Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. Part 1
2.1.1. Changes in the RBD-SD1 S-Protein due to Delta and Omicron Mutations
- The largest AABP in WT is K417 (1.216 e−) and mutated one is DV K478 (1.219 e−).
- The smallest AABP in WT is G446 (0.912 e−) and mutated one is OV A484 (0.934 e−).
- The largest NN-AABP in WT is in both N501 and Q498 (1.073 e−) and mutated one is DV K478 (1.217 e−).
- The smallest NN-AABP in WT is S371 (0.888 e−) and mutated one is OV F375 (0.917 e−).
- The largest NL-AABP in WT is K417 (0.203 e−) and mutated one is OV R493 (0.194 e−).
- The smallest NL-AABP in WT is T478 (0.001 e−) and mutated one is OV N477 (0.001 e−).
- The largest contribution from hydrogen bonds (HB) to total AABP in WT is K417 (0.203 e−) and in mutated one is OV R493 (0.200 e−). This finding is similar to the one observed for the largest NL-AABP, indicating that HB plays a dominant role in NL-AABP.
- The smallest contribution from HB to total AABP in WT is T478 (0.022 e−) and in mutated one is OV A484 (0.030 e−).
- The overall comparison in number of HBs in the 18 mutation sites are further shown in Figure S2 for simplicity. OV R493 has the highest difference of HBs after mutation. The total difference in number of HB in 16 OV mutations sites (OV-WT) is 18 and in 2 DV mutations sites (DV-WT) is −1, inducting substantial change in the intramolecular HB distributions of OV RBD-SD1.
- The largest number of NL AAs in WT is 10 at Q498 and N501 and for mutated one is 11 at R498 (OV).
- The smallest number of NL AAs in WT is 1 at T478 and mutated one is 2 at S446 (OV) and N477 (OV).
- The largest volume of AABPU is L452 (1641.0 Å3) in WT and OV R493 in mutated one (1739.0 Å3).
- The smallest volume of AABPU is T478 (335.1 Å3) in WT and OV N477 in mutated one (507.3 Å3).
- The largest and smallest surface area of AABPU are correlated with their volume as expected.
- We notice there are some mutated AAs closer together (clustering effect) forming large and small groups. The 4 clusters are (S371L, S373P, S375F), (N440K, G446S), (S477N, T478K, E484A), and (Q493R, G496S, Q498R, N501Y, Y505H).
- (1)
- Total AABP and NN AABP differs only slightly accentuating the importance of using sequence of AAs in proteins and their fundamental analysis.
- (2)
- The contributions from NL AABP and hydrogen bonding (HB) to AABP are non-negligible.
- (3)
- Depending on the type of AAs substitution, location of the mutation site, and interatomic interactions, the AABP changes can either increase or decrease.
- (4)
- Large changes in the volumes of the AABP units upon mutation. Except for DV L452R and OV S371L, K417N, and E484A, all other mutations result in an increase in the volume of these units.
- (5)
- Changes in surface areas of AAPBU correlates with the change in volume. A slight difference in trends reflects the change in the shape of some of AABPU.
2.1.2. Electronic Structure of Delta and Omicron RBD-SD1
2.1.3. Interatomic Bonding in Delta and Omicron RBD-SD1
- 16.
- Figure 4a: From the BL range 0.96 Å to 1.08 Å, the data points are labeled as WT O-H, DV O-H, OV O-H, WT N-H, DV N-H, and OV N-H. These are the first group of covalent bonds. From BL range 1.08 Å to 1.12 Å, the data points are WT C-H, DV C-H, and OV C-H. This is the second group of stronger covalent bonds with higher BO.
- 17.
- Figure 4b: Overlapping groups between different type of atoms in AAs. The group with BL of 1.22 Å to 1.46 Å consists of the C-O covalent bonds in three cases (WT, DV, and OV). For the group from 1.33 Å to 1.52 Å, they consist of covalent bonds between N and C, N and O, H and S and some O-H bonds in WT, DV, and OV. The other two overlapping groups from 1.39 Å to 1.45 Å and 1.50 Å to 1.58 Å labeled as WT C-C, DV C-C, OV C-C are basically covalent bond between C atoms from same or different AAs but at longer distances of separation. Finally, HBs start to appear between 1.51 Å to 1.60 Å.
- 18.
- Figure 4c: There are two distinct groups. From BL 1.60 Å to 1.90 Å, there are weaker HBs. From the narrow range of 1.83 Å to 1.84 Å, the data are from C-S bond with relatively larger BO values than HBs (WT C-S, OV C-S, DV C-S).
- 19.
- Figure 4d: Weaker HBs (N∙∙∙H, O∙∙∙H) in the range from 1.90 Å to 2.80 Å in WT, DV, OV. From 2.37 Å to 2.80 Å, second nearest neighbor (NN) bonds with S and also remote H-H interactions start to appear (WT H-S, DV H-S, OV H-S, WT H-H, DV H-H, OV H-H). These and other very weak remote second NN H-S bonds extending beyond 2.8 Å will be depicted in Figure 4e.
- 20.
- Figure 4e: More HBs present in this region. Clustering of specific 2nd NN bond groups are marked separately. These are all very weak interactions with low BO values, but they are ubiquitous and collectively make a non-negligible contribution in proteins.
2.1.4. Partial Charge Distribution of Delta and Omicron RBD-SD1
2.2. Part 2
2.2.1. Differences and Similarities between Unbound Omicron RBD and Bound RBD with ACE2
2.2.2. Properties and Interactions at RBD-ACE2 Interface
2.2.3. Partial Charge and Mechanism of Penetration
2.2.4. Implication of RBD-ACE2 Interface on Omicron Variants of SARS-CoV-2
3. Model Specification
3.1. RBD-SD1 in S-Protein
3.2. RBD-ACE2 Interface Complex
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 20 July 2022).
- Li, J.; Lai, S.; Gao, G.F.; Shi, W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 2021, 600, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Tzou, P.L.; Nouhin, J.; Gupta, R.K.; de Oliveira, T.; Kosakovsky Pond, S.L.; Fera, D.; Shafer, R.W. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021, 22, 757–773. [Google Scholar] [CrossRef]
- Lee, R.K.-L.; Li, T.-N.; Chang, S.-Y.; Chao, T.-L.; Kuo, C.-H.; Pan, M.Y.-C.; Chiou, Y.-T.; Liao, K.-J.; Yang, Y.; Wu, Y.-H. Identification of entry inhibitors against delta and omicron variants of SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 4050. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.R.; Fleming, T.R.; Longini, I.M.; Peto, R.; Briand, S.; Heymann, D.L.; Beral, V.; Snape, M.D.; Rees, H.; Ropero, A.-M.; et al. SARS-CoV-2 variants and vaccines. N. Engl. J. Med. 2021, 385, 179–186. [Google Scholar] [CrossRef]
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 20 July 2022).
- Jawad, B.; Adhikari, P.; Podgornik, R.; Ching, W.-Y. Binding Interactions between Receptor-Binding Domain of Spike Protein and Human Angiotensin Converting Enzyme-2 in Omicron Variant. J. Phys. Chem. Lett. 2022, 13, 3915–3921. [Google Scholar] [CrossRef]
- Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D.R.; Raut, R.; Markmann, A.J.; Cornaby, C.; Bartelt, L.; Weiss, S.; Park, Y. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 2020, 5, eabc8413. [Google Scholar] [CrossRef]
- Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 2020, 17, 613–620. [Google Scholar] [CrossRef]
- Jawad, B.; Adhikari, P.; Cheng, K.; Podgornik, R.; Ching, W.-Y. Computational Design of Miniproteins as SARS-CoV-2 Therapeutic Inhibitors. Int. J. Mol. Sci. 2022, 23, 838. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020, 586, 572–577. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.; Gilby, N.B.; Wei, G.-W. Omicron variant (B. 1.1. 529): Infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Model. 2022, 62, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Shuai, H.; Chan, J.F.-W.; Hu, B.; Chai, Y.; Yuen, T.T.-T.; Yin, F.; Huang, X.; Yoon, C.; Hu, J.-C.; Liu, H. Attenuated replication and pathogenicity of SARS-CoV-2 B. 1.1. 529 Omicron. Nature 2022, 603, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Han, W.; Li, J.; Xu, S.; Wang, Y.; Li, Z.; Wang, Y.; Zhang, C.; Huang, Z.; Cong, Y. Molecular basis of SARS-CoV-2 Omicron variant receptor engagement and antibody evasion and neutralization. bioRxiv 2022. [Google Scholar] [CrossRef]
- Cele, S.; Jackson, L.; Khoury, D.S.; Khan, K.; Moyo-Gwete, T.; Tegally, H.; San, J.E.; Cromer, D.; Scheepers, C.; Amoako, D.G.; et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 2022, 602, 654–656. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Liang, Z.; Li, T.; Liu, S.; Cui, Q.; Nie, J.; Wu, Q.; Qu, X.; Huang, W.; et al. The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg. Microbes Infect. 2022, 11, 1–5. [Google Scholar] [CrossRef]
- Liu, L.; Iketani, S.; Guo, Y.; Chan, J.F.-W.; Wang, M.; Liu, L.; Luo, Y.; Chu, H.; Huang, Y.; Nair, M.S.; et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022, 602, 676–681. [Google Scholar] [CrossRef]
- Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.-S.; Winkler, M.S.; et al. The Omicron variant is highly resistant against antibody-mediated neutralization–implications for control of the COVID-19 pandemic. Cell 2022, 185, 447–456.e11. [Google Scholar] [CrossRef]
- Lyngse, F.P.; Kirkeby, C.T.; Denwood, M.; Christiansen, L.E.; Mølbak, K.; Møller, C.H.; Skov, R.L.; Krause, T.G.; Rasmussen, M.; Sieber, R.N.; et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA. 1 and BA. 2: Evidence from Danish Households. MedRxiv 2022. [Google Scholar] [CrossRef]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA. 2.12. 1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef]
- Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Moyo, S.; Amoako, D.G.; Althaus, C.L.; et al. Continued emergence and evolution of Omicron in South Africa: New BA. 4 and BA. 5 lineages. medRxiv 2022. [Google Scholar] [CrossRef]
- Ortega, J.T.; Jastrzebska, B.; Rangel, H.R. Omicron SARS-CoV-2 variant spike protein shows an increased affinity to the human ACE2 receptor: An in silico analysis. Pathogens 2021, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Ahmad, I.; Alam, S.; Khan, W.H.; Ahmad, R. COVID-19 and SARS-CoV-2 variants: Current challenges and health concern. Front. Genet. 2021, 12, 693916. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wang, X.; Tan, S.; Dan, Y.; Lu, Y.; Zhang, J.; Xu, J.; Tan, Z.; Xiang, X.; Zhou, Y. SARS-CoV-2 quasispecies provides an advantage mutation pool for the epidemic variants. Microbiol. Spectr. 2021, 9, e00261-21. [Google Scholar] [CrossRef]
- Frampton, D.; Rampling, T.; Cross, A.; Bailey, H.; Heaney, J.; Byott, M.; Scott, R.; Sconza, R.; Price, J.; Margaritis, M.; et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B. 1.1. 7 lineage in London, UK: A whole-genome sequencing and hospital-based cohort study. Lancet Infect. Dis. 2021, 21, 1246–1256. [Google Scholar] [CrossRef]
- Coronavirus Antiviral & Resistance Database. SARS-CoV-2 Variants. Available online: https://covdb.stanford.edu/variants/omicron/ (accessed on 20 July 2022).
- Sanches, P.R.; Charlie-Silva, I.; Braz, H.L.; Bittar, C.; Calmon, M.F.; Rahal, P.; Cilli, E.M. Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B. 1.1. 7, United Kingdom), Beta (B. 1.351, South Africa), Gamma (P. 1, Brazil) and Delta (B. 1.617. 2, India). J. Virus Erad. 2021, 7, 100054. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, J.; Xiao, T.; Lavine, C.L.; Rawson, S.; Peng, H.; Zhu, H.; Anand, K.; Tong, P.; Gautam, A. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 2021, 373, 642–648. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, T.; Cai, Y.; Lavine, C.L.; Peng, H.; Zhu, H.; Anand, K.; Tong, P.; Gautam, A.; Mayer, M.L. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science 2021, 374, 1353–1360. [Google Scholar] [CrossRef]
- Mannar, D.; Saville, J.W.; Zhu, X.; Srivastava, S.S.; Berezuk, A.M.; Tuttle, K.S.; Marquez, A.C.; Sekirov, I.; Subramaniam, S. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex. Science 2022, 375, 760–764. [Google Scholar] [CrossRef]
- Meng, B.; Abdullahi, A.; Ferreira, I.A.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 2022, 603, 706–714. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C.; Widen, S.G.; An, Z.; Weaver, S.C.; Menachery, V.D.; et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 2022, 39, 110829. [Google Scholar] [CrossRef]
- Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R.H.; Peters, B.; Sette, A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 2020, 27, 671–680.e672. [Google Scholar] [CrossRef]
- Dong, S.; Sun, J.; Mao, Z.; Wang, L.; Lu, Y.L.; Li, J. A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV). J. Med. Virol. 2020, 92, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Dotan, A.; Muller, S.; Kanduc, D.; David, P.; Halpert, G.; Shoenfeld, Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 2021, 20, 102792. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, M.; Tincani, A.; Andreoli, L.; Cattalini, M.; Greenbaum, A.; Kanduc, D.; Alijotas-Reig, J.; Zinserling, V.; Semenova, N.; Amital, H. COVID-19 and autoimmunity. Autoimmun. Rev. 2020, 19, 102597. [Google Scholar] [CrossRef] [PubMed]
- Tiecco, G.; Storti, S.; Degli Antoni, M.; Focà, E.; Castelli, F.; Quiros-Roldan, E. Omicron genetic and clinical peculiarities that may overturn SARS-CoV-2 pandemic: A literature review. Int. J. Mol. Sci. 2022, 23, 1987. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Hodcroft, E.B. Genetic variants of SARS-CoV-2—What do they mean? JAMA 2021, 325, 529–531. [Google Scholar] [CrossRef]
- Wang, R.; Chen, J.; Wei, G.-W. Mechanisms of SARS-CoV-2 evolution revealing vaccine-resistant mutations in Europe and America. J. Phys. Chem. Lett. 2021, 12, 11850–11857. [Google Scholar] [CrossRef]
- Callaway, E. What’s next for AlphaFold and the AI protein-folding revolution. Nature 2022, 604, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Service, R.F. Protein Structures for All; American Association for the Advancement of Science: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Thorp, H.H. Proteins, proteins everywhere. Science 2021, 374, 1415. [Google Scholar] [CrossRef]
- Moore, P.B.; Hendrickson, W.A.; Henderson, R.; Brunger, A.T. The protein-folding problem: Not yet solved. Science 2022, 375, 507. [Google Scholar] [CrossRef]
- Humphreys, I.R.; Pei, J.; Baek, M.; Krishnakumar, A.; Anishchenko, I.; Ovchinnikov, S.; Zhang, J.; Ness, T.J.; Banjade, S.; Bagde, S.R.; et al. Computed structures of core eukaryotic protein complexes. Science 2021, 374, eabm4805. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.W.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv 2021. [Google Scholar] [CrossRef]
- Ball, P. Ned Seeman’s Legacy. Available online: https://www.chemistryworld.com/opinion/ned-seemans-legacy/4015032.article (accessed on 20 February 2022).
- Zhou, F.; Sha, R.; Ni, H.; Seeman, N.; Chaikin, P. Mutations in artificial self-replicating tiles: A step toward Darwinian evolution. Proc. Natl. Acad. Sci. USA 2021, 118, e2111193118. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, M.; Gao, J. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA 2020, 117, 13967–13974. [Google Scholar] [CrossRef]
- Panda, P.K.; Arul, M.N.; Patel, P.; Verma, S.K.; Luo, W.; Rubahn, H.-G.; Mishra, Y.K.; Suar, M.; Ahuja, R. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv. 2020, 6, eabb8097. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas physical review 136. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment molecular orbital method: An approximate computational method for large molecules. Chem. Phys. Lett. 1999, 313, 701–706. [Google Scholar] [CrossRef]
- Watanabe, C.; Okiyama, Y.; Tanaka, S.; Fukuzawa, K.; Honma, T. Molecular recognition of SARS-CoV-2 spike glycoprotein: Quantum chemical hot spot and epitope analyses. Chem. Sci. 2021, 12, 4722–4739. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Baek, A.; Kim, J.; Kim, M.S.; Liu, J.; Nam, K.-Y.; Yoon, J.; No, K.T. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interaction obtained by density functional tight binding fragment molecular orbital method. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Watanabe, K.; Watanabe, C.; Honma, T.; Tian, Y.-S.; Kawashima, Y.; Kawashita, N.; Takagi, T.; Fukuzawa, K. Intermolecular Interaction Analyses on SARS-CoV-2 Spike Protein Receptor Binding Domain and Human Angiotensin-Converting Enzyme 2 Receptor-Blocking Antibody/Peptide Using Fragment Molecular Orbital Calculation. J. Phys. Chem. Lett. 2021, 12, 4059–4066. [Google Scholar] [CrossRef]
- Adhikari, P.; Li, N.; Shin, M.; Steinmetz, N.F.; Twarock, R.; Podgornik, R.; Ching, W.-Y. Intra- and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: Implication for ACE2 receptor binding. Phys. Chem. Chem. Phys. 2020, 22, 18272–18283. [Google Scholar] [CrossRef]
- Adhikari, P.; Ching, W.-Y. Amino acid interacting network in the receptor-binding domain of SARS-CoV-2 spike protein. RSC Adv. 2020, 10, 39831–39841. [Google Scholar] [CrossRef]
- Ching, W.-Y.; Adhikari, P.; Jawad, B.; Podgornik, R. Ultra-Large-Scale Ab Initio Quantum Chemical Computation of Bio-Molecular Systems: The Case of Spike Protein of SARS-CoV-2 Virus. Comput. Struct. Biotechnol. J. 2021, 19, 1288–1301. [Google Scholar] [CrossRef]
- Jawad, B.; Adhikari, P.; Podgornik, R.; Ching, W.-Y. Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: Combination of molecular dynamic simulation and density functional calculation. J. Chem. Inf. Model. 2021, 61, 4425–4441. [Google Scholar] [CrossRef]
- Adhikari, P.; Jawad, B.; Rao, P.; Podgornik, R.; Ching, W.-Y. Delta variant with P681R critical mutation revealed by ultra-large atomic-scale ab initio simulation: Implications for the fundamentals of biomolecular interactions. Viruses 2022, 14, 465. [Google Scholar] [CrossRef]
- Adhikari, P.; Jawad, B.; Podgornik, R.; Ching, W.-Y. Mutations of Omicron variant at the interface of the receptor domain motif and human angiotensin-converting enzyme-2. Int. J. Mol. Sci. 2022, 23, 2870. [Google Scholar] [CrossRef]
- Adhikari, P.; Jawad, B.; Podgornik, R.; Ching, W.-Y. Atomic-scale Quantum Chemical Calculation of Omicron Mutations Near Cleavage Sites of the Spike Protein. bioRxiv 2022. [Google Scholar] [CrossRef]
- VASP—Vienna Ab Initio Simulation Package. Available online: https://www.vasp.at/ (accessed on 1 November 2021).
- Ching, W.-Y.; Rulis, P. Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Liang, L.; Rulis, P.; Ouyang, L.; Ching, W. Ab initio investigation of hydrogen bonding and network structure in a supercooled model of water. Phys. Rev. B 2011, 83, 024201. [Google Scholar] [CrossRef]
- Dutta, J.; Sahu, A.K.; Bhadauria, A.S.; Biswal, H.S. Carbon-Centered Hydrogen Bonds in Proteins. J. Chem. Inf. Model. 2022, 62, 1998–2008. [Google Scholar] [CrossRef]
- Adhikari, P.; Jawad, B.; Podgornik, R.; Ching, W.Y. Classification of hydrogen bonding network in the RBD-SD1 domain of Spike protein in SARS-CoV-2. Implic. Delta Omicron Mutat. 2022. Unpublished. [Google Scholar]
- Li, L.; Li, C.; Sarkar, S.; Zhang, J.; Witham, S.; Zhang, Z.; Wang, L.; Smith, N.; Petukh, M.; Alexov, E. DelPhi: A comprehensive suite for DelPhi software and associated resources. BMC Biophys. 2012, 5, 1–11. [Google Scholar] [CrossRef]
- Gan, H.H.; Zinno, J.P.; Piano, F.; Gunsalus, K.C. Omicron Spike protein has a positive electrostatic surface that promotes ACE2 recognition and antibody escape. Front. Virol. 2022, 2, 894531. [Google Scholar] [CrossRef]
- Starr, T.N.; Greaney, A.J.; Hilton, S.K.; Crawford, K.H.; Navarro, M.J.; Bowen, J.E.; Tortorici, M.A.; Walls, A.C.; Veesler, D.; Bloom, J.D. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 2021, 182, 1295–1310e.1220. [Google Scholar] [CrossRef]
- Nguyen, N.H.L.; Kim, S.; Lindemann, G.; Berry, V. COVID-19 spike protein induced phononic modification in antibody-coupled graphene for viral detection application. ACS Nano 2021, 15, 11743–11752. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, L.; Mo, M.; Liu, T.; Wu, C.; Gong, C.; Lu, K.; Gong, L.; Zhu, W.; Xu, Z. SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Signal Transduct. Target. Ther. 2022, 7, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Takheaw, N.; Liwsrisakun, C.; Chaiwong, W.; Laopajon, W.; Pata, S.; Inchai, J.; Duangjit, P.; Pothirat, C.; Bumroongkit, C.; Deesomchok, A. Correlation Analysis of Anti-SARS-CoV-2 RBD IgG and Neutralizing Antibody against SARS-CoV-2 Omicron Variants after Vaccination. Diagnostics 2022, 12, 1315. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, Y.C.; Tong, X.; Kang, J.; Avendaño, M.J.; Serrano, E.F.; García-Salum, T.; Pardo-Roa, C.; Riquelme, A.; Cai, Y.; Renzi, I. Omicron variant Spike-specific antibody binding and Fc activity are preserved in recipients of mRNA or inactivated COVID-19 vaccines. Sci. Transl. Med. 2022, 14, eabn9243. [Google Scholar] [CrossRef]
- Han, Y.; Král, P. Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2. ACS Nano 2020, 14, 5143–5147. [Google Scholar] [CrossRef]
- Martin, P.C. Sum rules, Kramers-Kronig relations, and transport coefficients in charged systems. Phys. Rev. 1967, 161, 143. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.; Ziarnik, M.; Cao, Y.; Zhang, X.F.; Im, W. Binding of human ACE2 and RBD of Omicron enhanced by unique interaction patterns among SARS-CoV-2 variants of concern. bioRxiv 2022. [Google Scholar] [CrossRef]
- Zhu, X.; Mannar, D.; Srivastava, S.S.; Berezuk, A.M.; Demers, J.-P.; Saville, J.W.; Leopold, K.; Li, W.; Dimitrov, D.S.; Tuttle, K.S. Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies. PLoS Biol. 2021, 19, e3001237. [Google Scholar] [CrossRef]
- Laffeber, C.; de Koning, K.; Kanaar, R.; Lebbink, J.H. Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J. Mol. Biol. 2021, 433, 167058. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Y.-N.; Yan, R.; Wang, G.; Zhang, Y.; Zhang, Z.-R.; Li, Y.; Ou, J.; Chu, W.; Liang, Z. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct. Target. Ther. 2021, 6, 1–9. [Google Scholar] [CrossRef]
- Chatterjee, B.; Thakur, S.S. ACE2 as a potential therapeutic target for pandemic COVID-19. RSC Adv. 2020, 10, 39808–39813. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, P.; Wang, N.; Wang, L.; Fan, K.; Zhu, Q.; Wang, K.; Chen, R.; Feng, R.; Jia, Z.; et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 2022, 185, 860–871.e813. [Google Scholar] [CrossRef]
- Hancock, S. Study Explores How the Electrostatic Charge of the SARS-CoV-2 Spike Protein Has Changed over Time. Available online: https://www.news-medical.net/news/20220216/Study-explores-how-the-electrostatic-charge-of-the-SARS-CoV-2-spike-protein-has-changed-over-time.aspx (accessed on 20 July 2022).
- Nguyen, H.; Lan, P.D.; Nissley, D.A.; O’Brien, E.P.; Li, M.S. Electrostatic interactions explain the higher binding affinity of the CR3022 antibody for SARS-CoV-2 than the 4A8 antibody. J. Phys. Chem. B 2021, 125, 7368–7379. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, P.H. Charged amino acids may promote coronavirus SARS-CoV-2 fusion with the host ce. Aims Biophys. 2021, 8, 111–120. [Google Scholar] [CrossRef]
- Neamtu, A.; Mocci, F.; Laaksonen, A.; da Silva, F.L.B. Towards an optimal monoclonal antibody with higher binding affinity to the receptor-binding domain of SARS-CoV-2 spike proteins from different variants. bioRxiv 2022. [Google Scholar] [CrossRef]
- Omicron Variant: What You Need to Know. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html#:~:text=The%20Omicron%20variant%20spreads%20more,spread%20the%20virus%20to%20others (accessed on 20 July 2022).
- Woo, H.; Park, S.-J.; Choi, Y.K.; Park, T.; Tanveer, M.; Cao, Y.; Kern, N.R.; Lee, J.; Yeom, M.S.; Croll, T.I. Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. J. Phys. Chem. B 2020, 124, 7128–7137. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Betz, R.; Cerutti, D.; Cheatham, T.; Darden, T.; Duke, R.; Giese, T.; Gohlke, H.; Goetz, A.; Homeyer, N. AMBER 2020 Reference Manual. University of California, San Francisco. 2020. Available online: https://ambermd.org/Manuals.php (accessed on 11 January 2021).
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Local Refinement of SARS-CoV-2 S-Beta Variant (B.1.351) RBD and Angiotensin-Converting Enzyme 2 (ACE2) Ectodomain. Available online: https://www.rcsb.org/structure/7v80 (accessed on 20 January 2022).
- Liu, C.; Ginn, H.M.; Dejnirattisai, W.; Supasa, P.; Wang, B.; Tuekprakhon, A.; Nutalai, R.; Zhou, D.; Mentzer, A.J.; Zhao, Y. Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum. Cell 2021, 184, 4220–4236.e4213. [Google Scholar] [CrossRef]
- Shapovalov, M.V.; Dunbrack, R.L., Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011, 19, 844–858. [Google Scholar] [CrossRef] [Green Version]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 2022, 185, 630–640.e610. [Google Scholar] [CrossRef]
- Adhikari, P.; Khaoulaf, R.; Ez-Zahraouy, H.; Ching, W.-Y. Complex interplay of interatomic bonding in a multi-component pyrophosphate crystal: K2Mg (H2P2O7)2·2H2O. R. Soc. Open Sci. 2017, 4, 170982. [Google Scholar] [CrossRef]
- San, S.; Li, N.; Tao, Y.; Zhang, W.; Ching, W.-Y. Understanding the atomic and electronic origin of mechanical property in thaumasite and ettringite mineral crystals. J. Am. Ceram. Soc. 2018, 101, 5177–5187. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Zhou, Y.; Ching, W.-Y.; Li, Q.; Li, W.; Yang, J.; Liu, B. Anti-perovskite carbides and nitrides A3BX: A new family of damage tolerant ceramics. J. Mater. Sci. Technol. 2019, 40, 64–71. [Google Scholar] [CrossRef]
- Hasan, S.; Baral, K.; Li, N.; Ching, W.-Y. Structural and physical properties of 99 complex bulk chalcogenides crystals using first-principles calculations. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Shafei, L.; Adhikari, P.; Ching, W.-Y. DFT Study of Electronic Structure and Optical Properties of Kaolinite, Muscovite, and Montmorillonite. Crystals 2021, 11, 618. [Google Scholar] [CrossRef]
- Baral, K.; San, S.; Sakidja, R.; Couet, A.; Sridharan, K.; Ching, W.-Y. Temperature-Dependent Properties of Molten Li2BeF4 Salt Using Ab Initio Molecular Dynamics. ACS Omega 2021, 6, 19822–19835. [Google Scholar] [CrossRef] [PubMed]
- Poudel, L.; Twarock, R.; Steinmetz, N.F.; Podgornik, R.; Ching, W.-Y. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J. Phys. Chem. B 2017, 121, 6321–6330. [Google Scholar] [CrossRef]
- Poudel, L.; Tamerler, C.; Misra, A.; Ching, W.-Y. Atomic-Scale Quantification of Interfacial Binding between Peptides and Inorganic Crystals: The Case of Calcium Carbonate Binding Peptide on Aragonite. J. Phys. Chem. C 2017, 121, 28354–28363. [Google Scholar] [CrossRef]
- Jawad, B.; Poudel, L.; Podgornik, R.; Steinmetz, N.F.; Ching, W.-Y. Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Phys. Chem. Chem. Phys. 2019, 21, 3877–3893. [Google Scholar] [CrossRef]
- Ching, W.Y. Encyclopedia of Materials: Technical Ceramics and Glasses. Ceramic Genome: Total Bond Order Density; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Jawad, B.; Poudel, L.; Podgornik, R.; Ching, W.-Y. Thermodynamic dissection of the intercalation binding process of doxorubicin to dsDNA with implications of ionic and solvent effects. J. Phys. Chem. B 2020, 124, 7803–7818. [Google Scholar] [CrossRef]
- Baral, K.; Li, A.; Ching, W.-Y. Ab initio study of hydrolysis effects in single and ion-exchanged alkali aluminosilicate glasses. J. Phys. Chem. B 2020, 124, 8418–8433. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Shi, Z.; Zhang, P.; Ong, W.-J.; Jiang, J.; Ching, W.-Y.; Li, N. Density Functional Theory Study of Single Metal Atoms Embedded into MBene for Electrocatalytic Conversion of N2 to NH3. ACS Appl. Nano Mater. 2020, 3, 9870–9879. [Google Scholar] [CrossRef]
- Adhikari, P.; Podgornik, R.; Jawad, B.; Ching, W.-Y. First-Principles Simulation of Dielectric Function in Biomolecules. Materials 2021, 14, 5774. [Google Scholar] [CrossRef] [PubMed]
- Baral, K.; Adhikari, P.; Jawad, B.; Podgornik, R.; Ching, W.-Y. Solvent Effect on the Structure and Properties of RGD Peptide (1FUV) at Body Temperature (310 K) Using Ab Initio Molecular Dynamics. Polymers 2021, 13, 3434. [Google Scholar] [CrossRef] [PubMed]
- Baral, K.; Ching, W.-Y. Electronic structures and physical properties of Na2O doped silicate glass. J. Appl. Phys. 2017, 121, 245103. [Google Scholar] [CrossRef]
- Baral, K.; Li, A.; Ching, W.-Y. Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses. J. Phys. Chem. A 2017, 121, 7697–7708. [Google Scholar] [CrossRef]
- Ching, W.; Yoshiya, M.; Adhikari, P.; Rulis, P.; Ikuhara, Y.; Tanaka, I. First-principles study in an inter-granular glassy film model of silicon nitride. J. Am. Ceram. Soc. 2018, 101, 2673–2688. [Google Scholar] [CrossRef]
- Baral, K.; Li, A.; Ching, W.-Y. Understanding the atomistic origin of hydration effects in single and mixed bulk alkali-silicate glasses. J. Am. Ceram. Soc. 2018, 102, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Baral, K.; Li, A.; Ching, W.-Y. Ab initio molecular dynamics simulation of Na-doped aluminosilicate glasses and glass-water interaction. AIP Adv. 2019, 9, 075218. [Google Scholar] [CrossRef]
- Poudel, L.; Podgornik, R.; Ching, W.-Y. The Hydration Effect and Selectivity of Alkali Metal Ions on Poly(ethylene glycol) Models in Cyclic and Linear Topology. J. Phys. Chem. A 2017, 121, 4721–4731. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Li, N.; Rulis, P.; Ching, W.-Y. Deformation behavior of an amorphous zeolitic imidazolate framework—From a supersoft material to a complex organometallic alloy. Phys. Chem. Chem. Phys. 2018, 20, 29001–29011. [Google Scholar] [CrossRef]
- Dharmawardhana, C.; Misra, A.; Ching, W.-Y. Theoretical investigation of C-(A)-S-H(I) cement hydrates. Constr. Build. Mater. 2018, 184, 536–548. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, W.; Li, N.; Ching, W.-Y.; Wang, F.; Hu, S. Atomic-level insights into the influence of zinc incorporation on clinker hydration reactivity. Open Ceram. 2020, 1, 100004. [Google Scholar] [CrossRef]
- San, S.; Ching, W.-Y. Subtle Variations of the Electronic Structure and Mechanical Properties of High Entropy Alloys with 50% Carbon Composites. Front. Mater. 2020, 7, 575262. [Google Scholar] [CrossRef]
- San, S.; Tong, Y.; Bei, H.; Kombaiah, B.; Zhang, Y.; Ching, W.-Y. First-principles calculation of lattice distortions in four single phase high entropy alloys with experimental validation. Mater. Des. 2021, 209, 110071. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. J. Chem. Phys. 1955, 23, 1841–1846. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
Total AABP | NN AABP | NL AABP | No. of HBs (HB AABP) | No. of NL AAs | Volume (Å3) | Area (Å2) | PC* (e−) | |
---|---|---|---|---|---|---|---|---|
WT L452 | 1.022 | 0.978 | 0.045 | 31 (0.061) | 9 | 1641.0 | 1048.0 | −0.074 |
DV R452 | 1.019 | 0.976 | 0.043 | 26 (0.064) | 8 | 1549.0 | 972.8 | 0.849 |
WT T478 | 1.044 | 1.043 | 0.001 | 9 (0.022) | 1 | 335.1 | 333.5 | 0.005 |
DV K478 | 1.219 | 1.217 | 0.002 | 13 (0.136) | 3 | 571.1 | 497.8 | 1.022 |
WT G339 | 1.016 | 0.993 | 0.023 | 11 (0.052) | 3 | 652.2 | 570.6 | −0.340 |
OV D339 | 1.196 | 1.154 | 0.042 | 14 (0.063) | 4 | 807.7 | 634.1 | −1.357 |
WT S371 | 0.918 | 0.888 | 0.030 | 20 (0.051) | 5 | 854.7 | 680.5 | −0.147 |
OV L371 | 0.945 | 0.928 | 0.017 | 21 (0.040) | 3 | 608.7 | 532.5 | −0.162 |
WT S373 | 0.941 | 0.920 | 0.021 | 14 (0.052) | 3 | 633.6 | 543.4 | −0.075 |
OV P373 | 0.999 | 0.992 | 0.008 | 16 (0.031) | 3 | 764.9 | 623.2 | −0.084 |
WT S375 | 0.944 | 0.916 | 0.028 | 11 (0.058) | 4 | 808.4 | 642.2 | −0.026 |
OV F375 | 0.926 | 0.917 | 0.009 | 13 (0.037) | 7 | 1331.0 | 941.1 | 0.076 |
WT K417 | 1.216 | 1.013 | 0.203 | 19 (0.203) | 7 | 1195.0 | 827.5 | 0.153 |
OV N417 | 1.066 | 1.017 | 0.048 | 14 (0.069) | 6 | 987.4 | 697.0 | −1.473 |
WT N440 | 0.985 | 0.981 | 0.005 | 12 (0.037) | 3 | 584.2 | 467.3 | −0.802 |
OV K440 | 0.983 | 0.978 | 0.005 | 14 (0.037) | 4 | 825.4 | 645.6 | 0.148 |
WT G446 | 0.912 | 0.910 | 0.002 | 10 (0.038) | 2 | 473.8 | 403.3 | 0.907 |
OV S446 | 1.038 | 0.979 | 0.059 | 14 (0.091) | 2 | 530.4 | 443.5 | 1.843 |
WT S477 | 0.964 | 0.958 | 0.006 | 12 (0.039) | 2 | 440.7 | 383.3 | 0.100 |
OV N477 | 1.157 | 1.156 | 0.001 | 11 (0.151) | 2 | 507.3 | 428.0 | 1.097 |
WT T478 | 1.044 | 1.043 | 0.001 | 9 (0.022) | 1 | 335.1 | 333.5 | 0.005 |
OV K478 | 1.214 | 1.212 | 0.002 | 13 (0.139) | 3 | 594.9 | 509.1 | 1.045 |
WT E484 | 1.040 | 0.927 | 0.114 | 19 (0.124) | 4 | 828.5 | 633.4 | −0.967 |
OV A484 | 0.934 | 0.932 | 0.002 | 13 (0.030) | 3 | 513.8 | 452.9 | −0.081 |
WT Q493 | 1.060 | 0.973 | 0.087 | 19 (0.106) | 6 | 1220.0 | 786.3 | 0.497 |
OV R493 | 1.165 | 1.165 | 0.194 | 32 (0.200) | 9 | 1739.0 | 1034.0 | −0.498 |
WT G496 | 0.975 | 0.944 | 0.031 | 11 (0.062) | 4 | 834.4 | 691.4 | −0.285 |
OV S496 | 0.994 | 0.938 | 0.055 | 12 (0.076) | 4 | 964.4 | 755.0 | 0.657 |
WT Q498 | 1.120 | 1.073 | 0.047 | 25 (0.054) | 10 | 1376.0 | 894.1 | 1.013 |
OV R498 | 1.179 | 1.056 | 0.123 | 30 (0.126) | 11 | 1648.0 | 1078.0 | 2.059 |
WT N501 | 1.120 | 1.073 | 0.047 | 27 (0.054) | 10 | 1063.0 | 802.3 | 0.022 |
OV Y501 | 1.034 | 0.942 | 0.092 | 21 (0.104) | 6 | 1089.0 | 797.4 | 0.752 |
WT Y505 | 1.058 | 0.974 | 0.084 | 17 (0.104) | 6 | 983.1 | 714.7 | 0.156 |
OV H505 | 0.998 | 0.953 | 0.045 | 15 (0.069) | 7 | 1188.0 | 859.7 | 0.283 |
WT T547 | 1.033 | 0.977 | 0.056 | 20 (0.079) | 4 | 738.6 | 527.8 | 0.150 |
OV K547 | 0.994 | 0.977 | 0.016 | 21 (0.042) | 4 | 773.5 | 584.4 | 1.100 |
Total AABP | NN AABP | NL AABP | No. of HBs (HB AABP) | No. of NL AAs | Volume (Å3) | Area (Å2) | PC* (e−) | |
---|---|---|---|---|---|---|---|---|
WT G339 | 1.032 | 0.989 | 0.043 | 14 (0.070) | 5 | 1628.0 | 1288.0 | −0.532 |
OV D339 | 1.111 | 1.002 | 0.109 | 18 (0.126) | 5 | 1629.0 | 1334.0 | −1.313 |
WT S371 | 1.027 | 0.969 | 0.059 | 17 (0.077) | 5 | 857.3 | 680.1 | −0.121 |
OV L371 | 0.927 | 0.904 | 0.023 | 16 (0.045) | 6 | 1274.0 | 989.3 | 0.034 |
WT S373 | 1.009 | 0.932 | 0.077 | 11 (0.100) | 3 | 650.1 | 530.7 | 0.024 |
OV P373 | 1.010 | 1.008 | 0.003 | 14 (0.021) | 3 | 791.2 | 619.7 | 0.053 |
WT S375 | 1.028 | 0.998 | 0.030 | 11 (0.110) | 6 | 1116.0 | 858.0 | 0.826 |
OV F375 | 1.135 | 1.081 | 0.055 | 11 (0.200) | 6 | 1177.0 | 896.6 | 1.005 |
WT K417 | 1.388 | 1.014 | 0.374 | 24 (0.123) | 9 | 1434.0 | 1035.0 | −0.744 |
OV N417 | 1.106 | 1.028 | 0.077 | 16 (0.095) | 8 | 1347.0 | 908.9 | −0.875 |
WT N440 | 0.923 | 0.919 | 0.004 | 11 (0.035) | 2 | 496.2 | 414.3 | −0.845 |
OV K440 | 1.198 | 0.919 | 0.280 | 12 (0.040) | 3 | 636.3 | 587.0 | −0.894 |
WT G446 | 1.024 | 0.972 | 0.052 | 17 (0.075) | 4 | 770.5 | 616.8 | 0.724 |
OV S446 | 0.995 | 0.937 | 0.058 | 15 (0.083) | 3 | 695.3 | 549.7 | 1.297 |
WT S477 | 0.965 | 0.952 | 0.013 | 12 (0.044) | 2 | 444.6 | 387.4 | 0.126 |
OV N477 | 1.147 | 0.938 | 0.209 | 17 (0.216) | 5 | 821.7 | 704.2 | 1.694 |
WT T478 | 1.050 | 1.048 | 0.002 | 13 (0.023) | 3 | 616.9 | 527.6 | −0.087 |
OV K478 | 1.078 | 1.014 | 0.064 | 18 (0.022) | 4 | 741.2 | 667.7 | 1.189 |
WT E484 | 1.170 | 0.928 | 0.242 | 22 (0.248) | 4 | 808.9 | 672.9 | −0.132 |
OV A484 | 0.931 | 0.926 | 0.005 | 13 (0.033) | 2 | 447.3 | 393.9 | −0.096 |
WT Q493 | 1.213 | 0.966 | 0.248 | 28 (0.256) | 8 | 1459.0 | 955.1 | −0.315 |
OV R493 | 1.348 | 1.071 | 0.277 | 32 (0.324) | 11 | 2021.0 | 1217.0 | 1.314 |
WT G496 | 1.043 | 0.976 | 0.067 | 15 (0.089) | 6 | 1210.0 | 1033.0 | −0.218 |
OV S496 | 1.012 | 0.928 | 0.084 | 22 (0.103) | 7 | 1245.0 | 844.7 | −0.266 |
WT Q498 | 1.277 | 1.083 | 0.194 | 35 (0.185) | 14 | 2071.0 | 1344.0 | 1.654 |
OV R498 | 1.291 | 1.052 | 0.239 | 39 (0.222) | 14 | 2059.0 | 1232.0 | 0.943 |
WT N501 | 1.134 | 0.948 | 0.186 | 29 (0.183) | 9 | 1699.0 | 1261.0 | −0.255 |
OV Y501 | 1.029 | 0.946 | 0.083 | 20 (0.088) | 9 | 1912.0 | 1319.0 | 0.539 |
WT Y505 | 1.341 | 1.002 | 0.339 | 23 (0.128) | 10 | 1773.0 | 1265.0 | 0.018 |
OV H505 | 1.106 | 0.975 | 0.131 | 27 (0.142) | 9 | 1628.0 | 1161.0 | 0.287 |
WT | PCAA | OV | PCAA |
---|---|---|---|
WT G339 | 0.1052 | OV D339 | −0.7636 |
WT S371 | −0.1003 | OV L371 | −0.0428 |
WT S373 | −0.0986 | OV P373 | 0.088 |
WT S375 | 0.0193 | OV F375 | −0.0571 |
WT K417 | 0.4925 | OV N417 | 0.0586 |
WT N440 | −0.0097 | OV K440 | 0.5675 |
WT G446 | 0.0518 | OV S446 | 0.0974 |
WT S477 | 0.0152 | OV N477 | 0.1168 |
WT T478 | −0.125 | OV K478 | 0.7745 |
WT E484 | −0.622 | OV A484 | 0.0153 |
WT Q493 | 0.0179 | OV R493 | 0.7205 |
WT G496 | 0.0651 | OV S496 | −0.1027 |
WT Q498 | 0.0076 | OV R498 | 0.6917 |
WT N501 | −0.1179 | OV Y501 | 0.0325 |
WT Y505 | −0.4285 | OV H505 | −0.0115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ching, W.-Y.; Adhikari, P.; Jawad, B.; Podgornik, R. Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex. Int. J. Mol. Sci. 2022, 23, 10091. https://doi.org/10.3390/ijms231710091
Ching W-Y, Adhikari P, Jawad B, Podgornik R. Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex. International Journal of Molecular Sciences. 2022; 23(17):10091. https://doi.org/10.3390/ijms231710091
Chicago/Turabian StyleChing, Wai-Yim, Puja Adhikari, Bahaa Jawad, and Rudolf Podgornik. 2022. "Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex" International Journal of Molecular Sciences 23, no. 17: 10091. https://doi.org/10.3390/ijms231710091
APA StyleChing, W. -Y., Adhikari, P., Jawad, B., & Podgornik, R. (2022). Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex. International Journal of Molecular Sciences, 23(17), 10091. https://doi.org/10.3390/ijms231710091