T-Type Calcium Channels: A Mixed Blessing
Abstract
:1. T-Type Calcium Channels
2. T-Type Ca2+ Channels in the Heart
3. T-Type Ca2+ Channels in Pain Modulation and in Chemotherapy-Induced Peripheral Neuropathy
4. The Ubiquitin-Proteasome System and Proteasome Regulation of Cardiac Ion Channels
5. Paclitaxel, Bortezomib, and Carfilzomib Cardiotoxicity: A New Field That Needs to Be Explored
6. T-Type Ca2+ Channels in Cancer
7. Therapeutic Strategies Aiming to Control T-Type Ca2+ Expression and Activity
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations in Alphabetical Order
AID | Alpha-interaction domain |
AR | Androgen receptor |
BIPN | Bortezomib-induced peripheral neuropathy |
BRAF | B-Raf proto-oncogene serine/threonine kinase |
BTZ | Bortezomib |
Ca2+ | Calcium ion |
CFZ | Carfilzomib |
CIPN | Chemotherapy-induced peripheral neuropathy |
Cryo-EM | Cryogenic electron microscopy |
CYP | Cytochrome P450 |
DRGs | Dorsal root ganglia |
ER | Endoplasmic reticulum |
HEK | Human embryonic kidney |
hERG | human Ether-à-go-go-Related Gene |
HVA | High-voltage-activated |
ICaL | L-type calcium current |
ICaT | T-type calcium current |
INaL | Late sodium current |
IRE | Inositol-requiring enzyme |
K+ | Potassium ion |
KD | Dissociation constant |
LVA | Low-voltage-activated |
Na+ | Sodium ion |
NFAT | Nuclear factor of activated T-cells |
OSCC | Oral Squamous Cell Carcinoma |
PNG | Prenylnaringenin |
qPCR | Quantitative PCR |
RAAS | Renin-angiotensin-aldosterone system |
SGLT2 | Sodium-glucose transporter 2 |
TNF | Tumor Necrosis Factor |
TRP | Transient receptor potential |
UPR | Unfolded protein response |
UPS | Ubiquitin-proteasome system |
USP5 | Ubiquitin-specific cysteine protease 5 |
VEGF | Vascular-Endothelial Growth Factor |
References
- Ono, K.; Iijima, T. Pathophysiological Significance of T-type Ca2+ Channels: Properties and Functional Roles of T-type Ca2+ Channels in Cardiac Pacemaking. J. Pharmacol. Sci. 2005, 99, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Perez-Reyes, E. Molecular Physiology of Low-Voltage-Activated T-type Calcium Channels. Physiol. Rev. 2003, 83, 117–161. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, S.M.; Jevtovic-Todorovic, V. The role of T-type calcium channels in peripheral and central pain processing. CNS Neurol. Disord. Drug Targets 2006, 5, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Bijlenga, P.; Liu, J.-H.; Espinos, E.; Haenggeli, C.-A.; Fischer-Lougheed, J.; Bader, C.R.; Bernheim, L. T-type α1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc. Natl. Acad. Sci. USA 2000, 97, 7627–7632. [Google Scholar] [CrossRef] [PubMed]
- Huguenard, J.R. Low-threshold calcium currents in central nervous system neurons. Annu. Rev. Physiol. 1996, 58, 329–348. [Google Scholar] [CrossRef]
- Hansen, P.B.L. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: News from the world of knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R227–R237. [Google Scholar] [CrossRef]
- Carbone, E.; Calorio, C.; Vandael, D.H.F. T-type channel-mediated neurotransmitter release. Pflug. Arch. Eur. J. Physiol. 2014, 466, 677–687. [Google Scholar] [CrossRef]
- Cribbs, L.L.; Lee, J.H.; Yang, J.; Satin, J.; Zhang, Y.; Daud, A.; Barclay, J.; Williamson, M.P.; Fox, M.; Rees, M.; et al. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ. Res. 1998, 83, 103–109. [Google Scholar] [CrossRef]
- Perez-Reyes, E.; Cribbs, L.L.; Daud, A.; Lacerda, A.E.; Barclay, J.; Williamson, M.P.; Fox, M.; Rees, M.; Lee, J.H. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 1998, 391, 896–900. [Google Scholar] [CrossRef]
- Lee, J.H.; Daud, A.N.; Cribbs, L.L.; Lacerda, A.E.; Pereverzev, A.; Klöckner, U.; Schneider, T.; Perez-Reyes, E. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J. Neurosci. 1999, 19, 1912–1921. [Google Scholar] [CrossRef]
- Weiss, N.; Zamponi, G.W. T-type calcium channels: From molecule to therapeutic opportunities. Int. J. Biochem. Cell Biol. 2019, 108, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Seeley, S.; Schulz, C.; Fisher, J.; Rao, S.G. Calcium Channels in the Heart: Disease States and Drugs. Cells 2022, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Klöckner, U.; Lee, J.H.; Cribbs, L.L.; Daud, A.; Hescheler, J.; Pereverzev, A.; Perez-Reyes, E.; Schneider, T. Comparison of the Ca2+ currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2+ channels. Eur. J. Neurosci. 1999, 11, 4171–4178. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Gomora, J.C.; Cribbs, L.L.; Perez-Reyes, E. Nickel block of three cloned T-type calcium channels: Low concentrations selectively block α1H. Biophys. J. 1999, 77, 3034–3042. [Google Scholar] [CrossRef]
- Lory, P.; Nicole, S.; Monteil, A. Neuronal Cav3 channelopathies: Recent progress and perspectives. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 831–844. [Google Scholar] [CrossRef]
- Snutch, T.P.; Zamponi, G.W. Recent advances in the development of T-type calcium channel blockers for pain intervention. Br. J. Pharmacol. 2018, 175, 2375–2383. [Google Scholar] [CrossRef]
- Kopecky, B.J.; Liang, R.; Bao, J. T-type calcium channel blockers as neuroprotective agents. Pflug. Arch. Eur. J. Physiol. 2014, 466, 757–765. [Google Scholar] [CrossRef]
- Scott, V.E.; Vortherms, T.A.; Niforatos, W.; Swensen, A.M.; Neelands, T.; Milicic, I.; Banfor, P.N.; King, A.; Zhong, C.; Simler, G.; et al. A-1048400 is a novel, orally active, state-dependent neuronal calcium channel blocker that produces dose-dependent antinociception without altering hemodynamic function in rats. Biochem. Pharmacol. 2012, 83, 406–418. [Google Scholar] [CrossRef]
- Nam, G. T-type calcium channel blockers: A patent review (2012–2018). Expert Opin. Ther. Pat. 2018, 28, 883–901. [Google Scholar] [CrossRef]
- Weiss, N.; Zamponi, G.W. T-Type Channel Druggability at a Crossroads. ACS Chem. Neurosci. 2019, 10, 1124–1126. [Google Scholar] [CrossRef] [Green Version]
- Perez-Reyes, E.; van Deusen, A.L.; Vitko, I. Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: Block by antihypertensives, antiarrhythmics, and their analogs. J. Pharmacol. Exp. Ther. 2009, 328, 621–627. [Google Scholar] [CrossRef]
- Santi, C.M.; Cayabyab, F.S.; Sutton, K.G.; McRory, J.E.; Mezeyova, J.; Hamming, K.S.; Parker, D.; Stea, A.; Snutch, T.P. Differential inhibition of T-type calcium channels by neuroleptics. J. Neurosci. 2002, 22, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Traboulsie, A.; Chemin, J.; Kupfer, E.; Nargeot, J.; Lory, P. T-type calcium channels are inhibited by fluoxetine and its metabolite norfluoxetine. Mol. Pharmacol. 2006, 69, 1963–1968. [Google Scholar] [CrossRef] [PubMed]
- Sidach, S.S.; Mintz, I.M. Kurtoxin, a gating modifier of neuronal high- and low-threshold ca channels. J. Neurosci. 2002, 22, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Kale, V.P.; Amin, S.G.; Pandey, M.K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim. Biophys. Acta 2015, 1848, 2747–2755. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, S.J.; Park, S.J.; Lee, M.J.; Rhim, H.; Seo, S.H.; Kim, K.S. Growth inhibition of human cancer cells in vitro by T-type calcium channel blockers. Bioorg. Med. Chem. Lett. 2006, 16, 5014–5017. [Google Scholar] [CrossRef]
- Martin, R.L.; Lee, J.H.; Cribbs, L.; Perez-Reyes, E.; Hanck, D. Mibefradil block of cloned T-type calcium channels. J Pharm. Exp. Ther. 2000, 295, 302–308. [Google Scholar]
- Bladen, C.; Hamid, J.; Souza, I.A.; Zamponi, G.W. Block of T-type calcium channels by protoxins I and II. Mol. Brain 2014, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.L.; Li, Y.; Jovanovska, A.; Renger, J.J. Trazodone inhibits T-type calcium channels. Neuropharmacology 2007, 53, 308–317. [Google Scholar] [CrossRef]
- Bergson, P.; Lipkind, G.; Lee, S.P.; Duban, M.E.; Hanck, D.A. Verapamil block of T-type calcium channels. Mol. Pharmacol. 2011, 79, 411–419. [Google Scholar] [CrossRef]
- Ono, K.; Iijima, T. Cardiac T-type Ca2+ channels in the heart. J. Mol. Cell. Cardiol. 2010, 48, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Vassort, G.; Talavera, K.; Alvarez, J.L. Role of T-type Ca2+ channels in the heart. Cell Calcium 2006, 40, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Senatore, A.; Spafford, J.D. Gene transcription and splicing of T-type channels are evolutionarily-conserved strategies for regulating channel expression and gating. PLoS ONE 2012, 7, e37409. [Google Scholar] [CrossRef]
- Ferron, L.; Capuano, V.; Deroubaix, E.; Coulombe, A.; Renaud, J.-F. Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. J. Mol. Cell. Cardiol. 2002, 34, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Niwa, N.; Yasui, K.; Opthof, T.; Takemura, H.; Shimizu, A.; Horiba, M.; Lee, J.-K.; Honjo, H.; Kamiya, K.; Kodama, I. Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H2257–H2263. [Google Scholar] [CrossRef]
- Benitah, J.P.; Gomez, A.M.; Fauconnier, J.; Kerfant, B.G.; Perrier, E.; Vassort, G.; Richard, S. Voltage-gated Ca2+ currents in the human pathophysiologic heart: A review. Basic Res. Cardiol. 2002, 97, I11–I18. [Google Scholar] [CrossRef]
- Monteil, A.; Chemin, J.; Bourinet, E.; Mennessier, G.; Lory, P.; Nargeot, J. Molecular and Functional Properties of the Human α1G Subunit That Forms T-type Calcium Channels. J. Biol. Chem. 2000, 275, 6090–6100. [Google Scholar] [CrossRef]
- Chandler, N.J.; Greener, I.D.; Tellez, J.O.; Inada, S.; Musa, H.; Molenaar, P.; Difrancesco, D.; Baruscotti, M.; Longhi, R.; Anderson, R.H.; et al. Molecular architecture of the human sinus node: Insights into the function of the cardiac pacemaker. Circulation 2009, 119, 1562–1575. [Google Scholar] [CrossRef] [PubMed]
- Mádle, A.; Linhartová, K.; Koza, J. Effects of the T-type calcium channel blockade with oral mibefradil on the electrophysiologic properties of the human heart. Med. Sci. Monit. 2001, 7, 74–77. [Google Scholar] [PubMed]
- Nuss, H.B.; Houser, S.R. T-type Ca2 current is expressed in hypertrophied adult feline left ventricular myocytes. Circ. Res. 1993, 73, 777–782. [Google Scholar] [CrossRef]
- Martinez, M.L.; Heredia, M.P.; Delgado, C. Expression of T-type Ca2 Channels in Ventricular Cells from Hypertrophied Rat Hearts. J. Mol. Cell. Cardiol. 1999, 31, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.S.; Huang, C.H.; Chieng, H.; Chang, Y.-T.; Chang, D.; Chen, J.-J.; Chen, Y.-C.; Chen, Y.-H.; Shin, H.-S.; Campbell, K.P.; et al. The CaV3.2 T-Type Ca2+ Channel Is Required for Pressure Overload-Induced Cardiac Hypertrophy in Mice. Circ. Res. 2009, 104, 522–530. [Google Scholar] [CrossRef]
- Petersen, M.; Wagner, G.; Pierau, F.K. Modulation of calcium-currents by capsaicin in a subpopulation of sensory neurones of guinea pig. Naunyn. Schmiedebergs. Arch. Pharmacol. 1989, 339, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Haberberger, R.V.; Barry, C.; Dominguez, N.; Matusica, D. Human Dorsal Root Ganglia. Front. Cell. Neurosci. 2019, 13, 271. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, S.M.; Jevtovic-Todorovic, V.; Meyenburg, A.; Mennerick, S.; Perez-Reyes, E.; Romano, C.; Olney, J.W.; Zorumski, C.F. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 2001, 31, 75–85. [Google Scholar] [CrossRef]
- Bourinet, E.; Alloui, A.; Monteil, A.; Barrère, C.; Couette, B.; Poirot, O.; Pages, A.; McRory, J.; Snutch, T.P.; Eschalier, A.; et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. 2005, 24, 315–324. [Google Scholar] [CrossRef]
- Nelson, M.T.; Joksovic, P.M.; Perez-Reyes, E.; Todorovic, S.M. The endogenous redox agent L-cysteine induces T-type Ca2+ channel-dependent sensitization of a novel subpopulation of rat peripheral nociceptors. J. Neurosci. 2005, 25, 8766–8775. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Gomez, K.; Moutal, A.; Khanna, R. Targeting T-type/CaV3.2 channels for chronic pain. Transl. Res. 2021, 234, 20–30. [Google Scholar] [CrossRef]
- Feng, X.-J.; Ma, L.-X.; Jiao, C.; Kuang, H.-X.; Zeng, F.; Zhou, X.-Y.; Cheng, X.-E.; Zhu, M.-Y.; Zhang, D.-Y.; Jiang, C.-Y.; et al. Nerve injury elevates functional Cav3.2 channels in superficial spinal dorsal horn. Mol. Pain 2019, 15, 1744806919836569. [Google Scholar] [CrossRef]
- Gomez, K.; Calderón-Rivera, A.; Sandoval, A.; González-Ramírez, R.; Vargas-Parada, A.; Ojeda-Alonso, J.; Granados-Soto, V.; Delgado-Lezama, R.; Felix, R. Cdk5-Dependent Phosphorylation of CaV3.2 T-Type Channels: Possible Role in Nerve Ligation-Induced Neuropathic Allodynia and the Compound Action Potential in Primary Afferent C Fibers. J. Neurosci. 2020, 40, 283–296. [Google Scholar] [CrossRef]
- Garcia-Caballero, A.; Gadotti, V.M.; Stemkowski, P.; Weiss, N.; Souza, I.A.; Hodgkinson, V.; Bladen, C.; Chen, L.; Hamid, J.; Pizzoccaro, A.; et al. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 2014, 83, 1144–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, S.; Sekiguchi, F.; Kasanami, Y.; Naoe, K.; Tsubota, M.; Wake, H.; Nishibori, M.; Kawabata, A. Cav3.2 overexpression in L4 dorsal root ganglion neurons after L5 spinal nerve cutting involves Egr-1, USP5 and HMGB1 in rats: An emerging signaling pathway for neuropathic pain. Eur. J. Pharmacol. 2020, 888, 173587. [Google Scholar] [CrossRef] [PubMed]
- Flatters, S.J.L.; Dougherty, P.M.; Colvin, L.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review. Br. J. Anaesth. 2017, 119, 737–749. [Google Scholar] [CrossRef]
- Zajaczkowską, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [PubMed]
- Staff, N.P.; Fehrenbacher, J.C.; Caillaud, M.; Damaj, M.I.; Segal, R.A.; Rieger, S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp. Neurol. 2020, 324, 113121. [Google Scholar] [CrossRef]
- Nyrop, K.A.; Deal, A.M.; Shachar, S.S.; Basch, E.; Reeve, B.B.; Choi, S.K.; Lee, J.T.; Wood, W.A.; Anders, C.K.; Carey, L.A.; et al. Patient-Reported Toxicities During Chemotherapy Regimens in Current Clinical Practice for Early Breast Cancer. Oncologist 2019, 24, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tatsui, C.E.; Rhines, L.D.; North, R.Y.; Harrison, D.S.; Cassidy, R.M.; Johansson, C.A.; Kosturakis, A.K.; Edwards, D.D.; Zhang, H.; et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 2017, 158, 417–429. [Google Scholar] [CrossRef]
- Adams, J.; Palombella, V.J.; Sausville, E.A.; Johnson, J.; Destree, A.; Lazarus, D.D.; Maas, J.; Pien, C.S.; Prakash, S.; Elliott, P.J. Proteasome inhibitors: A novel class of potent and effective antitumor agents. Cancer Res. 1999, 59, 2615–2622. [Google Scholar]
- Piperdi, B.; Ling, Y.-H.; Liebes, L.; Muggia, F.; Perez-Soler, R. Bortezomib: Understanding the Mechanism of Action. Mol. Cancer Ther. 2011, 10, 2029–2030. [Google Scholar] [CrossRef]
- Trougakos, I.P.; Sesti, F.; Tsakiri, E.; Gorgoulis, V.G. Non-enzymatic post-translational protein modifications and proteostasis network deregulation in carcinogenesis. J. Proteom. 2013, 92, 274–298. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Cavaletti, G.; Bruna, J.; Kyritsis, A.P.; Kalofonos, H.P. Bortezomib-induced peripheral neurotoxicity: An update. Arch. Toxicol. 2014, 88, 1669–1679. [Google Scholar] [CrossRef] [PubMed]
- Pancheri, E.; Guglielmi, V.; Wilczynski, G.M.; Malatesta, M.; Tonin, P.; Tomelleri, G.; Nowis, D.; Vattemi, G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers 2020, 12, 2540. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.H.; Liebes, L.; Ng, B.; Buckley, M.; Elliott, P.J.; Adams, J.; Jiang, J.-D.; Muggia, F.M.; Perez-Soler, R. PS-341, a Novel Proteasome Inhibitor, Induces Bcl-2 Phosphorylation and Cleavage in Association with G2-M Phase Arrest and Apoptosis. Mol. Cancer Ther. 2002, 1, 841–849. [Google Scholar] [PubMed]
- Cavaletti, G.; Gilardini, A.; Canta, A.; Rigamonti, L.; Rodriguez-Menendez, V.; Ceresa, C.; Marmiroli, P.; Bossi, M.; Oggioni, N.; D’Incalci, M.; et al. Bortezomib-induced peripheral neurotoxicity: A neurophysiological and pathological study in the rat. Exp. Neurol. 2007, 204, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Bruna, J.; Udina, E.; Alé, A.; Vilches, J.J.; Vynckier, A.; Monbaliu, J.; Silverman, L.; Navarro, X. Neurophysiological, histological and immunohistochemical characterization of bortezomib-induced neuropathy in mice. Exp. Neurol. 2010, 223, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Tomita, S.; Sekiguchi, F.; Deguchi, T.; Miyazaki, T.; Ikeda, Y.; Tsubota, M.; Yoshida, S.; Nguyen, H.D.; Okada, T.; Toyooka, N.; et al. Critical role of Cav3.2 T-type calcium channels in the peripheral neuropathy induced by bortezomib, a proteasome-inhibiting chemotherapeutic agent, in mice. Toxicology 2019, 413, 33–39. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Richardson, P.G.; Moreau, P.; Anderson, K.C. Current treatment landscape for relapsed and/or refractory multiple myeloma. Nat. Rev. Clin. Oncol. 2015, 12, 42–54. [Google Scholar] [CrossRef]
- Tsakiri, E.N.; Terpos, E.; Papanagnou, E.-D.; Kastritis, E.; Brieudes, V.; Halabalaki, M.; Bagratuni, T.; Florea, B.I.; Overkleeft, H.S.; Scorrano, L.; et al. Milder degenerative effects of Carfilzomib vs. Bortezomib in the Drosophila model: A link to clinical adverse events. Sci. Rep. 2017, 7, 17802. [Google Scholar] [CrossRef]
- Siegel, D.; Martin, T.; Nooka, A.; Harvey, R.D.; Vij, R.; Niesvizky, R.; Badros, A.Z.; Jagannath, S.; McCulloch, L.; Rajangam, K.; et al. Integrated safety profile of single-agent carfilzomib: Experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica 2013, 98, 1753. [Google Scholar] [CrossRef]
- Orciuolo, E.; Gabriele, B.; Cecconi, N.; Galimberti, S.; Versari, D.; Cervetti, G.; Salvetti, A.; Petrini, M. Unexpected cardiotoxicity in haematological bortezomib treated patients. Br. J. Haematol. 2007, 138, 396–397. [Google Scholar] [CrossRef]
- Honton, B.; Despas, F.; Dumonteil, N.; Rouvellat, C.; Roussel, M.; Carrie, D.; Galinier, M.; Montastruc, J.L.; Pathak, A. Bortezomib and heart failure: Case-report and review of the French Pharmacovigilance database. Fundam. Clin. Pharmacol. 2014, 28, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.; Ciechanover, A.; Lerman, L.O.; Lerman, A. The ubiquitin--proteasome system in cardiovascular diseases—A hypothesis extended. Cardiovasc. Res. 2004, 61, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornitzer, D.; Ciechanover, A. Modes of regulation of ubiquitin-mediated protein degradation. J. Cell. Physiol. 2000, 182, 1–11. [Google Scholar] [CrossRef]
- Ciechanover, A.; Orian, A.; Schwartz, A.L. The ubiquitin-mediated proteolytic pathway: Mode of action and clinical implications. J. Cell. Biochem. 2000, 77, 40–51. [Google Scholar] [CrossRef]
- Schulman, B.A.; Harper, J.W. Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 2009, 10, 319–331. [Google Scholar] [CrossRef]
- Brannigan, J.A.; Dodson, G.; Duggleby, H.J.; Moody, P.C.; Smith, J.L.; Tomchick, D.R.; Murzin, A.G. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 1995, 378, 416–419. [Google Scholar] [CrossRef]
- Unno, M.; Mizushima, T.; Morimoto, Y.; Tomisugi, Y.; Tanaka, K.; Yasuoka, N.; Tsukihara, T. The structure of the mammalian 20S proteasome at 2.75 Åresolution. Structure 2002, 10, 609–618. [Google Scholar] [CrossRef]
- Voges, D.; Zwickl, P.; Baumeister, W. The 26S Proteasome: A Molecular Machine Designed for Controlled Proteolysis. Annu. Rev. Biochem. 1999, 68, 1015–1068. [Google Scholar] [CrossRef]
- Kaplan, G.S.; Torcun, C.C.; Grune, T.; Ozer, N.K.; Karademir, B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic. Biol. Med. 2017, 103, 1–13. [Google Scholar] [CrossRef]
- Kato, M.; Ogura, K.; Miake, J.; Sasaki, N.; Taniguchi, S.-I.; Igawa, O.; Yoshida, A.; Hoshikawa, Y.; Murata, M.; Nanba, E.; et al. Evidence for proteasomal degradation of Kv1.5 channel protein. Biochem. Biophys. Res. Commun. 2005, 337, 343–348. [Google Scholar] [CrossRef]
- Chapman, H.; Ramstrom, C.; Korhonen, L.; Laine, M.; Wann, K.T.; Lindholm, D.; Pasternack, M.; Tornquist, K. Downregulation of the HERG (KCNH2) K+ channel by ceramide: Evidence for ubiquitin-mediated lysosomal degradation. J. Cell Mol. Biol. 2005, 118, 5325–5334. [Google Scholar] [CrossRef] [PubMed]
- Zolk, O.; Schenke, C.; Sarikas, A. The ubiquitin--proteasome system: Focus on the heart. Cardiovasc. Res. 2006, 70, 410–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Q.; Keeney, D.R.; Molinari, M.; Zhou, Z. Degradation of trafficking-defective long QT syndrome type II mutant channels by the ubiquitin-proteasome pathway. J. Biol. Chem. 2005, 280, 19419–19425. [Google Scholar] [CrossRef] [PubMed]
- Mihic, A.; Chauhan, V.S.; Gao, X.; Oudit, G.Y.; Tsushima, R.G. Trafficking defect and proteasomal degradation contribute to the phenotype of a novel KCNH2 long QT syndrome mutation. PLoS ONE 2011, 6, e18273. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, N.E.; Hoeppner, D.J.; Wei, H.; Jaffe, A.E.; Maher, B.J.; Barrow, J.C. Schizophrenia-Associated hERG channel Kv11.1-3.1 Exhibits a Unique Trafficking Deficit that is Rescued Through Proteasome Inhibition for High Throughput Screening. Sci. Rep. 2016, 6, 19976. [Google Scholar] [CrossRef]
- Choi, S.W.; Choi, S.W.; Jeon, Y.K.; Moon, S.-H.; Zhang, Y.-H.; Kim, S.J. Suppression of hERG K+ current and cardiac action potential prolongation by 4-hydroxynonenal via dual mechanisms. Redox Biol. 2018, 19, 190–199. [Google Scholar] [CrossRef]
- Van Bemmelen, M.X.; Rougier, J.-S.; Gavillet, B.; Apothéloz, F.; Daidié, D.; Tateyama, M.; Rivolta, I.; Thomas, M.A.; Kass, R.S.; Staub, O.; et al. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ. Res. 2004, 95, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zheng, M.Q.; Morishima, M.; Wang, Y.; Kaku, T.; Ono, K. Bepridil up-regulates cardiac Na+ channels as a long-term effect by blunting proteasome signals through inhibition of calmodulin activity. Br. J. Pharmacol. 2009, 157, 404–414. [Google Scholar] [CrossRef]
- Rougier, J.S.; Gavillet, B.; Abriel, H. Proteasome inhibitor (MG132) rescues Nav1.5 protein content and the cardiac sodium current in dystrophin-deficient mdx5cv mice. Front. Physiol. 2013, 4, 51. [Google Scholar] [CrossRef]
- Morais, E.R.; Oliveira, K.C.; de Paula, R.G.; Ornelas, A.M.M.; Moreira, É.B.C.; Badoco, F.R.; Magalhães, L.G.; Verjovski-Almeida, S.; Rodrigues, V. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni. PLoS ONE 2017, 12, e0184192. [Google Scholar]
- Magdy, T.; Burmeister, B.T.; Burridge, P.W. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing? Pharmacol. Ther. 2016, 168, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Miolo, G.M.; la Mura, N.; Nigri, P.; Murrone, A.; da Ronch, L.; Viel, E.; Veronesi, A.; Lestuzzi, C. The cardiotoxicity of chemotherapy: New prospects for an old problem. Radiol. Oncol. 2006, 40, 149–161. [Google Scholar]
- Morelli, M.B.; Bongiovanni, C.; da Pra, S.; Miano, C.; Sacchi, F.; Lauriola, M.; D’Uva, G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front. Cardiovasc. Med. 2022, 9, 847012. [Google Scholar] [CrossRef] [PubMed]
- Schlitt, A.; Jordan, K.; Vordermark, D.; Schwamborn, J.; Langer, T.; Thomssen, C. Cardiotoxicity and oncological treatments. Dtsch. Arztebl. Int. 2014, 111, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Donk, N.W. Carfilzomib versus bortezomib: No longer an ENDEAVOR. Lancet Oncol. 2017, 18, 1288–1290. [Google Scholar] [CrossRef]
- Koutsoukis, A.; Ntalianis, A.; Repasos, E.; Kastritis, E.; Dimopoulos, M.A.; Paraskevaidis, I. Cardio-oncology: A focus on cardiotoxicity. Eur. Cardiol. Rev. 2018, 13, 64–69. [Google Scholar] [CrossRef]
- Nowis, D.; Mackiewicz, U.M.M.; Kujawa, M.; Ratajska, A.; Wieckowski, M.R.; Wilczyński, G.M.; Malinowska, M.; Bil, J.; Salwa, P.; Bugajski, M.; et al. Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am. J. Pathol. 2010, 176, 2658–2668. [Google Scholar] [CrossRef]
- Hasinoff, B.B.; Patel, D.; Wu, X. Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib. Cardiovasc. Toxicol. 2017, 17, 237–250. [Google Scholar] [CrossRef]
- Tang, M.; Li, J.; Huang, W.; Su, H.; Liang, Q.; Tian, Z.; Horak, K.M.; Molkentin, J.D.; Wang, X. Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovasc. Res. 2010, 88, 424–433. [Google Scholar] [CrossRef]
- Cui, Z.; Scruggs, S.B.; Gilda, J.E.; Ping, P.; Gomes, A.V. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J. Mol. Cell. Cardiol. 2014, 71, 32–42. [Google Scholar] [CrossRef]
- Pagan, J.; Seto, T.; Pagano, M.; Cittadini, A. Role of the ubiquitin proteasome system in the heart. Circ. Res. 2013, 112, 1046–1058. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singhi, E.K.; Arroyo, J.P.; Ikizler, T.A.; Gould, E.R.; Brown, J.; Beckman, J.A.; Harrison, D.G.; Moslehi, J. Mechanisms of VEGF-Inhibitor Associated Hypertension and Vascular Disease. Hypertension 2018, 71, e1. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.U.; Reeves, D.J.; Chugh, A.R.; O’Quinn, R.; Fradley, M.sG.; Raghavendra, M.; Dent, S.; Barac, A.; Lenihan, D. Clinical Approach to Cardiovascular Toxicity of Oral Antineoplastic Agents: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 2693–2716. [Google Scholar] [CrossRef]
- Omland, T.; Heck, S.L.; Gulati, G. The Role of Cardioprotection in Cancer Therapy Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncology 2022, 4, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Antal, L.; Martin-Caraballo, M. T-type Calcium Channels in Cancer. Cancers 2019, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cruickshanks, N.; Yuan, F.; Wang, B.; Pahuski, M.; Wulfkuhle, J.; Gallagher, I.; Koeppel, A.F.; Hatef, S.; Papanicolas, C.; et al. Targetable T-type Calcium Channels Drive Glioblastoma. Cancer Res. 2017, 77, 3479–3490. [Google Scholar] [CrossRef]
- Visa, A.; Sallan, M.C.; Maiques, O.; Alza, L.; Talavera, E.; Lopez-Ortega, R.; Santacana, M.; Herreros, J.; Cantí, C. T-Type Ca v 3.1 Channels Mediate Progression and Chemotherapeutic Resistance in Glioblastoma. Cancer Res. 2019, 79, 1857–1868. [Google Scholar] [CrossRef]
- Maklad, A.; Sedeeq, M.; Milevskiy, M.J.G.; Azimi, I. Calcium Signalling in Medulloblastoma: An In Silico Analysis of the Expression of Calcium Regulating Genes in Patient Samples. Genes 2021, 12, 1329. [Google Scholar] [CrossRef]
- Silvestri, R.; Pucci, P.; Venalainen, E.; Matheou, C.; Mather, R.; Chandler, S.; Aceto, R.; Rigas, S.H.; Wang, Y.; Rietdorf, K.; et al. T-type calcium channels drive the proliferation of androgen-receptor negative prostate cancer cells. Prostate 2019, 79, 1580–1586. [Google Scholar] [CrossRef]
- Mariot, P.; Vanoverberghe, K.; Lalevée, N.; Rossier, M.F.; Prevarskaya, N. Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J. Biol. Chem. 2002, 277, 10824–10833. [Google Scholar] [CrossRef]
- Taylor, J.T.; Huang, L.; Pottle, J.E.; Liu, K.; Yang, Y.; Zeng, X.; Keyser, B.M.; Agrawal, K.C.; Hansen, J.B.; Li, M. Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 2008, 267, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Barceló, C.; Sisó, P.; Maiques, O.; de la Rosa, I.; Martí, R.M.; Macià, A. T-Type Calcium Channels: A Potential Novel Target in Melanoma. Cancers 2020, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Li, R.F.; Man, Q.W.; Liu, J.Y.; Zheng, Y.Y.; Gao, X.; Liu, H.M. Overexpression of T-type calcium channel Cav3.1 in oral squamous cell carcinoma: Association with proliferation and anti-apoptotic activity. J. Mol. Histol. 2021, 52, 511–520. [Google Scholar] [CrossRef]
- Mao, W.; Zhang, J.; Körner, H.; Jiang, Y.; Ying, S. The emerging role of voltage-gated sodium channels in tumor biology. Front. Oncol. 2019, 9, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litan, A.; Langhans, S.A. Cancer as a channelopathy: Ion channels and pumps in tumor development and progression. Front. Cell. Neurosci. 2015, 9, 86. [Google Scholar] [CrossRef]
- Angus, M.; Ruben, P. Voltage gated sodium channels in cancer and their potential mechanisms of action. Channels 2019, 13, 400–409. [Google Scholar] [CrossRef]
- Leverrier-Penna, S.; Destaing, O.; Penna, A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020, 90, 102251. [Google Scholar] [CrossRef]
- Visa, A.; Shaikh, S.; Alza, L.; Herreros, J.; Cantí, C. The Hard-To-Close Window of T-Type Calcium Channels. Trends Mol. Med. 2019, 25, 571–584. [Google Scholar] [CrossRef]
- Yoshida, J.; Ishibashi, T.; Nishio, M. G1 cell cycle arrest by amlodipine, a dihydropyridine Ca2+ channel blocker, in human epidermoid carcinoma A431 cells. Biochem. Pharmacol. 2007, 73, 943–953. [Google Scholar] [CrossRef]
- Shaughnessy, M.; Lamuraglia, G.; Klebanov, N.; Ji, Z.; Rajadurai, A.; Kumar, R.; Flaherty, K.; Tsao, H. Selective uveal melanoma inhibition with calcium channel blockade. Int. J. Oncol. 2019, 55, 1090. [Google Scholar] [CrossRef]
- Panneerpandian, P.; Rao, D.B.; Ganesan, K. Calcium channel blockers lercanidipine and amlodipine inhibit YY1/ERK/TGF-β mediated transcription and sensitize the gastric cancer cells to doxorubicin. Toxicol. Vitr. 2021, 74, 105152. [Google Scholar] [CrossRef] [PubMed]
- Principe, D.R.; Aissa, A.F.; Kumar, S.; Pham, T.N.D.; Underwood, P.W.; Nair, R.; Ke, R.; Rana, B.; Trevino, J.G.; Munshi, H.G.; et al. Calcium channel blockers potentiate gemcitabine chemotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2022, 119, 18. [Google Scholar] [CrossRef] [PubMed]
- Alandaǧ, C.; Karaman, E.; Yüce, E. Amlodipine improves the outcomes of regorafenib in metastatic colorectal cancer. Anticancer. Drugs 2022, 33, 389–393. [Google Scholar] [CrossRef]
- Taghizadehghalehjoughi, A.; Sezen, S.; Hacimuftuoglu, A.; Güllüce, M. Vincristine combination with Ca2+ channel blocker increase antitumor effects. Mol. Biol. Rep. 2019, 46, 2523–2528. [Google Scholar] [CrossRef]
- El-Wakil, M.H.; Teleb, M.; Abu-Serie, M.M.; Huang, S.; Zamponi, G.W.; Fahmy, H. Structural optimization, synthesis and in vitro synergistic anticancer activities of combinations of new N3-substituted dihydropyrimidine calcium channel blockers with cisplatin and etoposide. Bioorg. Chem. 2021, 115, 105262. [Google Scholar] [CrossRef]
- Sallan, M.C.; Visa, A.; Shaikh, S.; Nager, M.; Herreros, J.; Cantí, C. T-type Ca2+ Channels: T for targetable. Cancer Res. 2018, 78, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Rim, H.K.; Lee, H.W.; Choi, I.S.; Park, J.Y.; Choi, H.W.; Choi, J.H.; Cho, Y.W.; Lee, J.Y.; Lee, K.T. T-type Ca2+ channel blocker, KYS05047 induces G1 phase cell cycle arrest by decreasing intracellular Ca2+ levels in human lung adenocarcinoma A549 cells. Bioorg. Med. Chem. Lett. 2012, 22, 7123–7126. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Laguna, I.; Tan, A.; Villarroel, M.; Rajeshkumar, N.; Rubio-Viqueira, B.; Gray, L.; Hidalgo, M. Activity of the T-type calcium channel antagonist Mibefradil in pancreatic cancer xenografts. In Proceedings of the Third AACR International Conference on Molecular Diagnostics in Cancer Therapeutic Development, Philadelphia, PA, USA, 22–25 September 2008. [Google Scholar]
- Dziegielewska, B.; Casarez, E.V.; Yang, W.Z.; Gray, L.S.; Dziegielewski, J.; Slack-Davis, J.K. T-type Ca2+ channel inhibition sensitizes ovarian cancer to carboplatin. Mol. Cancer Ther. 2016, 15, 460–470. [Google Scholar] [CrossRef]
- Pottle, J.; Sun, C.; Gray, L.; Li, M.; Pottle, J.; Sun, C.; Gray, L.; Li, M. Exploiting MCF-7 Cells’ Calcium Dependence with Interlaced Therapy. J. Cancer Ther. 2013, 4, 32–40. [Google Scholar] [CrossRef]
- Holdhoff, M.; Ye, X.; Supko, J.G.; Nabors, L.B.; Desai, A.S.; Walbert, T.; Lesser, G.J.; Read, W.L.; Lieberman, F.S.; Lodge, M.A.; et al. Timed sequential therapy of the selective T-type calcium channel blocker mibefradil and temozolomide in patients with recurrent high-grade gliomas. Neuro-Oncology 2017, 19, 845–852. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, D.; Park, J.Y.; Jung, H.J.; Cho, Y.H.; Kim, H.K.; Han, J.; Choi, K.Y.; Kwon, H.J. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J. Mol. Med. 2015, 93, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Tuan, N.M.; Lee, C.H. Penfluridol as a Candidate of Drug Repurposing for Anticancer Agent. Molecules 2019, 24, 3659. [Google Scholar] [CrossRef]
- Mishra, S.K.; Hermsmeyer, K. Selective inhibition of T-type Ca2+ channels by Ro 40-5967. Circ. Res. 1994, 75, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Sedeeq, M.; Maklad, A.; Dutta, T.; Feng, Z.; Wilson, R.; Gueven, N.; Azimi, I. T-Type Calcium Channel Inhibitors Induce Apoptosis in Medulloblastoma Cells Associated with Altered Metabolic Activity. Mol. Neurobiol. 2022, 59, 2932. [Google Scholar] [CrossRef] [PubMed]
- Alza, L.; Visa, A.; Herreros, J.; Cantí, C. The rise of T-type channels in melanoma progression and chemotherapeutic resistance. Biochim. Biophys. Acta-Rev. Cancer 2020, 1873, 188364. [Google Scholar] [CrossRef] [PubMed]
- Drolet, B.; Rousseau, G.; Daleau, P.; Cardinal, R.; Simard, C.; Turgeon, J. Pimozide (Orap) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J. Cardiovasc. Pharmacol. Ther. 2001, 6, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Tytgat, J.; Vereecke, J.; Carmeliet, E. Mechanism of L- and T-type Ca2+ channel blockade by flunarizine in ventricular myocytes of the guinea-pig. Eur. J. Pharmacol. 1996, 296, 189–197. [Google Scholar] [CrossRef]
- Depuydt, A.S.; Rihon, J.; Cheneval, O.; Vanmeert, M.; Schroeder, C.I.; Craik, D.J.; Lescrinier, E.; Peigneur, S.; Tytgat, J. Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site. ACS Pharmacol. Transl. Sci. 2021, 4, 1379–1389. [Google Scholar] [CrossRef]
- Kumari, N.; Giri, P.S.; Rath, S.N. Adjuvant role of a T-type calcium channel blocker, TTA-A2, in lung cancer treatment with paclitaxel. Cancer Drug Resist. 2021, 4, 996. [Google Scholar] [CrossRef]
- Bhargava, A.; Saha, S. T-Type voltage gated calcium channels: A target in breast cancer? Breast Cancer Res. Treat. 2019, 173, 11–21. [Google Scholar] [CrossRef]
- Meregalli, C.; Maricich, Y.; Cavaletti, G.; Canta, A.; Carozzi, V.A.; Chiorazzi, A.; Newbold, E.; Marmiroli, P.; Ceresa, C.; Diani, A.; et al. Reversal of bortezomib-induced neurotoxicity by suvecaltamide, a selective T-type ca-channel modulator, in preclinical models. Cancers 2021, 13, 5013. [Google Scholar] [CrossRef] [PubMed]
- Alza, L.; Visa, A.; Herreros, J.; Cantí, C. T-type channels in cancer cells: Driving in reverse. Cell Calcium 2022, 105, 102610. [Google Scholar] [CrossRef] [PubMed]
Drug | Chemical Class/Origin | Preferential Block | Treatment Indication | References |
---|---|---|---|---|
(3R,5S)-31c | Benzodiazepine | Cav3.3 > Cav3.1 > Cav3.3 | Absence epilepsy | [16] |
A1048400 | Diphenylpiperazine | T-type and N-type | Tactile allodynia in capsaicin-induced secondary hypersensitivity (animal model) | [17,18] |
A-686085 | Diphenylpiperazine | L-, N- and T-type | Tactile allodynia in capsaicin-induced secondary hypersensitivity (animal model) | [18] |
ABT-639 | Sulfonamide | Cav3.2 | Diabetic Neuropathy, failed clinical trials for pain/schizophrenia treatment | [19] |
ACT-709478 | Heteroaromatic amide | Cav3.1 > Cav3.3 > Cav3.2 | Generalized epilepsy (Phase II) | [20] |
Amiodarone | Na, K and Ca | Class III Antiarrhythmic agent | [21] | |
Amlodipine (Norvasc) | DHP | Cav3.2 > Cav3.1 and Cav3.3 | High blood pressure and coronary artery disease | [17] |
Anandamide | Endocannabinoids | T-type | [16] | |
Arachidonyl-glycine | Anandamide derivative | T-type | [16] | |
Aranidipine (Sapresta) | DHP | L- and T-type | High blood pressure | [17] |
Azelnidipine (CalBlock) | DHP | L- and T-type | High blood pressure | [17] |
Barnidipine | DHP | L- and T-type | Hypertension | [17] |
Bay K8644 | DHP | L- and T-type | [21] | |
Benidipine (Coniel) | DHP | L- and T-type | Hypertension | [17] |
Bepridil | Diamine | Non selective | Angina | [21] |
Compound 10d | Hexane derivatives | T-type, hERG, N-type | Neuropathic pain (animal model) | [16] |
Compound 10e | Piperazine derivative | Cav3.1, Cav3.2, Cav3.3. No strong effect on Cav1.2 and Cav2.2 | CFA-induced inflammatory pain. | [16] |
Compound 9b | Sulfonamides | T-type, N-type > hERG | Cold allodynia, mechanincal pain hypersensitivity (animal model) | [16] |
Compound 9c | DHP derivative | Cav3.2 > Cav1.2 | Inflammatory pain (animal model) | [16] |
Compound series | Hybrids of NMP-7 and TTA-A1 | Potent Cav3.2 inhibition | Cav3.2-related neuropathic and inflammatory pain (animal model) | [16] |
D888 (devapamil) | Phenylalkylamine derivative | L- and T-type (Cav3.2) | Stress induced ulcer in rats | [21] |
Diltiazem | DHP | Non selective | High blood pressure, angina, arrhythmias | [21] |
Efonidipine (Landel) | DHP | L- and T-type | Hypertension | [17] |
Ethosuximide (Zarontin) | Succimide | Cav3.1 | absence epilepsy | [20] |
Felodipine | DHP | L- and T-type | [21] | |
Flunarizine | Diphenyldiperazine derivative | T-type | Neuroepileptic agent | [22] |
Fluoxetine (Prozac) | Selective serotonin reuptake inhibitors (SSRI) | Cav3.1, Cav3.2 Cav3.3 | Depression | [23] |
Haloperidol | Butyrophenone | T-type | Neuroepileptic agent | [22] |
Isradipine | DHP | Cav3.2 | [21] | |
Kurtoxin | Scorpion venom | L- and T-type | [24] | |
KYS05041 | 3,4-Dihydroquinazoline derivative | T-type | In vitro inhibition of cancer cells growth | [25,26] |
KYS05047 | 3,4-Dihydroquinazoline derivative | Cav3.1, Cav3.2 | Effective on neuronal circuits | [17] |
KYS-05090S | 3,4-dihydroquinazoline derivative | Cav3.1, Cav3.2 | Inflammatory and neuropathic pain | [16] |
Mibefradil (Posicor) | Phenylalkylamine | L- and T-type, Na and K | Hypertension and angina (withdrawn) | [17,27] |
MK-8998 (Suvecaltamide) | Pyridyl amide | T-type | Failed clinical trials for pain/schizophrenia treatment | [19] |
ML218 | Cav3.1, Cav3.3 | [17] | ||
N10 and N12 | DHP derivative | T-Type | Inflammatory pain (animal model) | [16] |
NCC 55-0396 | T-type | Tumor-induced angiogenesis in vitro and in vito | [17] | |
Nicardipine (Cardene) | DHP | L- and T-type | Hypertension and angina | [17] |
Niguldipine | DHP | L- and T-type | [21] | |
Nimodipine (Nimotop) | DHP | L- and T-type | Cerebral vasospasm, ischemia | [17] |
Nisoldipine | DHP | L- and T-type | [21] | |
NMP-181 | NMP-7 derivative | CB2 agonist, T-type blocker | Formalin-induced inflammatory pain (animal model) | [16] |
NMP-7 | Carbazole derivative | Cannabinoid receptors CB1 and CB2 agonist, T-Type blocker | Formalin-induced inflammatory pain (animal model) | [16] |
Penfluridol | Diphenylbutylpiperidines | D2 dopamine receptor antagonist, T-type and L-type blocker | Neuroepileptic agent | [22,25] |
Perhexiline | L- and T-type (Cav3.2) | Coronary vasodilator, angina | [21] | |
Pimozide | Diphenylbutylpiperidines | D2 dopamine receptor antagonist, T-type and L-type blocker | Neuroepileptic agent | [22,25] |
ProTx I | Tarantula venom | Cav3.1 (Blocks also NaV) | [28] | |
ProTx II | Tarantula venom | Cav3.2 (Blocks also NaV) | [28] | |
RQ-00311610 | T-type | Increased bladder capacity in bladder outlet obstruction model | [17] | |
TH-1177 | Chemical synthetic peptide | Human cancer prostate cell proliferation | [25] | |
Trazodone | Serotonin antagonist and reuptake inhibitors (SARIs) | Cav3.1, Cav3.3 | Depression | [29] |
TTA-A2 | Cav3.1, Cav3.3 | Effective on neuronal circuits | [17] | |
TTA-P2 | 4-aminomethyl-4-fluoropiperdine derivative | T-type | Antinocipetive agent | [17] |
Verapamil | Phenylakylamine | L- and T-type | High blood pressure and angina, supraventricular tachycardia | [30] |
VH04 | Cav3.1 | [17] | ||
Z941/944 | T-type | [17] | ||
Z944 | Piperazine | T-type | Pain (Phase II)pain | [20] |
Zonizamide (Excegran) | Sulfonamide | Cav3.2 (non selective) | Epilepsy | [17,20] |
Drug(s) | Cancer Type(s) | Model(s) | Reported Adverse Effects | References |
---|---|---|---|---|
5b, 6b, 6c, BK10040, 8, KYS05090, | Lung adenocarcinoma | A549 cell line | N.A. | [118] |
Amlodipine | Human epidermoid carcinoma | A431 cell line | N.A. | [119] |
Amlodipine | Uveal malignant melanoma | Cutaneous malignant melanoma cell lines and 3D cultures | N.A. | [120] |
Amlodipine and doxorubicin, concomitant treatment | Gastric cancer | AGS and MKN45 cell lines | N.A. | [121] |
Amlodipine and gemcitabine, concomitant treatment | Pancreatic ductal adenocarcinoma (PDAC) | Orthotopic Xenografts in mice and mouse model of PDAC | Not reported | [122] |
Amlodipine and regorafenib, concomitant treatment | Metastatic colorectal cancer | Human patients | Not reported | [123] |
Amlodipine and vincristine, concomitant treatment | Neuroblastoma | SH-SY5Ycell line | N.A. | [124] |
Ascorbic Acid | Neuroblastoma-glioma | NG108-15 cell line | N.A. | [125] |
C12 and C13 with cisplatin, concomitant treatment | Lung adenocarcinoma and human breast cancer | A549 and MDA-MB 231 cell lines | N.A. | [126] |
KYS05041 KYS05042, KYS05043, KYS05046, KYS05047, KYS05048, KYS05055, KYS05056, KYS05057, KYS05065, KYS05080, KYS05085, KYS05089, KYS05090 | Lung carcinoma, colon cancer, epidermoid carcinoma, maglignant melanoma, ovarian cancer | A549, HCT-15, KB, SK-MEL-2, SKOV3 cell lines | N.A. | [25,118,127] |
KYS05090 | Lung adenocarcinoma | Xenograft nude mice | Panting; inanimation; loss of locomotor activity; erosion, Diarrhea; soiled perineal region | [125] |
KYS05090, 6a, 6c, 6d, 6f, 6g, 6h | Epithelial ovarian cancer | SK-OV-3 cell line | N.A. | [118] |
Methanandamide | Neuroblastoma-glioma | NG108-15 cell line | N.A. | [125] |
Mibefradil | Pancreatic cancer | Pancreatic cancer xenografts | Not reported | [128] |
Mibefradil | Retinoblastoma, breast cancer, | Y79, WERI-Rb1 retinoblastoma, MCF7 cell lines | N.A. | [25] |
Mibefradil | Glioma and neuroblastoma | U87MG, A172, U373, T98G, SNB19, U1242, U251 and SF767, C6, GIC, GliNS1, G179NS, G166NS, U3NNN-M NG108-15 and N1E-115 cell lines; primary glioblastoma cells (GBM-6, GBM-10) | N.A. | [25,125] |
Mibefradil | Esophageal carcinoma | KYSE150, KYSE180, TE1, TE8 | N.A. | [125] |
Mibefradil | Colon cancer | HCT116 | N.A. | [125] |
Mibefradil | Leukemia | MOLT-4, Jurkat, Ball, HL-60, NB4, HEL, K-562, and U937 cell lines | N.A. | [125] |
Mibefradil | Glioma and glioblastome | Xenograft injection in mice | Not reported | [125] |
Mibefradil | Ovarian cancer | HO8910, A2780 cell lines | N.A. | [125] |
Mibefradil | Ovarian cancer | Xenograft nude mice | Not reported | [125] |
Mibefradil + Radiosurgery | Glioblastoma | C6 xenograft in rat | Non reported | [125] |
Mibefradil + temozolomide | Glioblastoma | GBM xenograft | Not reported | [125] |
Mibefradil and carboplatin, timed sequential therapy | Ovarian cancer | In vivo xenografts (mouse model) | Not reported | [129] |
Mibefradil and paclitaxel, timed sequential therapy | Breast cancer | In vivo xenografts (mouse model) | Not reported | [130] |
Mibefradil and temozolomide, timed sequential therapy | Glioma | Human patients | Well tolerated (NCT01480050) | [131] |
Nickel | Neuroblastoma-glioma | NG108-15 cell line | N.A. | [125] |
Nickel | Prostate cancer | LNCaP cell line | N.A. | [125] |
Niguldipine | Glioma | GIC, GliNS1, G179NS, and G166NS, U3NNN-MG cell lines | N.A. | [125] |
Niguldipine | Glioma | Xenograft injection | Not reported | [125] |
NNC 55-0396 | Breast cancer | MCF-7 cell line | N.A. | [111] |
NNC 55-0396 | Human glioblastoma | Tumor xenograft mouse model | No side-effect on liver function | [132] |
NNC 55-0396 | Leukemia | MOLT-4, Jurkat, Ball, HL-60, NB4, HEL, K-562, and U937 cell lines | N.A. | [125] |
NNC 55-0396 | Ovarian cancer | HO8910, A2780 cell lines | N.A. | [125] |
NNC 55-0396 | Ovarian cancer | Xenograft nude mice | Not reported | [125] |
Paclitaxel (+/−Nickel) | Prostate cancer | LNCaP cell line | N.A. | [125] |
Penfluoridol | Breast cancer, glioblastoma, pancreatic cancer, lung cancer, colon cancer | MDA-MB-231, HCC 1806, 4 TI, GBM 43, GBM 10, GBM 44, GBM 28, GBM 14, T98G, U251 MG, U87MG, SJ-GBM2, CHLA-200, Panc-1, AsPC-1, BxPC-3m LCC, LL/2, CT26 cell lines | N.A. | [133] |
Pimozide | Retinoblastoma, breast cancer, glioma | Y79, WERI-Rb1 retinoblastoma, MCF7 breast cancer, C6 glioma cell lines | N.A. | [25] |
TH-1177 | Prostate cancer | Mice inoculated with PC3 cell line | No obvious toxicity, either in grossly or on histological examination. | [25] |
Thapsigargin (+/−Nickel) | Prostate cancer | LNCaP cell line | N.A. | [125] |
TTA-P2 | Glioma | GIC, GliNS1, G179NS, and G166NS, U3NNN-MG cell lines | N.A. | [125] |
TTA-P2 | Glioma | Xenograft injection | Not reported | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melgari, D.; Frosio, A.; Calamaio, S.; Marzi, G.A.; Pappone, C.; Rivolta, I. T-Type Calcium Channels: A Mixed Blessing. Int. J. Mol. Sci. 2022, 23, 9894. https://doi.org/10.3390/ijms23179894
Melgari D, Frosio A, Calamaio S, Marzi GA, Pappone C, Rivolta I. T-Type Calcium Channels: A Mixed Blessing. International Journal of Molecular Sciences. 2022; 23(17):9894. https://doi.org/10.3390/ijms23179894
Chicago/Turabian StyleMelgari, Dario, Anthony Frosio, Serena Calamaio, Gaia A. Marzi, Carlo Pappone, and Ilaria Rivolta. 2022. "T-Type Calcium Channels: A Mixed Blessing" International Journal of Molecular Sciences 23, no. 17: 9894. https://doi.org/10.3390/ijms23179894
APA StyleMelgari, D., Frosio, A., Calamaio, S., Marzi, G. A., Pappone, C., & Rivolta, I. (2022). T-Type Calcium Channels: A Mixed Blessing. International Journal of Molecular Sciences, 23(17), 9894. https://doi.org/10.3390/ijms23179894