Differing Escape Responses of the Marine Bacterium Marinobacter adhaerens in the Presence of Planktonic vs. Surface-Associated Protist Grazers
Abstract
:1. Introduction
2. Results
2.1. Planktonic Predator Treatment
2.2. Surface-Attached Predator Treatment
3. Discussion
4. Materials and Methods
4.1. Organisms and Culture Media
4.2. Model System and Grazing Experiments
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, M.; Moore, E.; Höfle, M. Role of Microcolony Formation in the Protistan Grazing Defense of the Aquatic Bacterium Pseudomonas sp. MWH1. Microb. Ecol. 2000, 39, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar] [CrossRef]
- Sherr, E.B.; Sherr, B.F. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 2002, 81, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.W.; Hofle, M.G. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol. 2001, 35, 113–121. [Google Scholar] [CrossRef]
- Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 2005, 3, 537–546. [Google Scholar] [CrossRef]
- Corno, G.; Jürgens, K. Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient. Environ. Microbiol. 2008, 10, 2857–2871. [Google Scholar] [CrossRef]
- Kiørboe, T.; Tang, K.; Grossart, H.-P.; Ploug, H. Dynamics of Microbial Communities on Marine Snow Aggregates: Colonization, Growth, Detachment, and Grazing Mortality of Attached Bacteria. Appl. Environ. Microbiol. 2003, 69, 3036–3047. [Google Scholar] [CrossRef]
- Seiler, C.; Van Velzen, E.; Neu, T.; Gaedke, U.; Berendonk, T.U.; Weitere, M. Grazing resistance of bacterial biofilms: A matter of predators’ feeding trait. FEMS Microbiol. Ecol. 2017, 93, fix112. [Google Scholar] [CrossRef]
- Kats, L.B.; Dill, L.M. The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience 1998, 5, 361–394. [Google Scholar] [CrossRef]
- Thornton, D.C.D. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 2014, 49, 20–46. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.; Grossart, H.; Schweitzer, B.; Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 2002, 28, 175–211. [Google Scholar] [CrossRef]
- Garcia, S.L.; Salka, I.; Grossart, H.-P.; Warnecke, F. Depth-discrete profiles of bacterial communities reveal pronounced spatio-temporal dynamics related to lake stratification. Environ. Microbiol. Rep. 2013, 5, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Grossart, H.-P. Ecological consequences of bacterioplankton lifestyles: Changes in concepts are needed. Environ. Microbiol. Rep. 2010, 2, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Šimek, K.; Kasalicky, V.; Jezbera, J.; Horňák, K.; Nedoma, J.; Hahn, M.W.; Bass, D.; Jost, S.; Boenigk, J. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 2013, 7, 1519–1530. [Google Scholar] [CrossRef]
- Villalba, L.A.; Karnatak, R.; Grossart, H.; Wollrab, S. Flexible habitat choice of pelagic bacteria increases system stability and energy flow through the microbial loop. Limnol. Oceanogr. 2022, 67, 1402–1415. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Perga, M.-E.; Bruel, R.; Rodriguez, L.; Guénand, Y.; Bouffard, D. Storm impacts on alpine lakes: Antecedent weather conditions matter more than the event intensity. Glob. Chang. Biol. 2018, 24, 5004–5016. [Google Scholar] [CrossRef]
- Shabarova, T.; Salcher, M.M.; Porcal, P.; Znachor, P.; Nedoma, J.; Grossart, H.-P.; Seďa, J.; Hejzlar, J.; Šimek, K. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat. Microbiol. 2021, 6, 479–488. [Google Scholar] [CrossRef]
- Andersen, K.H.; Aksnes, D.L.; Berge, T.; Fiksen, Ø.; Visser, A. Modelling emergent trophic strategies in plankton. J. Plankton Res. 2015, 37, 862–868. [Google Scholar] [CrossRef]
- Boenigk, J.; Arndt, H. Bacterivory by heterotrophic flagellates: Community structure and feeding strategies. Antonie van Leeuwenhoek 2002, 81, 465–480. [Google Scholar] [CrossRef]
- Massana, R.; Del Campo, J.; Dinter, C.; Sommaruga, R. Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ. Microbiol. 2007, 9, 2660–2669. [Google Scholar] [CrossRef]
- Parry, J.D. Protozoan Grazing of Freshwater Biofilms. In Advances in Applied Microbiology; Laskin, A.I., Bennett, J.W., Gadd, G.M., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2004; Volume 54, pp. 167–196. [Google Scholar] [CrossRef]
- Handley, K.M.; Lloyd, J.R. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front. Microbiol. 2013, 4, 136. [Google Scholar] [CrossRef] [PubMed]
- Guillonneau, R.; Baraquet, C.; Molmeret, M. Marine Bacteria Display Different Escape Mechanisms When Facing Their Protozoan Predators. Microorganisms 2020, 8, 1982. [Google Scholar] [CrossRef] [PubMed]
- Corno, G.; Salka, I.; Pohlmann, K.; Hall, A.; Grossart, H. Interspecific interactions drive chitin and cellulose degradation by aquatic microorganisms. Aquat. Microb. Ecol. 2015, 76, 27–37. [Google Scholar] [CrossRef]
- Li, Y.-H.; Tian, X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors 2012, 12, 2519–2538. [Google Scholar] [CrossRef]
- Erken, M.; Weitere, M.; Kjelleberg, S.; McDougald, D. In situ grazing resistance of Vibrio cholerae in the marine environment. FEMS Microbiol. Ecol. 2011, 76, 504–512. [Google Scholar] [CrossRef]
- Stukel, M.R.; Ohman, M.D.; Kelly, T.B.; Biard, T. The Roles of Suspension-Feeding and Flux-Feeding Zooplankton as Gatekeepers of Particle Flux Into the Mesopelagic Ocean in the Northeast Pacific. Front. Mar. Sci. 2019, 6, 397. [Google Scholar] [CrossRef]
- Dickman, E.M.; Newell, J.M.; González, M.J.; Vanni, M.J. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc. Natl. Acad. Sci. USA 2008, 105, 18408–18412. [Google Scholar] [CrossRef]
- Sonnenschein, E.C.; Syit, D.A.; Grossart, H.-P.; Ullrich, M.S. Chemotaxis of Marinobacter adhaerens and Its Impact on Attachment to the Diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 2012, 78, 6900–6907. [Google Scholar] [CrossRef] [Green Version]
- Grossart, H.-P.; Schlingloff, A.; Bernhard, M.; Simon, M.; Brinkhoff, T. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol. Ecol. 2004, 47, 387–396. [Google Scholar] [CrossRef]
- Gärdes, A.; Kaeppel, E.C.; Shehzad, A.; Seebah, S.; Teeling, H.; Yarza, P.; Glöckner, F.O.; Grossart, H.-P.; Ullrich, M.S. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 2010, 3, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein, E.C.; Gärdes, A.; Seebah, S.; Torres-Monroy, I.; Grossart, H.-P.; Ullrich, M.S. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 2011, 87, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Kaeppel, E.C.; Gärdes, A.; Seebah, S.; Grossart, H.-P.; Ullrich, M.S. Marinobacter adhaerens sp. nov., prominent in aggregate formation with the diatom Thalassiosira weissflogii. Int. J. Syst. Evol. Microbiol. 2012, 62, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Berges, J.A.; Franklin, D.J.; Harrison, P.J. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 2001, 37, 1138–1145. [Google Scholar] [CrossRef]
- Fenchel, T.; Patterson, D.J. Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Mar. Microb. Food Web 1988, 3, 9–19. [Google Scholar]
- Reference. Culture Collection of Algae and Protists. Available online: http://www.ccap.ac.uk (accessed on 1 January 2017).
- Redfield, A.C. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton; James Johnstone Memorial Volume; University Press of Liverpool: Liverpool, UK, 1934; pp. 176–192. [Google Scholar]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Jaishankar, J.; Srivastava, P. Molecular Basis of Stationary Phase Survival and Applications. Front. Microbiol. 2017, 8, 2000. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalba, L.A.; Kasada, M.; Zoccarato, L.; Wollrab, S.; Grossart, H.P. Differing Escape Responses of the Marine Bacterium Marinobacter adhaerens in the Presence of Planktonic vs. Surface-Associated Protist Grazers. Int. J. Mol. Sci. 2022, 23, 10082. https://doi.org/10.3390/ijms231710082
Villalba LA, Kasada M, Zoccarato L, Wollrab S, Grossart HP. Differing Escape Responses of the Marine Bacterium Marinobacter adhaerens in the Presence of Planktonic vs. Surface-Associated Protist Grazers. International Journal of Molecular Sciences. 2022; 23(17):10082. https://doi.org/10.3390/ijms231710082
Chicago/Turabian StyleVillalba, Luis Alberto, Minoru Kasada, Luca Zoccarato, Sabine Wollrab, and Hans Peter Grossart. 2022. "Differing Escape Responses of the Marine Bacterium Marinobacter adhaerens in the Presence of Planktonic vs. Surface-Associated Protist Grazers" International Journal of Molecular Sciences 23, no. 17: 10082. https://doi.org/10.3390/ijms231710082
APA StyleVillalba, L. A., Kasada, M., Zoccarato, L., Wollrab, S., & Grossart, H. P. (2022). Differing Escape Responses of the Marine Bacterium Marinobacter adhaerens in the Presence of Planktonic vs. Surface-Associated Protist Grazers. International Journal of Molecular Sciences, 23(17), 10082. https://doi.org/10.3390/ijms231710082