Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms
Abstract
:1. Introduction
2. Uses of Mushrooms in Cancer Therapy
3. Anticancer Compounds from Medicinal Mushrooms
4. Anticancer Mechanisms of Medicinal Mushrooms
4.1. Overcoming Pgp-Mediated MDR Using Mushrooms
4.2. Overcoming Tumor Resistance to Inhibit Immune Checkpoint Interactions, the PD-1 Pathway, and CTLA-4/CD80, Using Mushrooms
4.3. Targeting the PI3K/AKT Signaling Pathway in Cancer Using Mushrooms
4.4. Targeting the Wnt/β-Catenin Pathway in Cancer Using Mushrooms
4.5. Targeting the MAPK Pathway in Cancer Using Mushrooms
4.6. Targeting the NF-κB Pathway in Cancer Using Mushrooms
5. Regulating Immune Function in Cancer Using Medicinal Mushrooms
6. Prebiotic Properties of Medicinal Mushrooms in Cancer
7. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- World Health Organization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 29 August 2022).
- Joseph, T.P.; Chanda, W.; Padhiar, A.A.; Batool, S.; LiQun, S.; Zhong, M.; Huang, M. A preclinical evaluation of the antitumor activities of edible and medicinal mushrooms: A molecular insight. Integr. Cancer Ther. 2018, 17, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Lee, C.W.; Jeon, Y.J.; Hong, N.D.; Yoo, I.D.; Yang, K.-H.; Kim, H.M. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology 1999, 41, 157–164. [Google Scholar] [CrossRef]
- Wu, G.-S.; Guo, J.-J.; Bao, J.-L.; Li, X.-W.; Chen, X.-P.; Lu, J.-J.; Wang, Y.-T. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum—A review. Expert Opin. Investig. Drugs 2013, 22, 981–992. [Google Scholar] [CrossRef]
- Boh, B.; Berovic, M.; Zhang, J.; Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 2007, 13, 265–301. [Google Scholar] [PubMed]
- Jayachandran, M.; Xiao, J.; Xu, B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 1934. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-Y.; Hung, Y.-C.; Chen, Y.-H.; Chen, Y.-H.; Huang, Y.-C.; Kao, C.-W.; Su, Y.-L.; Chiu, H.-H.E.; Rau, K.-M. A preliminary randomised controlled study of short-term Antrodia cinnamomea treatment combined with chemotherapy for patients with advanced cancer. BMC Complement. Altern. Med. 2016, 16, 322. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, P.; Kanaya, N.; Frankel, P.; Synold, T.; Ruel, C.; Pal, S.K.; Junqueira, M.; Prajapati, M.; Moore, T.; Tryon, P.; et al. A phase I trial of mushroom powder in patients with biochemically recurrent prostate cancer: Roles of cytokines and myeloid-derived suppressor cells for Agaricus bisporus–induced prostate-specific antigen responses. Cancer 2015, 121, 2942–2950. [Google Scholar] [CrossRef] [PubMed]
- Ahn, W.S.; Kim, D.J.; Chae, G.T.; Lee, J.M.; Bae, S.M.; Sin, J.I.; Kim, Y.W.; Namkoong, S.E.; Lee, I.P. Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. Int. J. Gynecol. Cancer 2004, 14, 589–594. [Google Scholar] [CrossRef]
- Hetland, G.; Tangen, J.-M.; Mahmood, F.; Mirlashari, M.R.; Nissen-Meyer, L.S.H.; Nentwich, I.; Therkelsen, S.P.; Tjønnfjord, G.E.; Johnson, E. Antitumor, anti-inflammatory and antiallergic effects of Agaricus blazei mushroom extract and the related medicinal basidiomycetes mushrooms, Hericium erinaceus and Grifola frondosa: A review of preclinical and clinical studies. Nutrients 2020, 12, 1339. [Google Scholar] [CrossRef]
- Jeitler, M.; Michalsen, A.; Frings, D.; Hubner, M.; Fischer, M.; Koppold-Liebscher, D.A.; Murthy, V.; Kessler, C.S. Significance of Medicinal Mushrooms in Integrative Oncology: A Narrative Review. Front. Pharmacol. 2020, 11, 580656. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, X.; Chen, G.; Ye, J.; Zhou, S. A randomized, placebo-controlled, multicenter study of Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) polysaccharides (Ganopoly®) in patients with advanced lung cancer. Int. J. Med. Mushrooms 2003, 5, 14. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Q.; Zhao, L.; Huang, X.; Wang, J.; Kang, X. Spore Powder of Ganoderma lucidum Improves Cancer-Related Fatigue in Breast Cancer Patients Undergoing Endocrine Therapy: A Pilot Clinical Trial. Evid. Based Complement. Altern. Med. 2012, 2012, 809614. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Lin, H.; Seidman, A.; Fornier, M.; D’Andrea, G.; Wesa, K.; Yeung, S.; Cunningham-Rundles, S.; Vickers, A.J.; Cassileth, B. A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: Immunological effects. J. Cancer Res. Clin. Oncol. 2009, 135, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- White, R.W.d.; Hackman, R.M.; Soares, S.E.; Beckett, L.A.; Sun, B. Effects of a mushroom mycelium extract on the treatment of prostate cancer. Urology 2002, 60, 640–644. [Google Scholar] [CrossRef]
- Seiden, M.V.; Gordon, A.N.; Bodurka, D.C.; Matulonis, U.A.; Penson, R.T.; Reed, E.; Alberts, D.S.; Weems, G.; Cullen, M.; McGuire, W.P., III. A phase II study of irofulven in women with recurrent and heavily pretreated ovarian cancer. Gynecol. Oncol. 2006, 101, 55–61. [Google Scholar] [CrossRef]
- Torkelson, C.J.; Sweet, E.; Martzen, M.R.; Sasagawa, M.; Wenner, C.A.; Gay, J.; Putiri, A.; Standish, L.J. Phase 1 clinical trial of Trametes versicolor in women with breast cancer. ISRN Oncol. 2012, 2012, 251632. [Google Scholar] [CrossRef]
- Chay, W.Y.; Tham, C.K.; Toh, H.C.; Lim, H.Y.; Tan, C.K.; Lim, C.; Wang, W.W.; Choo, S.P. Coriolus versicolor (Yunzhi) Use as Therapy in Advanced Hepatocellular Carcinoma Patients with Poor Liver Function or Who Are Unfit for Standard Therapy. J. Altern. Complement. Med. 2017, 23, 648–652. [Google Scholar] [CrossRef]
- Habtemariam, S. Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: Targets and efficacy. Biomedicines 2020, 8, 135. [Google Scholar] [CrossRef]
- Ayeka, P.A. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. Evid. Based Complement. Altern. Med. 2018, 2018, 7271509. [Google Scholar] [CrossRef]
- Chen, J.; Seviour, R. Medicinal importance of fungal beta-(1→3), (1→6)-glucans. Mycol. Res. 2007, 111 Pt 6, 635–652. [Google Scholar] [CrossRef]
- Israilides, C.; Kletsas, D.; Arapoglou, D.; Philippoussis, A.; Pratsinis, H.; Ebringerova, A.; Hribalova, V.; Harding, S.E. In Vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine 2008, 15, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T. The Extraction and Development of Antitumor-Active Polysaccharides from Medicinal Mushrooms in Japan (Review). Int. J. Med. Mushrooms 1999, 1, 9–29. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal Mushrooms in Human Clinical Studies. Part I. Anticancer, Oncoimmunological, and Immunomodulatory Activities: A Review. Int. J. Med. Mushrooms 2017, 19, 279–317. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y.; Park, S.J.; Park, Y.J. The Anticancer Properties of Cordycepin and Their Underlying Mechanisms. Int. J. Mol. Sci. 2018, 19, 3027. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Recent developments in mushrooms as anti-cancer therapeutics: A review. 3 Biotech 2012, 2, 1–15. [Google Scholar] [CrossRef]
- Chang, T.C.; Yeh, C.T.; Adebayo, B.O.; Lin, Y.C.; Deng, L.; Rao, Y.K.; Huang, C.C.; Lee, W.H.; Wu, A.T.; Hsiao, M.; et al. 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype. Toxicol. Appl. Pharmacol. 2015, 288, 258–268. [Google Scholar] [CrossRef]
- Lin, H.C.; Lin, M.H.; Liao, J.H.; Wu, T.H.; Lee, T.H.; Mi, F.L.; Wu, C.H.; Chen, K.C.; Cheng, C.H.; Lin, C.W. Antroquinonol, a Ubiquinone Derivative from the Mushroom Antrodia camphorata, Inhibits Colon Cancer Stem Cell-like Properties: Insights into the Molecular Mechanism and Inhibitory Targets. J. Agric. Food Chem. 2017, 65, 51–59. [Google Scholar] [CrossRef]
- Park, D.K.; Lim, Y.H.; Park, H.-J. Antrodia camphorata grown on germinated brown rice inhibits HT-29 human colon carcinoma proliferation through inducing G0/G1 phase arrest and apoptosis by targeting the β-catenin signaling. J. Med. Food 2013, 16, 681–691. [Google Scholar] [CrossRef]
- Park, D.K.; Park, H.-J. Anti-proliferative properties of ethyl acetate extract of Phellinus linteus grown on ginseng (Panax ginseng) on HT-29 human colon carcinoma cells through inducing apoptosis. Food Sci. Biotechnol. 2012, 21, 683–690. [Google Scholar] [CrossRef]
- Choi, C.W.; Yoon, J.-W.; Yon, G.H.; Kim, Y.S.; Ryu, S.Y.; Seok, S.-J.; Kang, S.; Kim, Y.H. Multidrug resistance reversal activity of methanol extracts from basidiomycete mushrooms in cancer cells. Nat. Prod. Sci. 2012, 18, 239–243. [Google Scholar]
- Kadomatsu, M.; Nakajima, S.; Kato, H.; Gu, L.; Chi, Y.; Yao, J.; Kitamura, M. Cordycepin as a sensitizer to tumour necrosis factor (TNF)-α-induced apoptosis through eukaryotic translation initiation factor 2α (eIF2α)- and mammalian target of rapamycin complex 1 (mTORC1)-mediated inhibition of nuclear factor (NF)-κB. Clin. Exp. Immunol. 2012, 168, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, L.; Zhou, J.; Xu, X. The Possible Role of PD-1 Protein in Ganoderma lucidum-Mediated Immunomodulation and Cancer Treatment. Integr. Cancer Ther. 2019, 18, 1534735419880275. [Google Scholar] [CrossRef] [PubMed]
- OuYang, F.; Wang, G.; Guo, W.; Zhang, Y.; Xiang, W.; Zhao, M. AKT signalling and mitochondrial pathways are involved in mushroom polysaccharide-induced apoptosis and G1 or S phase arrest in human hepatoma cells. Food Chem. 2013, 138, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Meng, M.; Liu, S.B.; Wang, L.R.; Hou, L.H.; Cao, X.H. A chemically sulfated polysaccharide from Grifola frondos induces HepG2 cell apoptosis by notch1–NF-κB pathway. Carbohydr. Polym. 2013, 95, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.I.; Choi, J.-G.; Kim, J.H.; Li, W.; Chung, H.-S. Blocking Effect of Chaga Mushroom (Inonotus oliquus) Extract for Immune Checkpoint CTLA-4/CD80 Interaction. Appl. Sci. 2020, 10, 5774. [Google Scholar] [CrossRef]
- Kang, J.H.; Jang, J.E.; Mishra, S.K.; Lee, H.J.; Nho, C.W.; Shin, D.; Jin, M.; Kim, M.K.; Choi, C.; Oh, S.H. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J. Ethnopharmacol. 2015, 173, 303–312. [Google Scholar] [CrossRef]
- Huang, G.J.; Yang, C.M.; Chang, Y.S.; Amagaya, S.; Wang, H.C.; Hou, W.C.; Huang, S.S.; Hu, M.L. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. J. Agric. Food Chem. 2010, 58, 9468–9475. [Google Scholar] [CrossRef]
- Song, K.S.; Li, G.; Kim, J.S.; Jing, K.; Kim, T.D.; Kim, J.P.; Seo, S.B.; Yoo, J.K.; Park, H.D.; Hwang, B.D.; et al. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells. BMC Cancer 2011, 11, 307. [Google Scholar] [CrossRef]
- Park, H.J.; Park, J.B.; Lee, S.J.; Song, M. Phellinus linteus Grown on Germinated Brown Rice Increases Cetuximab Sensitivity of KRAS-Mutated Colon Cancer. Int. J. Mol. Sci. 2017, 18, 1746. [Google Scholar] [CrossRef]
- Park, H.-J. Phellinus linteus grown on germinated brown rice Suppress metastasis and Induce Apoptosis of Colon Cancer Cells by suppressing NF-κB and Wnt/β-catenin Signaling Pathways. J. Funct. Foods 2015, 14, 289–298. [Google Scholar] [CrossRef]
- Park, H.-J.; Han, E.s.; Park, D.K. The ethyl acetate extract of PGP (Phellinus linteus grown on Panax ginseng) suppresses B16F10 melanoma cell proliferation through inducing cellular differentiation and apoptosis. J. Ethnopharmacol. 2010, 132, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.N.; Wang, Y.H.; Wu, T.S.; Hung, H.Y.; Hung, C.C. Zhankuic Acids A, B and C from Taiwanofungus Camphoratus Act as Cytotoxicity Enhancers by Regulating P-Glycoprotein in Multi-Drug Resistant Cancer Cells. Biomolecules 2019, 9, 759. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, V.; Santosh, K.; Anand, T.D.; Shanmugaiah, V.; Kotamraju, S.; Karunakaran, C.; Rajendran, A. Novel Bioactive Wild Medicinal Mushroom--Xylaria sp. R006 (Ascomycetes) against Multidrug Resistant Human Bacterial Pathogens and Human Cancer Cell Lines. Int. J. Med. Mushrooms 2015, 17, 1005–1017. [Google Scholar] [CrossRef]
- Lum, B.L.; Gosland, M.P.; Kaubisch, S.; Sikic, B.I. Molecular targets in oncology: Implications of the multidrug resistance gene. Pharmacotherapy 1993, 13, 88–109. [Google Scholar] [PubMed]
- Ueda, K.; Cardarelli, C.; Gottesman, M.M.; Pastan, I. Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA 1987, 84, 3004–3008. [Google Scholar] [CrossRef]
- Sadava, D.; Still, D.W.; Mudry, R.R.; Kane, S.E. Effect of Ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Lett. 2009, 277, 182–189. [Google Scholar] [CrossRef]
- Sohretoglu, D.; Huang, S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem. -Anti-Cancer Agents) 2018, 18, 667–674. [Google Scholar] [CrossRef]
- Grabie, N.; Gotsman, I.; DaCosta, R.; Pang, H.; Stavrakis, G.; Butte, M.J.; Keir, M.E.; Freeman, G.J.; Sharpe, A.H.; Lichtman, A.H. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation 2007, 116, 2062–2071. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, P.; Li, B.; Zhou, H.; Huang, X.; Zhu, L.; Ren, Y.; Kijlstra, A. CD4+PD-1+ T cells acting as regulatory cells during the induction of anterior chamber-associated immune deviation. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4444–4452. [Google Scholar] [CrossRef]
- Maier, H.; Isogawa, M.; Freeman, G.J.; Chisari, F.V. PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver. J. Immunol. 2007, 178, 2714–2720. [Google Scholar] [CrossRef]
- Nowicki, T.S.; Hu-Lieskovan, S.; Ribas, A. Mechanisms of Resistance to PD-1 and PD-L1 Blockade. Cancer J. 2018, 24, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Ning, Y.; Bai, Y.; Xu, X.; Sun, X.; Qi, C. β-Glucan induces autophagy in dendritic cells and influences T-cell differentiation. Med. Microbiol. Immunol. 2019, 208, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Bai, Y.; Pei, J.; Li, D.; Pu, X.; Zhu, W.; Xia, L.; Qi, C.; Jiang, H.; Ning, Y. beta-Glucan Combined With PD-1/PD-L1 Checkpoint Blockade for Immunotherapy in Patients With Advanced Cancer. Front. Pharmacol. 2022, 13, 887457. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kim, T.I.; Kim, J.H.; Chung, H.S. Immune Checkpoint PD-1/PD-L1 CTLA-4/CD80 are Blocked by Rhus verniciflua Stokes and its Active Compounds. Molecules 2019, 24, 4062. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, P.; Markiewicz-Zukowska, R.; Bielecka, J.; Mielcarek, K.; Grabia, M.; Socha, K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed. Pharmacother. 2021, 143, 112106. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, P. Ganoderic acid A holds promising cytotoxicity on human glioblastoma mediated by incurring apoptosis and autophagy and inactivating PI3K/AKT signaling pathway. J. Biochem. Mol. Toxicol. 2019, 33, e22392. [Google Scholar] [CrossRef]
- Anastas, J.N.; Moon, R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 2013, 13, 11–26. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Sweis, R.F.; Spranger, S.; Bao, R.; Paner, G.P.; Stadler, W.M.; Steinberg, G.; Gajewski, T.F. Molecular Drivers of the Non-T-cell-Inflamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunol. Res. 2016, 4, 563–568. [Google Scholar] [CrossRef]
- Zhang, H.; Bi, Y.; Wei, Y.; Liu, J.; Kuerban, K.; Ye, L. Blocking Wnt/β-catenin Signal Amplifies Anti-PD-1 Therapeutic Efficacy by Inhibiting Tumor Growth, Migration, and Promoting Immune Infiltration in GlioblastomasTargeting Wnt/β-catenin Signal and PD-1 in GBM. Mol. Cancer Ther. 2021, 20, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Alshareef, M.; Henderson, F., Jr.; Santos, J.L.M.; Vandergrift, W.A., 3rd; Lindhorst, S.M.; Varma, A.K.; Infinger, L.; Patel, S.J.; Cachia, D. Ganoderic acid A/DM-induced NDRG2 over-expression suppresses high-grade meningioma growth. Clin. Transl. Oncol. 2020, 22, 1138–1145. [Google Scholar] [CrossRef]
- Ina, H.; Yoneda, M.; Mitsuro, K.; Kodera, Y.; Kabeya, M.; Yuasa, S.; Kataoka, T.; Furuta, R.; Ina, K. Lentinan, A Shiitake Mushroom ÃÂ2-Glucan, Stimulates Tumor-Specific Adaptive Immunity through PD-L1 Down-Regulation in Gastric Cancer Cells. Med. Chem. 2016, 6, 710–714. [Google Scholar] [CrossRef]
- Hilger, R.A.; Scheulen, M.E.; Strumberg, D. The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie 2002, 25, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.B.; Li, C.H.; Lee, S.S.; Kan, L.S. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sci. 2003, 72, 2381–2390. [Google Scholar] [CrossRef]
- Zaidman, B.-Z.; Yassin, M.; Mahajna, J.; Wasser, S.P. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol. 2005, 67, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.L.; Kuo, Y.H.; Tsai, C.T.; Huang, Y.T.; Chen, S.C.; Chang, H.W.; Lin, E.; Lin, W.H.; Hseu, Y.C. Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway. Food Chem. Toxicol. 2011, 49, 290–298. [Google Scholar] [CrossRef]
- Thyagarajan, A.; Jedinak, A.; Nguyen, H.; Terry, C.; Baldridge, L.A.; Jiang, J.; Sliva, D. Triterpenes from Ganoderma Lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK). Nutr. Cancer 2010, 62, 630–640. [Google Scholar] [CrossRef]
- Petrova, R.D.; Reznick, A.Z.; Wasser, S.P.; Denchev, C.M.; Nevo, E.; Mahajna, J. Fungal metabolites modulating NF-κB activity: An approach to cancer therapy and chemoprevention. Oncol. Rep. 2008, 19, 299–308. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Lin, T.-C.; Germagian, A.; Liu, Z. The NF-κB Signaling and Wnt/β-catenin Signaling in MCF-7 Breast Cancer Cells in Response to Bioactive Components from Mushroom Antrodia Camphorata. Am. J. Chin. Med. 2021, 49, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Sliva, D.; Labarrere, C.; Slivova, V.; Sedlak, M.; Lloyd Jr, F.P.; Ho, N.W. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem. Biophys. Res. Commun. 2002, 298, 603–612. [Google Scholar] [CrossRef]
- Mattila, P.; Könkö, K.; Eurola, M.; Pihlava, J.-M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Akiyama, Y.; Matsugo, S.; Uzuka, Y.; Shibata, K.; Kawagishi, H. Purification of caffeic acid as an antioxidant from submerged culture mycelia of Phellinus linteus (Berk. et Curt.) Teng (Aphyllophoromycetideae). Int. J. Med. Mushrooms 2003. [Google Scholar] [CrossRef]
- Aras, A.; Khalid, S.; Jabeen, S.; Farooqi, A.A.; Xu, B. Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: Overview of the journey from benchtop to clinical trials. Food Chem. Toxicol. 2018, 119, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.; Difrancia, R.; Quagliariello, V.; Savino, E.; Tralongo, P.; Randazzo, C.L.; Berretta, M. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: An example of complementary and integrative medicine. Oncotarget 2018, 9, 24837–24856. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.P.; Weis, A.L. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: Current perspectives. Int. J. Med. Mushrooms 1999, 1, 31–62. [Google Scholar] [CrossRef]
- Liu, C.; Choi, M.W.; Xue, X.; Cheung, P.C.K. Immunomodulatory Effect of Structurally Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus rhinocerus on Bone Marrow Dendritic Cells. J. Agric. Food Chem. 2019, 67, 12137–12143. [Google Scholar] [CrossRef]
- Wasser, S.P.; Weis, A.L. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 1999, 19, 65–96. [Google Scholar]
- Tangen, J.M.; Tierens, A.; Caers, J.; Binsfeld, M.; Olstad, O.K.; Troseid, A.M.; Wang, J.; Tjonnfjord, G.E.; Hetland, G. Immunomodulatory effects of the Agaricus blazei Murrill-based mushroom extract AndoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: A randomized, double blinded clinical study. Bio. Res. Int. 2015, 2015, 718539. [Google Scholar] [CrossRef]
- Sorimachi, K.; Akimoto, K.; Ikehara, Y.; Inafuku, K.; Okubo, A.; Yamazaki, S. Secretion of TNF-alpha, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro. Cell Struct. Funct. 2001, 26, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Gao, Y.; Chen, G.; Gao, H.; Dai, X.; Ye, J.; Chan, E.; Huang, M.; Zhou, S. A randomized, double-blind and placebo-controlled study of a Ganoderma lucidum polysaccharide extract in neurasthenia. J. Med. Food 2005, 8, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.-K.; Jo, W.-R.; Park, H.-J. Immune-enhancing activity of C. militaris fermented with Pediococcus pentosaceus (GRC-ON89A) in CY-induced immunosuppressed model. BMC Complement. Altern. Med. 2018, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Goodridge, H.S.; Wolf, A.J.; Underhill, D.M. Beta-glucan recognition by the innate immune system. Immunol. Rev. 2009, 230, 38–50. [Google Scholar] [CrossRef]
- Kumagai, Y.; Akira, S. Identification and functions of pattern-recognition receptors. J. Allergy Clin. Immunol. 2010, 125, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Boh, B. Ganoderma lucidum: A potential for biotechnological production of anti-cancer and immunomodulatory drugs. Recent Pat. Anti-Cancer Drug Discov. 2013, 8, 255–287. [Google Scholar] [CrossRef]
- Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016, 5, 80. [Google Scholar] [CrossRef] [Green Version]
Mushroom | Cancer | Phase | Study Status | Active Compound/s | Identifier | Investigator |
---|---|---|---|---|---|---|
Agaricus bisporus | Breast cancer, cancer survivors | Phase 1 | Completed | Polysaccharides, lectin | NCT00709020 | Shiuan Chen |
Agaricus bisporus | Prostate cancer | Phase 1b | completed | Polysaccharides, lectin | NCT00779168 | W. Twardowski |
Agaricus blazei Murill (AndoSan) | Multiple myeloma | Phase 2 | Completed | Agaricus polysaccharides | NCT00970021 | Jon-Magnus Tangen |
Lentinula edodes | Prostate cancer | Not mentioned | Completed | Genistein Combined Polysaccharide (GCP) | NCT00269555 | Robert Hackman |
Lentinula edode | Hepatocellular Carcinoma and Hepatitis B and C Infection | Not mentioned | Completed | Arabinoxylan extracted from rice bran treated enzymatically with extract from Lentinula edode | NCT01018381 | Mai Hong Bang |
Grifola frondosa | Lung Neoplasms and Breast Carcinoma | Phase 1 | Completed | Polysaccharides | NCT02603016 | Shunchang Jiao |
Omphalotus illudens | Thyroid Cancer | Phase 2 | Completed | A semisynthetic derivative of illudin S | NCT00124527 | Eisai Inc. |
Omphalotus illudens | Recurrent or Metastatic Gastric Cancer | Phase 2 | Completed | A semisynthetic derivative of illudin S | NCT00062257 | Winnie Yeo |
Omphalotus illudens | Recurrent or Persistent Epithelial Ovarian Cancer | Phase 2 | Completed | A semisynthetic derivative of illudin S | NCT00019552 | Gisele A. Sarosy |
Trametes versicolor | Breast cancer | Phase 1 | Completed | Krestin, PSK, PSP | NCT00680667 | Carolyn Torkelson |
Mushroom Species/Reference | Bioactive Substance | Experimental Study | Target/Mechanism | |
---|---|---|---|---|
Antrodia camphorata [27] | 4-Acetylantroquinonol B | Colorectal cancer | DLD-1, HCT-116, SW-480, RKO, HT-29 | Lgr5/Wnt/β-catenin, JAK–STAT↓ |
Antrodia camphorata [21] | Polysaccharide (ACE) | Hepatocellular carcinoma | HepG2 cell line | Apoptosis |
Antrodia camphorata [9] | Antroquinonol | Pancreatic carcinoma | PANC-1 and AsPC-1 cells | AKT at p-Ser 473↓ mTOR at p-Ser 2448↓ |
Antrodia camphorata [28] | Antroquinonol | Colon cancer | HCT15, HCT-116 and LoVo cells | PI3K/AKT/β-catenin signaling↓ |
Antrodia camphorata grown on germinated brown rice (CBR) [29] | Adenosine | Melanoma | MITF and TRP-1↑, p53↑ | |
Antrodia camphorata grown on germinated brown rice (CBR) [30] | Colon cancer | β-catenin pathway↓ | ||
Cantharellus cibarius [31] | Drug resistance in Pgp-expressing tumor cells↓ | |||
Cordyceps militaris [32] | Cordycepin | NRK-52E cell line | NF-κB↓ | |
Ganoderma lucidum [33] | PD-1 protein↓ | |||
Ganoderma lucidum [34] | Polysaccharide | Liver cancer | HepG2, Bel-7404 | p27kip↑, cyclinD1/CDK4↓, cyclin E/CDK2↓, AKT at p-Thr 308 and p-Ser 473↓, pPTEN↑, Bcl-2 activation, apoptosis, caspase 3 and 9↑ |
Grifola frondose [35] | Sulfated polysaccharide | Liver cancer | HepG2 | Apoptosis, S phase arrest, NOTCH1↓, IκB-α degradation, FLIP↓, Caspase 3 and 8↑ |
Inonotus obliquus [36] | Lanosterol, terpenoid | CTLA-4/CD80 interaction↓ Activation of T cells↑ | ||
Inonotus obliquus [37] | Ergosterol peroxide | Colorectal cancer | HCT116, HT-29, SW620, DLD-1 CRC cell lines | β-catenin pathway↓ |
Phellinus linteus [38] | Hispolon | Human hepatoma cells | SK-Hep1 cells | MMP2↓, MMP9↓, uPA↓, p-ERK1/2, p-PI3K/AKT↓, p-FAK↓ |
Phellinus linteus [39] | Protein-bound polysaccharide | Colon cancer | SW480 cells | Wnt/β-catenin Pathway↓, Cyclin D1↓, TCF/LEF↓ |
Phellinus linteus [34] | Polysaccharide | Liver cancer | HepG2, Bel-7404 | p27kip↑, cyclinD1/CDK4↓, cyclin E/CDK2↓, AKT at p-Thr 308 and p-Ser 473↓, pPTEN↑, Bcl-2 activation, apoptosis, caspase 3 and 9↑ |
Phellinus linteus grown on germinated brown rice (PBR) [40] | Not determined | KRAS-mutated colon cancer | MAPK pathway↓ | |
Phellinus linteus grown on germinated brown rice (PBR) [41] | γ-Aminobutyric Acid and β-glucan | colon cancer metastasized to the lung | NF-κB, β-catenin, MAPK pathway↓, MMP2 and 9 activities↓ | |
Phellinus linteus grown on Panax ginseng (PGP) [42] | Rd, Rg1, Re, Rb2, and Rg3 | melanoma | Caspase 8 and 9, p53 and p21 ↑ | |
Phellinus linteus grown on Panax ginseng (PGP) [30] | Not determined | Colon cancer | Caspase 8 and 9↑ | |
Russula emetic [31] | Drug resistance in Pgp-expressing tumor cells↓ | |||
Taiwanofungus camphoratus [43] | Zhankuic acids A–C | Drug resistance in Pgp-expressing tumor cells↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-J. Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int. J. Mol. Sci. 2022, 23, 10502. https://doi.org/10.3390/ijms231810502
Park H-J. Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. International Journal of Molecular Sciences. 2022; 23(18):10502. https://doi.org/10.3390/ijms231810502
Chicago/Turabian StylePark, Hye-Jin. 2022. "Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms" International Journal of Molecular Sciences 23, no. 18: 10502. https://doi.org/10.3390/ijms231810502
APA StylePark, H. -J. (2022). Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. International Journal of Molecular Sciences, 23(18), 10502. https://doi.org/10.3390/ijms231810502