Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust
Abstract
:1. Introduction
2. Results
2.1. Sequence Analysis of SchgrDib and SchgrSad
2.2. Tissue Distribution and Developmental Transcript Profile during the First Gonadotrophic Cycle
2.3. RNA Interference of the Individual Halloween Genes
2.3.1. Knockdown Efficiency and Effect on Transcript Levels of Target Genes
2.3.2. Observations of Oocyte Size, Mating, Oviposition and Hatching
2.4. RNA Interference of Halloween Gene Combinations
2.4.1. Knockdown Efficiency and Effect on Transcript Levels of Target Genes
2.4.2. Observations of Oocyte Size, Mating, Oviposition and Hatching
3. Discussion
3.1. Characteristics and Expression Patterns of SchgrDib, SchgrSad and SchgrShd
3.2. Halloween Gene Expression Is Crucial in Female S. gregaria Reproductive Physiology Affecting Egg Shape, Oviposition and Hatching
3.3. Cross-Talk between Ecdysteroids and Other Hormonal Pathways
4. Materials and Methods
4.1. Rearing of Animals
4.2. Sequence Analysis of SchgrDib and SchgrSad
4.3. Tissue Collection and RNA Extraction
4.4. Quantitative Real-Time PCR
4.5. Ecdysteroid Measurements Using an Enzyme Immunoassay
4.6. RNA Interference Experiments
4.7. Oocyte Size, Copulation Behavior, Oviposition and Hatching
4.8. Visualisation of the Follicle Epithelium Cell Nuclei
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Reference genes | Forward primer | Reverse primer |
---|---|---|
α-tubulin1A | 5′-TGACAATGAGGCCATCTATG-3′ | 5′-TGCTTCCATACCCAGGAATGA-3′ |
CG13220 | 5′-TGTTCAGTTTTGGCTCTGTTCTGA-3′ | 5′-ACTGTTCTCCGGCAGAATGC-3′ |
Ubi | 5′-GACTTTGAGGTGTGGCGTAG-3′ | 5′-GGATCACAAACACAGAACGA-3′ |
RP49 | 5′-CGCTACAAGAAGCTTAAGAGGTCAT-3′ | 5′-CCTACGGCGCACTCTGTTG-3′ |
β-actin | 5′-AATTACCATTGGTAACGAGCGATT-3′ | 5′-TGCTTCCATACCCAGGAATGA-3′ |
EF1α | 5′-GATGCTCCAGGCCACAGAGA-3′ | 5′-TGCACAGTCGGCCTGTGAT-3′ |
GAPDH | 5′-GTCTGATGACAACAGTGCAT-3′ | 5′-GTCCATCACGCCACAACTTTC-3′ |
Target genes | Forward primer | Reverse primer |
SchgrSpo | 5′-CAACATCTTCACCAGCTACATGTG-3′ | 5′-GGGTCGTCGTAGTCGAAGGA-3′ |
SchgrPhm | 5′-CGCAGAGCCCGGACAAC-3′ | 5′-CGAACATGTCGGCCATGA-3′ |
SchgrDib | 5′-CCCAGGCTGCTATCGAGACT-3′ | 5′-CGACGACCAGGCCTATGTAGTT-3′ |
SchgrSad | 5′-ATCGTGGCCGAGATTACGAA-3′ | 5′-AGCACCATCTCCGGATCCT-3′ |
SchgrShd | 5′-CCGCCGTCATGACTTCATA-3′ | 5′-GTGAGCTCCCAAGCGTGG-3′ |
SchgrEcR | 5′-AAGGTTGATAATGCGGAATATGC-3′ | 5′-GTGATGGGCGCTCTGAAAAT-3′ |
SchgrRXR | 5′-AATGCCTCGCTATGGGAATG-3′ | 5′-TCCTTTGTTCGCTGCCTTTC-3′ |
SchgrVg1 | 5′-CCGCTGAACATCACTGCAAT-3′ | 5′-ACTTGGGCCAAATGGATGAG-3′ |
SchgrVg2 | 5′-GCTACCCGCAATCTGTAAAATACA-3′ | 5′-CGACTGTGAAAGGGCATTGA-3′ |
SchgrKr-h1 | 5′-CTCCAAGACGTTCATCCAGAG-3′ | 5′-TGCTTGGAGCAGGTGAAG-3′ |
SchgrMet | 5′-GGTGCCTGAAGAGGAAGAAA-3′ | 5′-ATGGAGGTGATGAAGGAGAAAG-3′ |
Target Genes | Forward Primer | Reverse Primer |
---|---|---|
SchgrSpo | 5′-TAATACGACTCACTATAGGGAGA GTGGACTTCATGCCGTGGCT-3′ | 5′-TAATACGACTCACTATAGGGAGA AGGATGGTGGCCTCGGTGAA-3′ |
SchgrPhm | 5′-TAATACGACTCACTATAGGGAGA GCGCAACCTGGGCATGGTGAAGGC-3′ | 5′-TAATACGACTCACTATAGGGAGA CGGCGACGCCGATGAGCCTGGTGC-3′ |
SchgrDib | 5′-TAATACGACTCACTATAGGGAGA TAGCTGGAATGGACACAACATC-3′ | 5′-TAATACGACTCACTATAGGGAGA CTGGGTCTGGGAAATACTCTGG-3′ |
SchgrSad | 5′-TAATACGACTCACTATAGGGAGA CCTTCCTGTCGCGATACCT-3′ | 5′- TAATACGACTCACTATAGGGAGA GTCTCGGCGAGCTTCTGG-3′ |
SchgrShd | 5′-TAATACGACTCACTATAGGGAGA CTAGTGCCTCATGGCGCTC-3′ | 5′-TAATACGACTCACTATAGGGAGA TGAGGAGTTCAGGACTGTGGTTT-3′ |
GFP | 5′-TAATACGACTCACTATAGGGAGA AAGGTGATGCTACATACGGAA-3′ | 5′-TAATACGACTCACTATAGGGAGA ATCCCAGCAGCAGTTACAAAC-3′ |
References
- Delbecque, J.-P.; Weidner, K.; Hoffmann, K.H. Alternative Sites for Ecdysteroid Production in Insects. Invertebr. Reprod. Dev. 1990, 18, 29–42. [Google Scholar] [CrossRef]
- Gilbert, L.I.; Rybczynski, R.; Warren, J.T. Control and Biochemical Nature of the Ecdysteroidogenic Pathway. Annu. Rev. Entomol. 2002, 47, 883–916. [Google Scholar] [CrossRef] [PubMed]
- Lafont, R.; Koolman, J. Diversity of Ecdysteroids in Animal Species. In Ecdysone: Structures and Functions; Springer: Dordrecht, The Netherlands, 2009; pp. 47–71. [Google Scholar]
- Yao, T.P.; Forman, B.M.; Jiang, Z.; Cherbas, L.; Chen, J.D.; McKeown, M.; Cherbas, P.; Evans, R.M. Functional Ecdysone Receptor Is the Product of EcR and Ultraspiracle Genes. Nature 1993, 366, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Richards, G. Sequential Gene Activation by Ecdysone in Polytene Chromosomes of Drosophila melanogaster, III. Consequences of Ecdysone Withdrawal. Dev. Biol. 1976, 54, 241–255. [Google Scholar] [CrossRef]
- Urness, L.D.; Thummel, C.S. Molecular Interactions within the Ecdysone Regulatory Hierarchy: DNA Binding Properties of the Drosophila Ecdysone-Inducible E74A Protein. Cell 1990, 63, 47–61. [Google Scholar] [CrossRef]
- Hill, R.J.; Segraves, W.A.; Choi, D.; Underwood, P.A.; Macavoy, E. The Reaction with Polytene Chromosomes of Antibodies Raised against Drosophila E75A Protein. Insect Biochem. Mol. Biol. 1993, 23, 99–104. [Google Scholar] [CrossRef]
- Guay, P.S.; Guild, G.M. The Ecdysone-Induced Puffing Cascade in Drosophila Salivary Glands: A Broad-Comples Early Gene Regulates Intermolt and Late Gene Transcription. Genetics 1991, 129, 169–175. [Google Scholar] [CrossRef]
- Stone, B.L.; Thummel, C.S. The Drosophila 78C Early Late Puff Contains E78, an Ecdysone-Inducible Gene That Encodes a Novel Member of the Nuclear Hormone Receptor Superfamily. Cell 1993, 75, 307–320. [Google Scholar] [CrossRef]
- Koelle, M.R.; Segraves, W.A.; Hogness, D.S. DHR3: A Drosophila Steroid Receptor Homolog. Proc. Natl. Acad. Sci. USA 1992, 89, 6167–6171. [Google Scholar] [CrossRef]
- Huet, F.; Ruiz, C.; Richards, G. Sequential Gene Activation by Ecdysone in Drosophila melanogaster: The Hierarchical Equivalence of Early and Early Late Genes. Development 1995, 121, 1195–1204. [Google Scholar] [CrossRef]
- White, K.P.; Hurban, P.; Watanabe, T.; Hogness, D.S. Coordination of Drosophila Metamorphosis by Two Ecdysone-Induced Nuclear Receptors. Science 1997, 276, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Mansilla, A.; Martín, F.A.; Martín, D.; Ferrús, A. Ligand-Independent Requirements of Steroid Receptors EcR and USP for Cell Survival. Cell Death Differ. 2016, 23, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Rewitz, K.F.; Shinoda, T.; Itoyama, K.; Petryk, A.; Rybczynski, R.; Jarcho, M.; Warren, J.T.; Marqués, G.; Shimell, M.J.; et al. Spook and Spookier Code for Stage-Specific Components of the Ecdysone Biosynthetic Pathway in Diptera. Dev. Biol. 2006, 298, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.T.; O’Connor, M.B.; Gilbert, L.I. Studies on the Black Box: Incorporation of 3-Oxo-7-Dehydrocholesterol into Ecdysteroids by Drosophila melanogaster and Manduca sexta. Insect Biochem. Mol. Biol. 2009, 39, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Niwa, R.; Matsuda, T.; Yoshiyama, T.; Namiki, T.; Mita, K.; Fujimoto, Y.; Kataoka, H. CYP306A1, a Cytochrome P450 Enzyme, Is Essential for Ecdysteroid Biosynthesis in the Prothoracic Glands of Bombyx and Drosophila. J. Biol. Chem. 2004, 279, 35942–35949. [Google Scholar] [CrossRef]
- Warren, J.T.; Petryk, A.; Marqués, G.; Parvy, J.P.; Shinoda, T.; Itoyama, K.; Kobayashi, J.; Jarcho, M.; Li, Y.; O’Connor, M.B.; et al. Phantom Encodes the 25-Hydroxylase of Drosophila melanogaster and Bombyx mori: A P450 Enzyme Critical in Ecdysone Biosynthesis. Insect Biochem. Mol. Biol. 2004, 34, 991–1010. [Google Scholar] [CrossRef]
- Chávez, V.M.; Marqués, G.; Delbecque, J.P.; Kobayashi, K.; Hollingsworth, M.; Burr, J.; Natzle, J.E.; O’Connor, M.B. The Drosophila Disembodied Gene Controls Late Embryonic Morphogenesis and Codes for a Cytochrome P450 Enzyme That Regulates Embryonic Ecdysone Levels. Development 2000, 127, 4115–4126. [Google Scholar] [CrossRef]
- Warren, J.T.; Petryk, A.; Marqués, G.; Jarcho, M.; Parvy, J.; Dauphin-villemant, C.; O’Connor, M.B.; Gilbert, L.I. Molecular and Biochemical Characterization of Two P450 Enzymes in the Ecdysteroidogenic Pathway of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2002, 99, 11043–11048. [Google Scholar] [CrossRef]
- Petryk, A.; Warren, J.T.; Marqués, G.; Jarcho, M.P.; Gilbert, L.I.; Kahler, J.; Parvy, J.P.; Li, Y.; Dauphin-Villemant, C.; O’Connor, M.B. Shade Is the Drosophila P450 Enzyme That Mediates the Hydroxylation of Ecdysone to the Steroid Insect Molting Hormone 20-Hydroxyecdysone. Proc. Natl. Acad. Sci. USA 2003, 100, 13773–13778. [Google Scholar] [CrossRef]
- Gilbert, L.I.; Warren, J.T. A Molecular Genetic Approach to the Biosynthesis of the Insect Steroid Molting Hormone. Vitam. Horm. 2005, 73, 31–57. [Google Scholar] [CrossRef]
- Lafont, R.; Dauphin–Villemant, C.; Warren, J.T.; Rees, H. Ecdysteroid Chemistry and Biochemistry. In Comprehensive Molecular Insect Science; Gilbert, L.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 125–195. ISBN 978-0-444-51924-5. [Google Scholar]
- Rewitz, K.F.; Rybczynski, R.; Warren, J.T.; Gilbert, L.I. The Halloween Genes Code for Cytochrome P450 Enzymes Mediating Synthesis of the Insect Moulting Hormone. Biochem. Soc. Trans. 2006, 34, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Girardie, J.; Girardie, A. Endocrine Regulation of Oogenesis in Insects. Ann. N. Y. Acad. Sci. 1998, 839, 118–122. [Google Scholar] [CrossRef]
- Gancz, D.; Lengil, T.; Gilboa, L. Coordinated Regulation of Niche and Stem Cell Precursors by Hormonal Signaling. PLoS Biol. 2011, 9, e1001202. [Google Scholar] [CrossRef] [PubMed]
- Morris, L.X.; Spradling, A.C. Steroid Signaling within Drosophila Ovarian Epithelial Cells Sex-Specifically Modulates Early Germ Cell Development and Meiotic Entry. PLoS ONE 2012, 7, e46109. [Google Scholar] [CrossRef]
- Terashima, J.; Bownes, M. Translating Available Food into the Number of Eggs Laid by Drosophila melanogaster. Genet. Soc. Am. 2004, 167, 1711–1719. [Google Scholar] [CrossRef]
- Buszczak, M.; Freeman, M.R.; Carlson, J.R.; Bender, M.; Cooley, L.; Segraves, W.A. Ecdysone Response Genes Govern Egg Chamber Development during Mid-Oogenesis in Drosophila. Development 1999, 126, 4581–4589. [Google Scholar] [CrossRef]
- Carney, G.E.; Bender, M. The Drosophila Ecdysone Receptor (EcR) Gene Is Required Maternally for Normal Oogenesis. Genetics 2000, 154, 1203–1211. [Google Scholar] [CrossRef]
- Oro, A.E.; McKeown, M.; Evans, R.M. The Drosophila Retinoid X Receptor Homolog Ultraspiracle Functions in Both Female Reproduction and Eye Morphogenesis. Development 1992, 115, 449–462. [Google Scholar] [CrossRef]
- Belles, X.; Piulachs, M.-D. Ecdysone Signalling and Ovarian Development in Insects: From Stem Cells to Ovarian Follicle Formation. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2015, 1849, 181–186. [Google Scholar] [CrossRef]
- Swevers, L. An Update on Ecdysone Signaling during Insect Oogenesis. Curr. Opin. Insect Sci. 2018, 31, 8–13. [Google Scholar] [CrossRef]
- Lagueux, M.; Hirn, M.; Hoffmann, J.A. Ecdysone during Ovarian Development in Locusta migratoria. J. Insect Physiol. 1977, 23, 109–119. [Google Scholar] [CrossRef]
- Lanot, R.; Thiebold, J.; Lagueux, M.; Goltzene, F.; Hoffmann, J.A. Involvement of Ecdysone in the Control of Meiotic Reinitiation in Oocytes of Locusta migratoria (Insecta, Orthoptera). Dev. Biol. 1987, 121, 174–181. [Google Scholar] [CrossRef]
- Cruz, J.; Mané-Padrós, D.; Bellés, X.; Martín, D. Functions of the Ecdysone Receptor Isoform-A in the Hemimetabolous Insect Blattella Germanica Revealed by Systemic RNAi in Vivo. Dev. Biol. 2006, 297, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Bellés, X.; Cassier, P.; Cerdá, X.; Pascual, N.; André, M.; Rósso, Y.; Piulachs, M.D. Induction of Choriogenesis by 20-Hydroxyecdysone in the German Cockroach. Tissue Cell 1993, 25, 195–204. [Google Scholar] [CrossRef]
- Lenaerts, C.; Marchal, E.; Peeters, P.; Vanden Broeck, J. The Ecdysone Receptor Complex Is Essential for the Reproductive Success in the Female Desert Locust, Schistocerca gregaria. Sci. Rep. 2019, 9, 15. [Google Scholar] [CrossRef]
- Marchal, E.; Verlinden, H.; Badisco, L.; Van Wielendaele, P.; Vanden Broeck, J. RNAi-Mediated Knockdown of Shade Negatively Affects Ecdysone-20-Hydroxylation in the Desert Locust, Schistocerca gregaria. J. Insect Physiol. 2012, 58, 890–896. [Google Scholar] [CrossRef]
- Marchal, E.; Badisco, L.; Verlinden, H.; Vandersmissen, T.; Van Soest, S.; Van Wielendaele, P.; Vanden Broeck, J. Role of the Halloween Genes, Spook and Phantom in Ecdysteroidogenesis in the Desert Locust, Schistocerca gregaria. J. Insect Physiol. 2011, 57, 1240–1248. [Google Scholar] [CrossRef]
- Verlinden, H.; Sterck, L.; Li, J.; Li, Z.; Yssel, A.; Gansemans, Y.; Verdonck, R.; Holtof, M.; Song, H.; Behmer, S.T.; et al. First Draft Genome Assembly of the Desert Locust, Schistocerca gregaria. F1000Res 2020, 9, 775. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, X.; Wu, H.; Silver, K.; Zhang, J.; Ma, E.; Yan, K. Transcriptome-Wide Survey, Gene Expression Profiling and Exogenous Chemical-Induced Transcriptional Responses of Cytochrome P450 Superfamily Genes in Migratory Locust (Locusta migratoria). Insect Biochem. Mol. Biol. 2018, 100, 66–77. [Google Scholar] [CrossRef]
- Niwa, R.; Sakudoh, T.; Namiki, T.; Saida, K.; Fujimoto, Y.; Kataoka, H. The Ecdysteroidogenic P450 Cyp302a1/Disembodied from the Silkworm, Bombyx mori, Is Transcriptionally Regulated by Prothoracicotropic Hormone. Insect Mol. Biol. 2005, 14, 563–571. [Google Scholar] [CrossRef]
- Pondeville, E.; Maria, A.; Jacques, J.C.; Bourgouin, C.; Dauphin-Villemant, C. Anopheles Gambiae Males Produce and Transfer the Vitellogenic Steroid Hormone 20-Hydroxyecdysone to Females during Mating. Proc. Natl. Acad. Sci. USA 2008, 105, 19631–19636. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Y.; Zhao, Q.; Tang, S.; Huang, J.; Shen, X. Expression Profile of Several Genes on Ecdysteroidogenic Pathway Related to Diapause in Pupal Stage of Bombyx mori Bivoltine Strain. Gene 2019, 707, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Rewitz, K.F.; O’Connor, M.B.; Gilbert, L.I. Molecular Evolution of the Insect Halloween Family of Cytochrome P450s: Phylogeny, Gene Organization and Functional Conservation. Insect Biochem. Mol. Biol. 2007, 37, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Piepho, H. Letters in Mean Comparisons: What They Do and Don’t Mean. Agron. J. 2018, 110, 431–434. [Google Scholar] [CrossRef]
- Feyereisen, R. Insect Cytochrome P450. In Comprehensive Molecular Insect Science; Gilbert, L.I., Iatrou, K., Gill, S., Eds.; Elsevier: Oxford, UK, 2005; Volume 4, pp. 1–77. ISBN 0-44-451646-8. [Google Scholar]
- Werck-Reichhart, D.; Feyereisen, R. Cytochromes P450: A Success Story. Genome Biol 2000, 1, 3003.1–3003.9. [Google Scholar] [CrossRef]
- Tawfik, A.I.; Vedrová, A.; Li, W.; Sehnal, F.; Obeng-Ofori, D. Haemolymph Ecdysteroids and the Prothoracic Glands in the Solitary and Gregarious Adults of Schistocerca gregaria. J. Insect Physiol. 1997, 43, 485–493. [Google Scholar] [CrossRef]
- Huang, X.; Warren, J.T.; Gilbert, L.I. New Players in the Regulation of Ecdysone Biosynthesis. J. Genet. Genom. 2008, 35, 1–10. [Google Scholar] [CrossRef]
- Rewitz, K.F.; Rybczynski, R.; Warren, J.T.; Gilbert, L.I. Identification, Characterization and Developmental Expression of Halloween Genes Encoding P450 Enzymes Mediating Ecdysone Biosynthesis in the Tobacco Hornworm, Manduca Sexta. Insect Biochem. Mol. Biol. 2006, 36, 188–199. [Google Scholar] [CrossRef]
- Sieglaff, D.H.; Duncan, K.A.; Brown, M.R. Expression of Genes Encoding Proteins Involved in Ecdysteroidogenesis in the Female Mosquito, Aedes Aegypti. Insect Biochem. Mol. Biol. 2005, 35, 471–490. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, Y.-Z.; Ogihara, M.H.; Takeshima, M.; Fujinaga, D.; Liu, C.-W.; Zhu, Z.; Kataoka, H.; Bao, Y.-Y. Functional Analysis of Ecdysteroid Biosynthetic Enzymes of the Rice Planthopper, Nilaparvata Lugens. Insect Biochem. Mol. Biol. 2020, 123, 103428. [Google Scholar] [CrossRef]
- Ramos, S.; Chelemen, F.; Pagone, V.; Elshaer, N.; Irles, P.; Piulachs, M.D. Eyes Absent in the Cockroach Panoistic Ovaries Regulates Proliferation and Differentiation through Ecdysone Signalling. Insect Biochem. Mol. Biol. 2020, 123, 103407. [Google Scholar] [CrossRef] [PubMed]
- Irles, P.; Elshaer, N.; Piulachs, M.-D. The Notch Pathway Regulates Both the Proliferation and Differentiation of Follicular Cells in the Panoistic Ovary of Blattella Germanica. Open Biol. 2016, 6, 150197. [Google Scholar] [CrossRef] [PubMed]
- Bäumer, D.; Ströhlein, N.M.; Schoppmeier, M. Opposing Effects of Notch-Signaling in Maintaining the Proliferative State of Follicle Cells in the Telotrophic Ovary of the Beetle Tribolium. Front. Zool. 2012, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Lai, E.C. Notch Signaling: Control of Cell Communication and Cell Fate. Development 2004, 131, 965 LP–973 LP. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.K.; Deng, W.-M.; Holder, K.; Tworoger, M.; Clegg, N.; Ruohola-Baker, H. Role of Notch Pathway in Terminal Follicle Cell Differentiation during Drosophila Oogenesis. Dev. Genes Evol. 1999, 209, 301–311. [Google Scholar] [CrossRef]
- Ruohola, H.; Bremer, K.A.; Baker, D.; Swedlow, J.R.; Jan, L.Y.; Jan, Y.N. Role of Neurogenic Genes in Establishment of Follicle Cell Fate and Oocyte Polarity during Oogenesis in Drosophila. Cell 1991, 66, 433–449. [Google Scholar] [CrossRef]
- Wilson, M.J.; Helen, A.; Dearden, P.K. The Evolution of Oocyte Patterning in Insects: Multiple Cell-signaling Pathways Are Active during Honeybee Oogenesis and Are Likely to Play a Role in Axis Patterning. Evol. Dev. 2011, 13, 127–137. [Google Scholar] [CrossRef]
- Yatsenko, A.S.; Shcherbata, H.R. Stereotypical Architecture of the Stem Cell Niche Is Spatiotemporally Established by MiR-125-Dependent Coordination of Notch and Steroid Signaling. Development 2018, 145, dev159178. [Google Scholar] [CrossRef]
- Kumar, R.; Mota, L.C.; Litoff, E.J.; Rooney, J.P.; Boswell, W.T.; Courter, E.; Henderson, C.M.; Hernandez, J.P.; Corton, J.C.; Moore, D.D.; et al. Compensatory Changes in CYP Expression in Three Different Toxicology Mouse Models: CAR-Null, Cyp3a-Null, and Cyp2b9/10/13-Null Mice. PLoS ONE 2017, 12, e0174355. [Google Scholar] [CrossRef]
- Rossi, A.; Kontarakis, Z.; Gerri, C.; Nolte, H.; Hölper, S.; Krüger, M.; Stainier, D.Y.R. Genetic Compensation Induced by Deleterious Mutations but Not Gene Knockdowns. Nature 2015, 524, 230–233. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, W.; Li, Z.; Ma, L.; Yu, J.; Wang, H.; Liu, Z.; Xu, B. Identification and Characterization of Three New Cytochrome P450 Genes and the Use of RNA Interference to Evaluate Their Roles in Antioxidant Defense in Apis Cerana Cerana Fabricius. Front. Physiol. 2018, 9, 1608. [Google Scholar] [CrossRef] [PubMed]
- Berrigan, D. The Allometry of Egg Size and Number in Insects. Oikos 1991, 60, 313. [Google Scholar] [CrossRef]
- Maeno, K.O.; Piou, C.; Ghaout, S. The Desert Locust, Schistocerca gregaria, Plastically Manipulates Egg Size by Regulating Both Egg Numbers and Production Rate According to Population Density. J. Insect Physiol. 2020, 122, 104020. [Google Scholar] [CrossRef]
- Tawfik, A.I.; Vedrová, A.; Sehnal, F. Ecdysteroids during Ovarian Development and Embryogenesis in Solitary and Gregarious Schistocerca gregaria. Arch. Insect Biochem. Physiol. 1999, 41, 134–143. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Sheng, Z.; Sun, Z.; Palli, S.R. Ecdysteroid Regulation of Ovarian Growth and Oocyte Maturation in the Red Flour Beetle, Tribolium Castaneum. Insect Biochem. Mol. Biol. 2010, 40, 429–439. [Google Scholar] [CrossRef]
- Grbic, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Rouze, P.; Grbic, V.; Osborne, E.J.; Dermauw, W.; Ngoc, P.C.T.; Orteho, F.; et al. The Genome of Tetranychus Urticae Reveals Herbivorous Pest Adaptations. Nature 2011, 479, 487–492. [Google Scholar] [CrossRef]
- Tawfik, A.I.; Tanaka, Y.; Tanaka, S. Possible Involvement of Ecdysteroids in Photoperiodically Induced Suppresion of Ovarian Development in a Japanese Strain of the Migratory Locust, Locusta migratoria. J. Insect Physiol. 2002, 48, 411–418. [Google Scholar] [CrossRef]
- Bownes, M.; Shirras, A.; Blair, M.; Collins, J.; Coulson, A. Evidence That Insect Embryogenesis Is Regulated by Ecdysteroids Released from Yolk Proteins. Proc. Natl. Acad. Sci. USA 1988, 85, 1554–1557. [Google Scholar] [CrossRef]
- Isaac, R.E.; Rees, H.H. Isolation and Identification of Ecdysteroid Phosphates and Acetylecdysteroid Phosphates from Developing Eggs of the Locust, Schistocerca gregaria. Biochem. J. 1984, 221, 459–464. [Google Scholar] [CrossRef]
- Lenaerts, C.; Van Wielendaele, P.; Peeters, P.; Vanden Broeck, J.; Marchal, E. Ecdysteroid Signalling Components in Metamorphosis and Development of the Desert Locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 2016, 75, 10–23. [Google Scholar] [CrossRef]
- Hult, E.F.; Huang, J.; Marchal, E.; Lam, J.; Tobe, S.S. RXR/USP and EcR Are Critical for the Regulation of Reproduction and the Control of JH Biosynthesis in Diploptera Punctata. J. Insect Physiol. 2015, 80, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, M.H.; Hikiba, J.; Iga, M.; Kataoka, H. Negative Regulation of Juvenile Hormone Analog for Ecdysteroidogenic Enzymes. J. Insect Physiol. 2015, 80, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Konopova, B.; Smykal, V.; Jindra, M. Common and Distinct Roles of Juvenile Hormone Signaling Genes in Metamorphosis of Holometabolous and Hemimetabolous Insects. PLoS ONE 2011, 6, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Lozano, J.; Belles, X. Conserved Repressive Function of Krüppel Homolog 1 on Insect Metamorphosis in Hemimetabolous and Holometabolous Species. Sci. Rep. 2011, 1, 1–7. [Google Scholar] [CrossRef]
- Minakuchi, C.; Namiki, T.; Shinoda, T. Krüppel Homolog 1, an Early Juvenile Hormone-Response Gene Downstream of Methoprene-Tolerant, Mediates Its Anti-Metamorphic Action in the Red Flour BeetleTribolium Castaneum. Dev. Biol. 2009, 325, 341–350. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, C.; Liu, C.; Song, Q.; Zhou, S. Rhythmic Change of Adipokinetic Hormones Diurnally Regulates Locust Vitellogenesis and Egg Development. Insect Mol. Biol. 2020, 29, 283–292. [Google Scholar] [CrossRef]
- Wallace, I.M.; O’Sullivan, O.; Higgins, D.G.; Notredame, C. M-Coffee: Combining Multiple Sequence Alignment Methods with T-Coffee. Nucleic Acids Res. 2006, 34, 1692–1699. [Google Scholar] [CrossRef]
- Lenaerts, C.; Palmans, J.; Marchal, E.; Verdonck, R.; Vanden Broeck, J. Role of the Venus Kinase Receptor in the Female Reproductive Physiology of the Desert Locust, Schistocerca gregaria. Sci. Rep. 2017, 7, 11730. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internat Control Genes. Genome Biol. 2002, 3, 1–12. [Google Scholar] [CrossRef]
- Van Hiel, M.B.; Van Wielendaele, P.; Temmerman, L.; Van Soest, S.; Vuerinckx, K.; Huybrechts, R.; Vanden Broeck, J.; Simonet, G. Identification and Validation of Housekeeping Genes in Brains of the Desert Locust Schistocerca gregaria under Different Developmental Conditions. BMC Mol. Biol. 2009, 10, 56. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. QBase Relative Quantification Framework and Software for Management and Automated Analysis of Real-Time Quantitative PCR Data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schellens, S.; Lenaerts, C.; Pérez Baca, M.d.R.; Cools, D.; Peeters, P.; Marchal, E.; Vanden Broeck, J. Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. Int. J. Mol. Sci. 2022, 23, 9232. https://doi.org/10.3390/ijms23169232
Schellens S, Lenaerts C, Pérez Baca MdR, Cools D, Peeters P, Marchal E, Vanden Broeck J. Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. International Journal of Molecular Sciences. 2022; 23(16):9232. https://doi.org/10.3390/ijms23169232
Chicago/Turabian StyleSchellens, Sam, Cynthia Lenaerts, María del Rocío Pérez Baca, Dorien Cools, Paulien Peeters, Elisabeth Marchal, and Jozef Vanden Broeck. 2022. "Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust" International Journal of Molecular Sciences 23, no. 16: 9232. https://doi.org/10.3390/ijms23169232
APA StyleSchellens, S., Lenaerts, C., Pérez Baca, M. d. R., Cools, D., Peeters, P., Marchal, E., & Vanden Broeck, J. (2022). Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. International Journal of Molecular Sciences, 23(16), 9232. https://doi.org/10.3390/ijms23169232