% SN, 84% SP (overall) | [66] |
Dudley et al. | 2019 | Mutation: PLEKHS1 (↑) | 54/34 | 84% SN, 96% SP (overall) | [67] |
Descotes et al. | 2020 | Mutation: TERT (↑) | 348/167 | 80.5% SN, 89.8% SP (overall) 79.4% SN (pTa) 77.6% SN (pT1) 85.2% SN (MIBC) 84.8% SN (high-grade) 74.3% SN (low-grade) | [68] |
Ou et al. | 2020 | Panel of five genes | 92/33 | AUC 0.94 (overall) 16–46% SN each 100% SP each | [56] |
Mutation: | |||||
TERT (↑) | |||||
FGFR3 (↑) | |||||
TP53 (↑) | |||||
PIK3CA (↑) | |||||
KRAS (↑) | |||||
Hayashi et al. | 2020 | Mutation: TERT promoter + FGFR3 hotspot | 74/52 | 68.9% SN, 100% SP (overall) 85.9% SN (with cytology) | [69] |
Hentschel et al. | 2020 | Methylation: GHSR + MAL | 14/12 | 78.6% SN, 91.7% SP, AUC 0.87 (overall) | [70] |
Chen et al. | 2020 | Methylation: cg21472506 + cg11437784 | 109/66 | 90.0% SN, 83.1% SP (overall) | [71] |
Ruan et al. | 2021 | Methylation: ONECUT2 + VIM | 192/98 | 87.1% SN, 82.9% SP, AUC 0.90 (overall) | [72] |
Zhou et al. | 2021 | ucfDNA jagged ends | 43/39 | AUC 0.83 (overall) | [73] |
Ward et al. | 2022 | Panel of 23 genes Mutation | 443/162 | 87.3% SN, 84.8% SP (overall) 97.4% SN (grade 3) 86.5% SN (grade 2) 70.8% SN (grade 1) | [62] |
Deng et al. | 2022 | Methylation: DMRTA2 | 44/83 | 82.9% SN, 92.5% SP, AUC 0.93 (overall) 92.0% SN (pT1, pT2) | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koguchi, D.; Matsumoto, K.; Shiba, I.; Harano, T.; Okuda, S.; Mori, K.; Hirano, S.; Kitajima, K.; Ikeda, M.; Iwamura, M. Diagnostic Potential of Circulating Tumor Cells, Urinary MicroRNA, and Urinary Cell-Free DNA for Bladder Cancer: A Review. Int. J. Mol. Sci. 2022, 23, 9148. https://doi.org/10.3390/ijms23169148
Koguchi D, Matsumoto K, Shiba I, Harano T, Okuda S, Mori K, Hirano S, Kitajima K, Ikeda M, Iwamura M. Diagnostic Potential of Circulating Tumor Cells, Urinary MicroRNA, and Urinary Cell-Free DNA for Bladder Cancer: A Review. International Journal of Molecular Sciences. 2022; 23(16):9148. https://doi.org/10.3390/ijms23169148
Chicago/Turabian StyleKoguchi, Dai, Kazumasa Matsumoto, Izuru Shiba, Takahiro Harano, Satoshi Okuda, Kohei Mori, Shuhei Hirano, Kazuki Kitajima, Masaomi Ikeda, and Masatsugu Iwamura. 2022. "Diagnostic Potential of Circulating Tumor Cells, Urinary MicroRNA, and Urinary Cell-Free DNA for Bladder Cancer: A Review" International Journal of Molecular Sciences 23, no. 16: 9148. https://doi.org/10.3390/ijms23169148
APA StyleKoguchi, D., Matsumoto, K., Shiba, I., Harano, T., Okuda, S., Mori, K., Hirano, S., Kitajima, K., Ikeda, M., & Iwamura, M. (2022). Diagnostic Potential of Circulating Tumor Cells, Urinary MicroRNA, and Urinary Cell-Free DNA for Bladder Cancer: A Review. International Journal of Molecular Sciences, 23(16), 9148. https://doi.org/10.3390/ijms23169148