Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats
Abstract
:1. Introduction
2. Results
2.1. Model Validation and Muscle Force Changes
2.1.1. Body Weight and the Gastrocnemius Weight
2.1.2. Muscle Force
2.1.3. Texture Analysis of B-Ultrasonic Images on Day 21
2.2. Interventionary Study of LIPUS on Muscle Atrophy
2.2.1. Body Weight and Gastrocnemius Weight
2.2.2. Muscle Force
2.2.3. Texture Analysis of B-Ultrasonic Images on Day 14
3. Discussion
3.1. Model Validation and Muscle Force Changes
3.2. Interventionary Study of LIPUS on Muscle Atrophy
3.3. Texture Analysis of B-Ultrasonic Images
4. Materials and Methods
4.1. Animal
4.2. Animal Model
4.3. Animal Grouping and Methods
4.3.1. Model Validation and Muscle Force Changes
4.3.2. Interventionary Study of LIPUS on Muscle Atrophy
4.4. Muscle Force Collection Method
4.5. B-Ultrasonic Image Acquisition and Texture Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narici, M.V.; Boer, M.D. Disuse of the musculo-skeletal system in space and on earth. Eur. J. Appl. Physiol. 2011, 111, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Mulavara, A.P.; Peters, B.T.; Miller, C.A.; Kofman, I.S.; Reschke, M.F.; Taylor, L.C.; Lawrence, E.L.; Wood, S.J.; Laurie, S.S.; Lee, S.M.C.; et al. Physiological and functional alterations after spaceflight and bed rest. Med. Sci. Sports Exer. 2018, 50, 1961. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.S.; Kimball, K.T.; Mulavara, A.P.; Bloomberg, J.J.; Paloski, W.H. Posturography and locomotor tests of dynamic balance after long-duration spaceflight. J. Vestib. Res. 2012, 22, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Fitts, R.H.; Trappe, S.W.; Costill, D.L.; Gallagher, P.M.; Creer, A.C.; Colloton, P.A.; Peters, J.R.; Romatowski, J.G.; Bain, J.L.; Riley, D.A. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J. Physiol. 2010, 588, 3567–3592. [Google Scholar] [CrossRef] [PubMed]
- Sibonga, J.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.M.; Young, M.; Keyak, J.; Kohri, K.; et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone 2019, 128, 112037. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Green, D.A.; Vaz, M.A.; Dirks, M.L. Neuromuscular electrical stimulation as a potential countermeasure for skeletal muscle atrophy and weakness during human spaceflight. Front. Physiol. 2019, 10, 1031. [Google Scholar] [CrossRef]
- Stella, A.B.; Ajčević, M.; Furlanis, G.; Manganotti, P. Neurophysiological adaptations to spaceflight and simulated microgravity. Clin. Neurophysiol. 2021, 132, 498–504. [Google Scholar] [CrossRef]
- Kawahara, I.; Goto, K.; Kodama, K.; Luo, Y.; Fujiwara-Tani, R.; Mori, T.; Miyagawa, Y.; Tanaka, H.; Hosoito, N.; Taniguchi, Y.; et al. Magnetic hyperthermia using self-controlled heating elements consisting of Fe-Al milling alloy induces cancer cell apoptosis while preserving skeletal muscle. Pathobiology 2019, 86, 254–262. [Google Scholar] [CrossRef]
- Ventre, D.; Puzan, M.; Ashbolt, E.; Koppes, A. Enhanced total neurite outgrowth and secondary branching in dorsal root ganglion neurons elicited by low intensity pulsed ultrasound. J. Neural Eng. 2018, 15, 046013. [Google Scholar] [CrossRef]
- Rodriguez-Oroz, M.C.; Obeso, J.A.; Lang, A.E.; Houeto, J.L.; Pollak, P.; Rehncrona, S.; Kulisevsky, J.; Albanese, A.; Volkmann, J.; Hariz, M.I.; et al. Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up. Brain 2005, 128, 2240–2249. [Google Scholar] [CrossRef]
- Wiggs, M.P. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front. Physiol. 2015, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Konda, N.N.; Karri, R.S.; Winnard, A.; Nasser, M.; Evetts, S.; Boudreau, E.; Caplan, N.; Gradwell, D.; Velho, R.M. A comparison of exercise interventions from bed rest studies for the prevention of musculoskeletal loss. NPJ Microgravity 2019, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Martin, E. The cellular bioeffects of low intensity ultrasound. Ultrasound 2009, 17, 214–219. [Google Scholar] [CrossRef]
- Tang, L.; Kang, Y.; Sun, S.; Zhao, T.; Cao, W.; Fan, X.; Guo, J.; Sun, L.; Ta, D. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. J. Bone Miner. Metab. 2020, 38, 14–26. [Google Scholar] [CrossRef]
- Tang, L.; An, S.; Zhang, Z.; Fan, X.; Guo, J.; Sun, L.; Ta, D. MSTN is a key mediator for low-intensity pulsed ultrasound preventing bone loss in hindlimb-suspended rats. Bone 2021, 143, 115610. [Google Scholar] [CrossRef]
- Harrison, A.; Alt, V. Low-intensity pulsed ultrasound (LIPUS) for stimulation of bone healing–A narrative review. Injury 2021, 52, S91–S96. [Google Scholar] [CrossRef]
- Cao, R.Y.; Li, J.; Dai, Q.; Li, Q.; Yang, J. Muscle atrophy: Present and future. Muscle Atrophy 2018, 1088, 605–624. [Google Scholar]
- Ding, S.; Dai, Q.; Huang, H.; Xu, Y.; Zhong, C. An overview of muscle atrophy. Muscle Atrophy 2018, 1088, 3–19. [Google Scholar]
- Yang, B.; Li, M.; Lei, H.; Xu, Y.; Li, H.; Gao, Z.; Guan, R.; Xin, Z. Low intensity pulsed ultrasound influences the myogenic differentiation of muscle satellite cells in a stress urinary incontinence rat model. Urology 2019, 123, 297. e1–297. e8. [Google Scholar] [CrossRef]
- Lalani, R.; Bhasin, S.; Byhower, F.; Tarnuzzer, R.; Grant, M.; Shen, R.; Asa, S.; Ezzat, S.; Gonzalez-Cadavid, N.F. Myostatin and insulin-like growth factor-I and-II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J. Endocrinol. 2000, 167, 417–428. [Google Scholar] [CrossRef]
- LeBlanc, A.; Rowe, R.; Schneider, V.; Evans, H.; Hedrick, T. Regional muscle loss after short duration spaceflight. Aviat. Space Envir. Med. 1995, 66, 1151–1154. [Google Scholar]
- Dirks, M.L.; Wall, B.T.; van de Valk, B.; Holloway, T.M.; Holloway, G.P.; Chabowski, A.; Goossens, G.H.; van Loon, L.J.C. One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 2016, 65, 2862–2875. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.R.; Caiozzo, V.J.; Baldwin, K.M. Skeletal muscle unweighting: Spaceflight and ground-based models. J. Appl. Physiol. 2003, 95, 2185–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimunič, B.; Koren, K.; Rittweger, J.; Lazzer, S.; Reggiani, C.; Rejc, E.; Pišot, R.; Narici, M.; Degens, H. Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. J. Appl. Physiol. 2019, 126, 815–822. [Google Scholar] [CrossRef]
- Thomas, A.C.; Wojtys, E.M.; Brandon, C.; Palmieri-Smith, R.M. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J. Sci. Med. Sport 2016, 19, 7–11. [Google Scholar] [CrossRef]
- Konishi, Y.; Ikeda, K.; Nishino, A.; Sunaga, M.; Aihara, Y.; Fukubayashi, T. Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament repair. Scand. J. Med. Sci. Sports 2007, 17, 656–661. [Google Scholar] [CrossRef]
- Ning, G.Z.; Song, W.Y.; Xu, H.; Zhu, R.S.; Wu, Q.L.; Wu, Y.; Zhu, S.B.; Li, J.Q.; Wang, M.; Qu, Z.G.; et al. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: Better choice of transplantation treatment for spinal cord injury: Treatment for SCI by LIPUS-BMSCs transplantation. CNS Neurosci. Ther. 2019, 25, 496–508. [Google Scholar] [CrossRef]
- Sun, L.; An, S.; Zhang, Z.; Zhou, Y.; Yu, Y.; Ma, Z.; Fan, X.; Tang, L.; Guo, J. Molecular and Metabolic Mechanism of Low-Intensity Pulsed Ultrasound Improving Muscle Atrophy in Hindlimb Unloading Rats. Int. J. Mol. Sci. 2021, 22, 12112. [Google Scholar] [CrossRef]
- Liu, B.; Hu, L.; Wang, L.; Xing, D.; Peng, L.; Chen, P.; Zeng, F.; Liu, W.; Liu, H.; Zha, Y. Evaluation of microvascular permeability of skeletal muscle and texture analysis based on DCE-MRI in alloxan-induced diabetic rabbits. Eur. Radiol. 2021, 31, 5669–5679. [Google Scholar] [CrossRef]
- Mormina, E.; Arrigo, A.; Calamuneri, A.; Alafaci, C.; Tomasello, F.; Morabito, R.; Marino, S.; Longo, M.; Vinci, S.L.; Granata, F. Optic radiations evaluation in patients affected by high-grade gliomas: A side-by-side constrained spherical deconvolution and diffusion tensor imaging study. Neuroradiology 2016, 58, 1067–1075. [Google Scholar] [CrossRef]
- Komatsu, R.; Okazaki, T.; Ebihara, S.; Kobayashi, M.; Tsukita, Y.; Nihei, M.; Sugiura, H.; Niu, K.; Ebihara, T.; Ichinose, M. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems. J. Cachexia Sarcopenia Muscle 2018, 9, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Kuchnia, A.J.; Yamada, Y.; Teigen, L.; Krueger, D.; Binkley, N.; Schoeller, D. Combination of DXA and BIS body composition measurements is highly correlated with physical function—An approach to improve muscle mass assessment. Arch. Osteoporos. 2018, 13, 97. [Google Scholar] [CrossRef]
- Nakanishi, N.; Oto, J.; Tsutsumi, R.; Iuchi, M.; Onodera, M.; Nishimura, M. Upper and lower limb muscle atrophy in critically ill patients: An observational ultrasonography study. Intensive Care Med. 2018, 44, 263–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillen, S.; Arts, I.M.P.; Zwarts, M.J. Muscle ultrasound in neuromuscular disorders. Muscle Nerve 2008, 37, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, J.L.; Reimers, C.D. Inflammatory myopathies: Radiologic evaluation. Radiol. Clin. N. Am. 1996, 34, 427–439. [Google Scholar] [CrossRef]
- Fish, P.; Fish, P.J. Physics and Instrumentation of Diagnostic Medical Ultrasound; John Wiley & Sons: Chichester, UK, 1990; pp. 129–192. [Google Scholar]
- Hioki, M.; Kanehira, N.; Koike, T.; Saito, A.; Shimaoka, K.; Sakakibara, H.; Oshida, Y.; Akima, H. Age-related changes in muscle volume and intramuscular fat content in quadriceps femoris and hamstrings. Exp. Gerontol. 2020, 132, 110834. [Google Scholar] [CrossRef]
- Jansen, M.; van Alfen, N.; van der Sanden, M.W.; van Dijk, J.P.; Pillen, S.; de Groot, I.J. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscular Disord. 2012, 22, 306–317. [Google Scholar] [CrossRef]
- Chiou, H.J.; Yeh, C.K.; Hwang, H.E.; Liao, Y.Y. Efficacy of quantitative muscle ultrasound using texture-feature parametric imaging in detecting Pompe disease in children. Entropy 2019, 21, 714. [Google Scholar] [CrossRef]
- Cunningham, R.J.; Harding, P.J.; Loram, I.D. Real-time ultrasound segmentation, analysis and visualisation of deep cervical muscle structure. IEEE T. Med. Imaging 2016, 36, 653–665. [Google Scholar] [CrossRef]
- Watanabe, T.; Murakami, H.; Fukuoka, D.; Terabayashi, N.; Shin, S.; Yabumoto, T.; Ito, H.; Fujita, H.; Matsuoka, T.; Seishima, M. Quantitative sonographic assessment of the quadriceps femoris muscle in healthy Japanese adults. J. Ultrasound Med. 2017, 36, 1383–1395. [Google Scholar] [CrossRef]
- Mahmoud-Ghoneim, D.; Cherel, Y.; Lemaire, L.; de Certaines, J.D.; Maniere, A. Texture analysis of magnetic resonance images of rat muscles during atrophy and regeneration. Magn. Reson. Imaging 2006, 24, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Martins-Bach, A.B.; Malheiros, J.; Matot, B.; Martins, P.C.M.; Almeida, C.F.; Caldeira, W.; Ribeiro, A.F.; de Sousa, P.L.; Azzabou, N.; Tannús, A.; et al. Quantitative T2 Combined with Texture Analysis of Nuclear Magnetic Resonance Images Identify Different Degrees of Muscle Involvement in Three Mouse Models of Muscle Dystrophy: Mdx, Largemyd and mdx/Largemyd. PLoS ONE 2015, 10, e0117835. [Google Scholar]
- Morey-Holton, E.R.; Globus, R.K. Hindlimb unloading rodent model: Technical aspects. J. Appl. Physiol. 2002, 92, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
A | N | |
---|---|---|
Mean | 88.90 ± 3 ** | 63.62 ± 3 |
Contrast | 44.05 ± 1 * | 34.54 ± 2 |
Variance | 2629.12 ± 141 * | 2133.27 ± 149 |
ASM | 0.0057 ± 0.0001 ** | 0.0079 ± 0.0004 |
ENT | 7.58 ± 0.03 ** | 7.26 ± 0.05 |
B | SUC | 50 UR | 150 UR | NC | |
---|---|---|---|---|---|
Mean | 95.32 ± 3 ** | 99.84 ± 3 ** | 93.48 ± 1 ** | 89.34 ± 1 * | 75.40 ± 5 |
Contrast | 42.49 ± 2 ** | 43.17 ± 1 ** | 41.01 ± 1 ** | 41.82 ± 1 ** | 34.32 ± 1 |
Variance | 2734.38 ± 120 ** | 2736.26 ± 72 ** | 2634.58 ± 101 * | 2729.00 ± 92 ** | 2153.78 ± 59 |
ASM | 0.0055 ± 0.0001 ** | 0.0053 ± 0.0001 ** | 0.0056 ± 0.0001 ** | 0.0056 ± 0.0001 ** | 0.0071 ± 0.0005 |
ENT | 7.62 ± 0.02 ** | 7.65 ± 0.02 ** | 7.63 ± 0.02 ** | 7.61 ± 0.02 ** | 7.38 ± 0.05 |
Concentration g/L | Molar Concentration mmol/g | |
---|---|---|
NaCl | 8.006 | 137 |
KCl | 0.373 | 5 |
MgSO4 | 0.1203 | 1 |
NaHCO3 | 2.016 | 24 |
CaCl2 | 0.222 | 2 |
Glucose | 4.324 | 11 |
Pyruvate Sodium | 0.12 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, P.; Lei, J.; Feng, Y.; Tang, L.; Guo, J. Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats. Int. J. Mol. Sci. 2022, 23, 10369. https://doi.org/10.3390/ijms231810369
Yang X, Li P, Lei J, Feng Y, Tang L, Guo J. Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats. International Journal of Molecular Sciences. 2022; 23(18):10369. https://doi.org/10.3390/ijms231810369
Chicago/Turabian StyleYang, Xuebing, Pan Li, Jiying Lei, Yichen Feng, Liang Tang, and Jianzhong Guo. 2022. "Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats" International Journal of Molecular Sciences 23, no. 18: 10369. https://doi.org/10.3390/ijms231810369
APA StyleYang, X., Li, P., Lei, J., Feng, Y., Tang, L., & Guo, J. (2022). Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats. International Journal of Molecular Sciences, 23(18), 10369. https://doi.org/10.3390/ijms231810369