Molecular Mechanisms and Pathophysiology of Acute Stroke: Emphasis on Biomarkers in the Different Stroke Subtypes
Author Contributions
Funding
Conflicts of Interest
References
- WHO. The Top 10 Causes of Death 9 December 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 30 March 2022).
- Arboix, A.; Miguel, M.; Císcar, E.; García-Eroles, L.; Massons, J.; Balcells, M. Cardiovascular risk factors in patients aged 85 or older with ischemic stroke. Clin. Neurol. Neurosurg. 2006, 108, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack; A guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef] [PubMed]
- Arboix, A.; Alvarez-Sabin, J.; Soler, L. Stroke. Classification and diagnostic criteria. Ad hoc Editorial Committee of the Task Force on Cerebrovascular Diseases of SEN. Neurologia 1998, 13 (Suppl. S3), 3–10. (In Spanish) [Google Scholar] [PubMed]
- Mao, R.; Zong, N.; Hu, Y.; Chen, Y.; Xu, Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci. Bull. 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Andone, S.; Bajko, Z.; Motataianu, A.; Mosora, O.; Balasa, R. The Role of Biomarkers in Atherothrombotic Stroke—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 9032. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-X.; Springer, J.E.; Hatton, K.W. MicroRNAs as Biomarkers for Predicting Complications Following Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2021, 22, 9492. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Shin, K.Y.; Chang, K.-A. Potential Biomarkers for Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 602. [Google Scholar] [CrossRef] [PubMed]
- Rudilosso, S.; Rodríguez-Vázquez, A.; Urra, X.; Arboix, A. The potential impact of neuroimaging and traslational research on the clinical management of lacunar stroke. Int. J. Mol. Sci. 2022, 23, 1497. [Google Scholar] [CrossRef] [PubMed]
- Cullell, N.; Gallego-Fábrega, C.; Cárcel-Márquez, J.; Muiño, E.; Llucià-Carol, L.; Lledós, M.; Martín-Campos, J.M.; Molina, J.; Casas, L.; Almería, M.; et al. ICA1L is associated with small vessel disease: A proteome-wide association study in small vessel stroke and intracerebral haemorrhage. Int. J. Mol. Sci. 2022, 23, 3161. [Google Scholar] [CrossRef] [PubMed]
- Aramburu-Núñez, M.; Custodia, A.; Pérez-Mato, M.; Iglesias-Rey, R.; Campos, F.; Castillo, J.; Ouro, A.; Romaus-Sanjurjo, D.; Sobrino, T. Stress granules and acute ischemic stroke: Beyond mRNA translation. Int. J. Mol. Sci. 2022, 23, 3747. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Perich, L.; Puigoriol-Illamola, D.; Bashir, S.; Terceño, M.; Silva, Y.; Gubern-Mérida, C.; Serena, J. Clinical parameters and epigenetic biomarkers of plaque vulnerability in patients with carotid stenosis. Int. J. Mol. Sci. 2022, 23, 5149. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Fabrega, C.; Muiño, E.; Cárcel-Márquez, J.; Llucià-Carol, L.; Lledós, M.; Martín-Campos, J.M.; Cullell, N.; Fernández-Cadenas, I. Genome-Wide studies in ischemic stroke. Are genetics only useful for finding genes? Int. J. Mol. Sci. 2022, 23, 6840. [Google Scholar] [CrossRef] [PubMed]
- Giralt-Steinhauer, E.; Jiménez-Baladó, J.; Fernández-Pérez, I.; Rey, L.A.; Rodríguez-Campello, A.; Ois, A.; Cuadrado-Godia, E.; Jiménez-Conde, J.; Roquer, J. Genetics and epigenetics of spontaneous intracerebral hemorrhage. Int. J. Mol. Sci. 2022, 23, 6479. [Google Scholar] [CrossRef] [PubMed]
- Faura, J.; Ramiro, L.; Simats, A.; Ma, F.; Penalba, A.; Gasull, T.; Rosell, A.; Montaner, J.; Bustamante, A. Evaluation and Characterization of Post-Stroke Lung Damage in a Murine Model of Cerebral Ischemia. Int. J. Mol. Sci. 2022, 23, 8093. [Google Scholar] [CrossRef] [PubMed]
- Grau-Olivares, M.; Arboix, A.; Junqué, C.; Arenaza-Urquijo, E.M.; Rovira, M.; Bartrés-Faz, D. Progressive gray matter atrophy in lacunar patients with vascular mild cognitive impairment. Cerebrovasc. Dis. 2010, 30, 157–166. [Google Scholar] [CrossRef]
- Arboix, A.; Garcia-Eroles, L.; Massons, J.; Oliveres, M.; Targa, C. Hemorrhagic lacunar stroke. Cerebrovasc. Dis. 2000, 10, 229–234. [Google Scholar] [CrossRef]
- Chung, J.; Marini, S.; Pera, J.; Norrving, B.; Jimenez-Conde, J.; Roquer, J.; Fernandez-Cadenas, I.; Tirschwell, D.L.; Selim, M.; Brown, D.L.; et al. Genome-Wide Association Study of Cerebral Small Vessel Disease Reveals Established and Novel Loci. Brain 2019, 142, 3176–3189. [Google Scholar] [CrossRef] [PubMed]
Authors | I/H | Stroke Subtype | Topic | Characteristic of the Article | Conclusions |
---|---|---|---|---|---|
Andone et al. [6] | I | Atherothrombotic ischemic stroke | Protein/amino acid-related blood biomarkers in atherothrombotic stroke. | Systematic review | Authors identified 23 biomarkers, including C-reactive protein and homocysteine, strongly related to atherothrombotic stroke and assessed their roles as risk factors, detection markers, predictors and therapeutic targets. They could be used as additional tools for etiological diagnosis. |
Wang et al. [7] | H | Aneurismal subarachnoid hemorrhage (aSAH) | MicroRNAs as biofluid biomarkers in aSAH management. | Update review | Biofluid MicroRNAs hold great potential as biomarkers for aSAH and its complications. |
Kim et al. [8] | I + H | Post-stroke cognitive impairment | Blood proteins as biomarkers for stroke, especially related to brain damage and cognitive decline. | Systematic review | Homocysteine, C-reactive protein, total cholesterol and LDL-cholesterol could be possible biomarkers in patients with post-stroke cognitive impairment. |
Rudilosso et al. [9] | I | Lacunar stroke | Neuroimaging and translational research | Update review | Improvement in the diagnostic work-up, including advanced imaging, is desirable in cerebral small vessel disease. Translational research is necessary to develop new treatments. |
Cullell et al. [10] | I + H | Small vessel strokes (SVS) and intracerebral hemorrhage (ICH). | Proteome-wide association study (PWAS) to integrate the genomic and proteomic data to discover the two main acute mechanisms of SVS and ICH. | Article | Identification an association at the proteomic level of ICA1L with SVS and non-lobar ICH. |
Aramburu-Núñez et al. [11] | I | Ischemic stroke | Stress granules dynamics | Update review | The study of the different molecules implicated in stress granules dynamics may have implications on a basic molecular level and also in the clinical application in stroke patients. |
Carballo-Perich et al. [12] | I | Atheromatous ischemic stroke | Epigenetic biomarkers of plaque vulnerability in carotid atherosclerosis. | Update review | At present it is not possible to determine which carotid atherosclerotic plaques will become symptomatic. Non-coding RNAs are, specifically, promising biomarker candidates of plaque vulnerability. |
Giralt-Steinhauer et al. [13] | H | Intracerebral Hemorrhage (ICH) | Genetics and epigenetics | Update review | Combining genomics information with epigenomics, transcriptomics, proteomics and metabolomics data offers a unique opportunity to enhance the understanding of the pathological processes related to ICH. |
Gallego-Fabrega et al. [14] | I | Ischemic stroke | Genome-wide association studies (GWAS) | Update review | The combination of GWAS data with bioinformatic analysis is a powerful tool to understand the biological mechanisms of complex diseases as ischemic stroke. |
Faura J et al. [15] | I | Ischemic stroke | Stroke-induced differential expression of specific proteins in lungs, brain and serum. | Article | Elucidates new molecules differentially expressed in the lung interphase after stroke and provides clues of new mechanisms underlying stroke-induced lung damage. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasull, T.; Arboix, A. Molecular Mechanisms and Pathophysiology of Acute Stroke: Emphasis on Biomarkers in the Different Stroke Subtypes. Int. J. Mol. Sci. 2022, 23, 9476. https://doi.org/10.3390/ijms23169476
Gasull T, Arboix A. Molecular Mechanisms and Pathophysiology of Acute Stroke: Emphasis on Biomarkers in the Different Stroke Subtypes. International Journal of Molecular Sciences. 2022; 23(16):9476. https://doi.org/10.3390/ijms23169476
Chicago/Turabian StyleGasull, Teresa, and Adrià Arboix. 2022. "Molecular Mechanisms and Pathophysiology of Acute Stroke: Emphasis on Biomarkers in the Different Stroke Subtypes" International Journal of Molecular Sciences 23, no. 16: 9476. https://doi.org/10.3390/ijms23169476
APA StyleGasull, T., & Arboix, A. (2022). Molecular Mechanisms and Pathophysiology of Acute Stroke: Emphasis on Biomarkers in the Different Stroke Subtypes. International Journal of Molecular Sciences, 23(16), 9476. https://doi.org/10.3390/ijms23169476