The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi
Abstract
:1. Introduction
2. Glutathione Systems
3. Glutathione and Role in Oxidative Stress Protection
3.1. γ-Glutamylcysteine Synthetase and Glutathione Synthetase
Enzymes in Glutathione System | Species | Gene Name | Phenotypes | References |
---|---|---|---|---|
γ-glutamylcysteine synthetase | Saccharomyces cerevisiae | GSH1 | The gsh1Δ mutant showed glutathione auxotrophy, slower growth and increased sensitivity to oxidative stress. | [28,29] |
Schizosaccharomyces pombe | gcs1 | - The gcs1Δ mutant showed glutathione auxotrophy and sensitivity to cadmium. - The gcs1Δ mutant was unable to sporulate. | [30,31] | |
Candida albicans | GCS1 | - The gcs1Δ mutant showed glutathione auxotrophy, increased ROS production and apoptosis. - The gcs1Δ mutant showed no change in morphogenesis and virulence. | [32,33] | |
Nakaseomyces glabrataa (formerly, Candida glabrata) | GSH1 | - The gsh1Δ mutant was lethal. - A conditional deletion mutant, gsh1Δpro2-4, showed low glutathione levels and slower growth in media lacking glutathione. - The gsh1Δpro2-4 mutant showed sensitivity to oxidative stress (H2O2, menadione) and cadmium. | [33,34] | |
Histoplasma capsulatum | GSH1 | - The GSH1 gene was expressed only in the yeast form. - The gsh1Δ mutant was lethal. - The GSH1 overexpression mutant showed an inability to switch from yeast to mold form. | [35] | |
Glutathione synthetase | Saccharomyces cerevisiae | GSH2 | The gsh2Δ and the GSH2 overexpression mutants showed normal responses to oxidative stress. | [36] |
Schizosaccharomyces pombe | gsh2 | The gsh2Δ mutant showed glutathione auxotrophy and sensitivity to cadmium. | [30,31] | |
Nakaseomyces glabrataa (formerly, Candida glabrata) | GSH2 | - The gsh2Δ mutant showed glutathione auxotrophy. - The gsh2Δ mutant showed low glutathione levels and sensitivity to oxidative stress (H2O2, menadione) and cadmium. - The gsh2Δ mutant showed resistance to tert-butyl hydroperoxide and cumene hydroperoxide stressors. | [34] | |
Cryptococcus neoformans | GSH2 | - The gsh2Δ mutant showed glutathione auxotrophy under iron starvation conditions. - The gsh2Δ showed low glutathione levels and sensitivity to the oxidative stressor diamide, but not H2O2. - The gsh2Δ mutant showed sensitivity to a high salt stressor, the cell wall damaging agent Congo red, and antifungal drugs. - The gsh2Δ showed impairment in virulence-related traits, including defects in capsule formation, melanin production and growth at 37 °C. | [24] | |
Histoplasma capsulatum | GSH2 | - The GSH2 gene was highly expressed in the yeast form. - The GSH2 overexpression mutant showed an inability to switch from yeast to mold form. - The gsh2Δ mutant was lethal. | [35] | |
Glutathione reductase | Saccharomyces cerevisiae | GLR1 | The glr1Δ mutant showed sensitivity to oxidative stress (H2O2). | [37,38] |
Schizosaccharomyces pombe | pgr1 | - The pgr1 overexpression mutant showed resistance to the oxidative stressor menadione but not H2O2. - The pgr1 gene expression was induced by various oxidative stressors (menadione, cumeme hydroperoxide and diamide, but not H2O2), high salt levels (NaCl), high temperatures and starvation. - The pgr1Δ mutant was lethal. | [39] | |
Candida albicans | GLR1 | - The glr1Δ mutant showed sensitivity to oxidative stress (H2O2) but not formaldehyde or nitrosative stress (NO). - The glr1Δ mutant showed an inability to detoxify GSSG. - The glr1Δ mutant showed impairment in macrophage killing. - The glr1Δ mutant showed decreased virulence, while the GLR1 overexpression mutant showed increased virulence. | [40] | |
Cryptococcus neoformans | GLR1 | - The glr1 gene expression was induced by nitric oxide (NO). - The glr1Δ mutant showed normal morphology. - The glr1Δ mutant showed sensitivity to nitric oxide stress but not peroxide stress. - The glr1Δ mutant became avirulent in an inhalation model of mouse infection and showed sensitivity to macrophage killing. | [41] | |
Aspergillus nidulans | glrA | - The glrAΔ mutant showed slower growth under normal conditions. - The glrAΔ mutant showed defects in conidia germination at high temperatures. - The glrAΔ mutant showed sensitivity to various oxidants (menadione, diamide and H2O2). - The glrAΔ mutant accumulated a less reduced form of GSH, more intracellular ROS, and had decreased respiration activity. | [42] | |
Paracoccidioides brasiliensis | GR | The vPb18 virulent strain showed increases in both levels of the GR gene and enzymatic activity. | [43] | |
Glutathione peroxidase | Saccharomyces cerevisiae | GPX1-3 | - GPX1-3 genes encoded for phospholipid hydroperoxide glutathione peroxidase. - The GPX3 product was a major glutathione peroxidase. - The GPX3 gene was constitutively expressed. - The GPX1 gene expression was induced under glucose starvation. - The GPX2 gene expression was induced by many oxidative stressors. - The gpx3Δ mutant showed sensitivity to peroxides (H2O2 and tert-butyl hydroperoxide). - The gpx1Δ and gpx2Δ mutants showed no sensitivity to oxidative stress. - The gpx1Δgpx2Δgpx3Δ mutant showed sensitivity to H2O2 and phospholipid hydroperoxide (polysaturated fatty acid linolenate 18:3). | [44,45] |
Candida albicans | GPX3 (ScGPX1 homolog) | - The gpx3Δ mutant (orf19.4436Δ) showed sensitivity to H2O2 and was defective in hyphal formation within macrophage cells. - The gpx3Δ mutant showed impairment in killing macrophages and Galleria mellonella. - The gpx3Δ mutant showed normal virulence in a murine model of infection. | [46,47] | |
GPX31- 33 (ScGPX3/ HYR1 homolog | - The GPX31 is a major glutathione peroxidase. - The gpx31Δ (orf19.86Δ) and the gpx31Δgpx32Δgpx33Δ mutant (orf19.86Δorf19.85Δorf19.87Δ) showed sensitivity to oxidative stressors (H2O2 and t-butylhydroperoxide but not menadione), UV light, heavy metals (cadmium and silver), and cell wall stressors (congo red and calcofluor white). | |||
Cryptococcus neoformans | GPX1, GPX2 | - GPX1 and GPX2 gene expressions were induced in response to t-butylhydroperoxide and cumene hydroperoxide and repressed in response to nitric oxide. - GPX2 gene expression was induced in response to the hydrogen peroxide stressor. - The gpx1Δ and gpx2Δ mutants showed normal morphology, melanin production and capsule formation. - The gpx1Δ and gpx2Δ mutants showed sensitivity to cumene (hydroperoxide) but not superoxide, hydrogen peroxide or nitric oxide stressors. - The gpx2Δ mutant showed higher sensitivity to cumene hydroperoxide than the gpx1Δ mutant at high concentrations. - The gpx1Δ mutant, but not the gpx2Δ mutant, showed sensitivity to the peroxide stressor t-butylhydroperoxide. - The gpx1Δ and gpx2Δ mutants showed sensitivity to macrophage killing, yet the mutants were still virulent in a mouse model. | [48] | |
Aspergillus fumigatus | hyr1 (ScGPX3/ HYR1 homolog) | - hyr1 gene expression was upregulated in hyphae and conidia when exposed to neutrophils. - The hyr1 gene expression was induced when exposed to H2O2. | [49,50] | |
Talaromyces marneffei | gpx1 (ScGPX3/HYR1 homolog) | - Gpx1 is an antigenic protein. - gpx1 gene expression was upregulated in the yeast form. | [51,52] | |
Glutathione S-transferase | Saccharomyces cerevisiae | GTT1-2 | - GTT1 gene expression was induced during the diauxic shift and stationary phase. - The gtt1Δ, gtt2Δ, and gtt1Δgtt2Δ showed sensitivity to heat shock in a stationary phase and slower growth at a high temperature of 39 °C. - The grx1Δgrx2Δgtt1Δgtt2Δ mutant showed sensitivity to xenobiotics (1-chloro-2,4-dinitrobenzene), heat and the oxidative stressors (cumene hydroperoxide and H2O2). | [53,54] |
Schizosaccharomyces pombe | gst1-3 | - The gst1Δgst2Δ and gst3Δ mutants showed sensitivity to peroxide stressors (H2O2 and t-butylhydroperoxide) and the antifungal drug fluconazole. - The gst1Δgst2Δ and gst3Δ mutants showed resistance to the peroxide stressor diamide. - gst1, gst2, and gst3 gene expressions were induced during the stationary phase and in response to hydrogen peroxide. - All Gst1, 2 and 3 enzymes have glutathione transferase activity, and the Gst3 enzyme also has glutathione peroxidase activity. | [55] | |
Candida albicans | GST2 | - The gst2Δ mutant showed sensitivity to oxidative stress (H2O2). - GST2 gene expression was induced under nitrogen limitation. - The gst2Δ mutant showed defects in hyphal switching under nitrogen starvation-induced filamentous growth. | [56] | |
Aspergillus nidulans | gstA | - The gstAΔ mutant showed sensitivity to the oxidant diamide, the fungicide carboxin, various xenobiotics (pyrrolnitrin and sulphanilamide), and heavy metals (selenium, silver and nickel). - The gstAΔ mutant showed normal growth in the presence of 1-chloro-2,4-dinitrobenzene. - The gstA gene expression was induced in response to xenobiotics (1-chloro-2,4-dinitrobenzene) and oxidative stress (H2O2). | [57] | |
Aspergillus fumigatus | gstA, gstB, gstC | - All gstA, B and C enzymes have both glutathione transferase and glutathione peroxidase activities. - The gstA and gstC genes were constitutively expressed under normal conditions, and their expression levels were inducible in response to oxidative stress (H2O2). - The expression of all gst genes was induced in response to xenobiotics (1-chloro-2,4-dinitrobenzene). | [58] | |
Paracoccidioides brasiliensis | GST1-3 | The vPb18 virulent strain showed increased levels of the GST1-3 genes. | [43] | |
Paracoccidioides lutzii | GST | GST was exclusively secreted in the yeast form. | [59] |
3.2. Glutathione Reductase
3.3. Glutathione Peroxidase
3.4. Glutathione S-Transferase
4. The Role of Glutathione in Fungal Morphology, Cellular Development and Virulence
5. Glutathione as Modulators of Fungal Virulence and Pathogenesis
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brown, A. Integration of metabolism with virulence in Candida albicans. In Fungal Genomics; Springer: Berlin/Heidelberg, Germany, 2006; pp. 185–203. [Google Scholar]
- Brown, A.J.; Brown, G.D.; Netea, M.G.; Gow, N.A. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014, 22, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y. Human fungal pathogens: Why should we learn? J. Microbiol. 2016, 54, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.S.; Wheeler, R.T.; May, R.C. Fungal pathogens: Survival and replication within macrophages. Cold Spring Harb. Perspect. Med. 2014, 5, a019661. [Google Scholar] [CrossRef]
- Gross, N.T.; Nessa, K.; Camner, P.; Jarstrand, C. Production of nitric oxide by rat alveolar macrophages stimulated by Cryptococcus neoformans or Aspergillus fumigatus. Med. Mycol. 1999, 37, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, H.A.; Helmke, R.J.; German, V.F.; Mangos, J.A. Pneumocystis carinii induces an oxidative burst in alveolar macrophages. Infect. Immun. 1992, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Irato, P.; Santovito, G. Enzymatic and Non-Enzymatic Molecules with Antioxidant Function. Antioxidants 2021, 10, 579. [Google Scholar] [CrossRef]
- Edwards, J.A.; Chen, C.; Kemski, M.M.; Hu, J.; Mitchell, T.K.; Rappleye, C.A. Histoplasma yeast and mycelial transcriptomes reveal pathogenic-phase and lineage-specific gene expression profiles. BMC Genom. 2013, 14, 695. [Google Scholar] [CrossRef]
- Nemecek, J.C.; Wüthrich, M.; Klein, B.S. Global control of dimorphism and virulence in fungi. Science 2006, 312, 583–588. [Google Scholar] [CrossRef]
- Beyhan, S.; Gutierrez, M.; Voorhies, M.; Sil, A. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 2013, 11, e1001614. [Google Scholar] [CrossRef] [Green Version]
- Noble, S.M.; Gianetti, B.A.; Witchley, J.N. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat. Rev. Microbiol. 2017, 15, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Tochigi, N.; Okubo, Y.; Ando, T.; Wakayama, M.; Shinozaki, M.; Gocho, K.; Hata, Y.; Ishiwatari, T.; Nemoto, T.; Shibuya, K. Histopathological implications of Aspergillus infection in lung. Mediat. Inflamm. 2013, 2013, 809798. [Google Scholar] [CrossRef] [PubMed]
- Mah, J.H.; Yu, J.H. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot. Cell 2006, 5, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.I.P.; Fava, V.M.; Kerkaert, J.D.; Subramanian, A.S.; Gravelat, F.N.; Lehoux, M.; Howell, P.L.; Cramer, R.A.; Sheppard, D.C. Reducing Aspergillus fumigatus virulence through targeted dysregulation of the conidiation pathway. mBio 2020, 11, e03202-19. [Google Scholar] [CrossRef]
- Boyce, K.J.; Andrianopoulos, A. Fungal dimorphism: The switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev. 2015, 39, 797–811. [Google Scholar] [CrossRef]
- Lo, H.J.; Köhler, J.R.; DiDomenico, B.; Loebenberg, D.; Cacciapuoti, A.; Fink, G.R. Nonfilamentous C. albicans mutants are avirulent. Cell 1997, 90, 939–949. [Google Scholar] [CrossRef]
- Thompson, D.S.; Carlisle, P.L.; Kadosh, D. Coevolution of morphology and virulence in Candida species. Eukaryot. Cell 2011, 10, 1173–1182. [Google Scholar] [CrossRef]
- Carlos, I.Z.; Silva Monnazzi, L.G.; Falcão, D.P.; Machado de Medeiros, B.M. TNF-alpha, H2O2 and NO response of peritoneal macrophages to Yersinia enterocolitica O:3 derivatives. Microbes Infect. 2004, 6, 207–212. [Google Scholar] [CrossRef]
- Penninckx, M.J. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2002, 2, 295–305. [Google Scholar] [CrossRef]
- Grant, C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 2001, 39, 533–541. [Google Scholar] [CrossRef]
- Pizzorno, J. Glutathione! Integr. Med. (Encinitas) 2014, 13, 8–12. [Google Scholar] [PubMed]
- Misslinger, M.; Lechner, B.E.; Bacher, K.; Haas, H. Iron-sensing is governed by mitochondrial, not by cytosolic iron-sulfur cluster biogenesis in Aspergillus fumigatus. Metallomics 2018, 10, 1687–1700. [Google Scholar] [CrossRef]
- Attarian, R. Analysis of the Roles of a Monothiol Glutaredoxin and Glutathione Synthetase in the Virulence of the AIDS-Associated Pathogen Cryptococcus neoformans. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2016. [Google Scholar] [CrossRef]
- Kumar, C.; Igbaria, A.; D’Autreaux, B.; Planson, A.G.; Junot, C.; Godat, E.; Bachhawat, A.K.; Delaunay-Moisan, A.; Toledano, M.B. Glutathione revisited: A vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 2011, 30, 2044–2056. [Google Scholar] [CrossRef] [PubMed]
- Berndt, C.; Lillig, C.H. Glutathione, glutaredoxins, and iron. Antioxid. Redox Signal. 2017, 27, 1235–1251. [Google Scholar] [CrossRef]
- Hattori, R.; Tada, S.; Matsushita-Morita, M.; Suzuki, S.; Kusumoto, K.-I. Gamma-glutamylcysteine synthetase gene homolog (gshA) isiImportant in glutathione homeostasis in Aspergillus oryzae. Jpn. Agric. Res.Q. JARQ 2018, 52, 301–305. [Google Scholar] [CrossRef]
- Grant, C.M.; MacIver, F.H.; Dawes, I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 1996, 29, 511–515. [Google Scholar] [CrossRef]
- Grant, C.M.; Perrone, G.; Dawes, I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1998, 253, 893–898. [Google Scholar] [CrossRef]
- Mutoh, N.; Hayashi, Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem. Biophys. Res. Commun. 1988, 151, 32–39. [Google Scholar] [CrossRef]
- Chaudhuri, B.; Ingavale, S.; Bachhawat, A.K. apd1+, a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: A role for glutathione and a glutathione-conjugate pump. Genetics 1997, 145, 75–83. [Google Scholar] [CrossRef]
- Baek, Y.U.; Kim, Y.R.; Yim, H.S.; Kang, S.O. Disruption of gamma-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Lett. 2004, 556, 47–52. [Google Scholar] [CrossRef]
- Yadav, A.K.; Desai, P.R.; Rai, M.N.; Kaur, R.; Ganesan, K.; Bachhawat, A.K. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: Essential in C. glabrata, and essential for virulence in C. albicans. Microbiology (Reading) 2011, 157, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobedo, G.; Orta-Zavalza, E.; Castaño, I.; De Las Peñas, A. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata. Curr. Genet. 2013, 59, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A. The Role of the Cysteine/Glutathione Regulatory Genes CDO1, GSH1, and GSH2 in Yeast-Mold Dimorphism of the Pathogenic Fungus Histoplasma capsulatum. Ph.D. Thesis, University of Southern Mississippi, Hattiesburg, MS, USA, 2012. [Google Scholar]
- Grant, C.M.; MacIver, F.H.; Dawes, I.W. Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol. Biol. Cell 1997, 8, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Collinson, L.P.; Dawes, I.W. Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 1995, 156, 123–127. [Google Scholar] [CrossRef]
- Grant, C.M.; Collinson, L.P.; Roe, J.H.; Dawes, I.W. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol. Microbiol. 1996, 21, 171–179. [Google Scholar] [CrossRef]
- Lee, J.; Dawes, I.W.; Roe, J.H. Isolation, expression, and regulation of the pgr1(+) gene encoding glutathione reductase absolutely required for the growth of Schizosaccharomyces pombe. J. Biol. Chem. 1997, 272, 23042–23049. [Google Scholar] [CrossRef]
- Tillmann, A.T.; Strijbis, K.; Cameron, G.; Radmaneshfar, E.; Thiel, M.; Munro, C.A.; MacCallum, D.M.; Distel, B.; Gow, N.A.; Brown, A.J. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress adaptation and virulence in Candida albicans. PLoS ONE 2015, 10, e0126940. [Google Scholar] [CrossRef]
- Missall, T.A.; Pusateri, M.E.; Donlin, M.J.; Chambers, K.T.; Corbett, J.A.; Lodge, J.K. Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: Implications for virulence. Eukaryot. Cell 2006, 5, 518–529. [Google Scholar] [CrossRef]
- Sato, I.; Shimizu, M.; Hoshino, T.; Takaya, N. The glutathione system of Aspergillus nidulans involves a fungus-specific glutathione S-transferase. J. Biol. Chem. 2009, 284, 8042–8053. [Google Scholar] [CrossRef] [Green Version]
- Castilho, D.G.; Navarro, M.V.; Chaves, A.F.A.; Xander, P.; Batista, W.L. Recovery of the Paracoccidioides brasiliensis virulence after animal passage promotes changes in the antioxidant repertoire of the fungus. FEMS Yeast Res. 2018, 18, foy007. [Google Scholar] [CrossRef]
- Avery, A.M.; Avery, S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 2001, 276, 33730–33735. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Matsuda, T.; Sugiyama, K.; Izawa, S.; Kimura, A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 1999, 274, 27002–27009. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.J.; McKenzie, C.G.; Smith, D.A.; da Silva Dantas, A.; Sherston, S.; Veal, E.A.; Morgan, B.A.; MacCallum, D.M.; Erwig, L.P.; Quinn, J. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape. Antioxid. Redox Signal. 2013, 19, 2244–2260. [Google Scholar] [CrossRef]
- Miramón, P.; Dunker, C.; Kasper, L.; Jacobsen, I.D.; Barz, D.; Kurzai, O.; Hube, B. A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans. Med. Mycol. 2014, 52, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Missall, T.A.; Cherry-Harris, J.F.; Lodge, J.K. Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates. Microbiology (Reading) 2005, 151, 2573–2581. [Google Scholar] [CrossRef]
- Sugui, J.A.; Kim, H.S.; Zarember, K.A.; Chang, Y.C.; Gallin, J.I.; Nierman, W.C.; Kwon-Chung, K.J. Genes differentially expressed in conidia and hyphae of Aspergillus fumigatus upon exposure to human neutrophils. PLoS ONE 2008, 3, e2655. [Google Scholar] [CrossRef]
- Fan, Z.; Yu, H.; Guo, Q.; He, D.; Xue, B.; Xie, X.; Yokoyama, K.; Wang, L. Identification and characterization of an anti-oxidative stress-associated mutant of Aspergillus fumigatus transformed by Agrobacterium tumefaciens. Mol. Med. Rep. 2016, 13, 2367–2376. [Google Scholar] [CrossRef]
- Pongpom, M.; Vanittanakom, N. Stress adaptation in Talaromyces marneffei. Chiang Mai Med. J. 2016, 55, 23–30. [Google Scholar]
- Pongpom, M.; Vanittanakom, P.; Nimmanee, P.; Cooper, C.R., Jr.; Vanittanakom, N. Adaptation to macrophage killing by Talaromyces marneffei. Future Sci. OA 2017, 3, Fso215. [Google Scholar] [CrossRef]
- Choi, J.H.; Lou, W.; Vancura, A. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273, 29915–29922. [Google Scholar] [CrossRef] [Green Version]
- Collinson, E.J.; Grant, C.M. Role of yeast glutaredoxins as glutathione S-transferases. J. Biol. Chem. 2003, 278, 22492–22497. [Google Scholar] [CrossRef] [PubMed]
- Veal, E.A.; Toone, W.M.; Jones, N.; Morgan, B.A. Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J. Biol. Chem. 2002, 277, 35523–35531. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Chung, S.C.; Shin, J.; Oh, K.B. GST2 is required for nitrogen starvation-induced filamentous growth in Candida albicans. J. Microbiol. Biotechnol. 2014, 24, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.A.; Davis, M.A.; Hynes, M.J. A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance. Appl. Environ. Microbiol. 2002, 68, 2802–2808. [Google Scholar] [CrossRef] [PubMed]
- Burns, C.; Geraghty, R.; Neville, C.; Murphy, A.; Kavanagh, K.; Doyle, S. Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus. Fungal Genet. Biol. 2005, 42, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.S.; Parente, A.F.; Borges, C.L.; Parente, J.A.; Bailão, A.M.; de Almeida Soares, C.M. Analysis of the secretomes of Paracoccidioides mycelia and yeast cells. PLoS ONE 2012, 7, e52470. [Google Scholar] [CrossRef]
- Song, J.Y.; Cha, J.; Lee, J.; Roe, J.H. Glutathione reductase and a mitochondrial thioredoxin play overlapping roles in maintaining iron-sulfur enzymes in fission yeast. Eukaryot. Cell 2006, 5, 1857–1865. [Google Scholar] [CrossRef]
- Bakti, F.; Király, A.; Orosz, E.; Miskei, M.; Emri, T.; Leiter, É.; Pócsi, I. Study on the glutathione metabolism of the filamentous fungus Aspergillus nidulans. Acta Microbiol. Immunol. Hung. 2017, 64, 255–272. [Google Scholar] [CrossRef]
- Suizu, T.; Tsutsumi, H.; Ohtake, Y.; Kawado, A.; Imayasu, S.; Kimura, A.; Murata, K. Absolute glutathione requirement for sporulation of a yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1994, 205, 1151–1154. [Google Scholar] [CrossRef]
- Lee, J.C.; Straffon, M.J.; Jang, T.Y.; Higgins, V.J.; Grant, C.M.; Dawes, I.W. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res. 2001, 1, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Ku, J.W.K.; Gan, Y.H. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biol. 2021, 44, 102012. [Google Scholar] [CrossRef] [PubMed]
- Reniere, M.L.; Whiteley, A.T.; Hamilton, K.L.; John, S.M.; Lauer, P.; Brennan, R.G.; Portnoy, D.A. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 2015, 517, 170–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Du, X.; Zhou, Y.; Kong, W.; Lau, G.W.; Chen, G.; Kohli, G.S.; Yang, L.; Wang, T.; et al. Glutathione activates type III secretion system Through Vfr in Pseudomonas aeruginosa. Front. Cell Infect. Microbiol. 2019, 9, 164. [Google Scholar] [CrossRef]
- Pócsi, I.; Prade, R.A.; Penninckx, M.J. Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 2004, 49, 1–76. [Google Scholar] [CrossRef] [PubMed]
- Jürgensen, C.W.; Jacobsen, N.R.; Emri, T.; Eriksen, S.H.; Pócsi, I. Glutathione metabolism and dimorphism in Aureobasidium pullulans. J. Basic Microbiol. 2001, 41, 131–137. [Google Scholar] [CrossRef]
- Manavathu, M.; Gunasekaran, S.; Porte, Q.; Manavathu, E.; Gunasekaran, M. Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans. Can. J. Microbiol. 1996, 42, 76–79. [Google Scholar] [CrossRef]
- Thomas, D.; Klein, K.; Manavathu, E.; Dimmock, J.R.; Mutus, B. Glutathione levels during thermal induction of the yeast-to-mycelial transition in Candida albicans. FEMS Microbiol. Lett. 1991, 61, 331–334. [Google Scholar] [CrossRef]
- Pócsi, I.; Molnár, Z.; Pusztahelyi, T.; Varecza, Z.; Emri, T. Yeast-like cell formation and glutathione metabolism in autolysing cultures of Penicillium chrysogenum. Acta Biol. Hung. 2007, 58, 431–440. [Google Scholar] [CrossRef]
- Guedouari, H.; Gergondey, R.; Bourdais, A.; Vanparis, O.; Bulteau, A.L.; Camadro, J.M.; Auchère, F. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Biochim. Biophys. Acta 2014, 1842, 1855–1869. [Google Scholar] [CrossRef]
- Maras, B.; Angiolella, L.; Mignogna, G.; Vavala, E.; Macone, A.; Colone, M.; Pitari, G.; Stringaro, A.; Dupré, S.; Palamara, A.T. Glutathione metabolism in Candida albicans resistant strains to fluconazole and micafungin. PLoS ONE 2014, 9, e98387. [Google Scholar] [CrossRef]
- González-Párraga, P.; Marín, F.R.; Argüelles, J.C.; Hernández, J.A. Correlation between the intracellular content of glutathione and the formation of germ-tubes induced by human serum in Candida albicans. Biochim. Biophys. Acta 2005, 1722, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Carlin, A.F.; Beyhan, S.; Peña, J.F.; Stajich, J.E.; Viriyakosol, S.; Fierer, J.; Kirkland, T.N. Transcriptional analysis of Coccidioides immitis mycelia and spherules by RNA sequencing. J. Fungi 2021, 7, 366. [Google Scholar] [CrossRef] [PubMed]
- Kawado, A.; Suizu, T.; Imayasu, S.; Shigematsu, T.; Kimura, A.; Murata, K. Highly efficient sporulation induced by glutathione or glutathione thiol esters in sake (Kyokai no. 7) and a wild-type yeast. J. Ferment. Bioeng. 1992, 74, 363–367. [Google Scholar] [CrossRef]
Species | Morphological Changes | Role of Glutathione | Reference |
---|---|---|---|
Candida albicans (Human pathogen) | Yeast-to-hyphae transition | - Intracellular glutathione levels were decreased during a yeast-to-hyphae transition due to high glutathione consumption by filamentous cells. - Glutathione levels were increased in C. albicans resistant to fluconazole. | [69,70,72,73,74] |
Aureobasidium pullulans (Contaminant fungus) | Yeast-to-mycelia transition | Intracellular glutathione levels were higher in yeast cells than in mycelia. | [68] |
Histoplasma capsulatum (Pathogenic fungus) | Yeast-to-mycelia transition | Glutathione was highly abundant in the yeast form. | [35] |
Coccidioides immitis (Pathogenic fungus) | Yeast-to-mycelia transition | Genes related to glutathione detoxification pathways were downregulated in yeast spherule form compared to mold form. | [75] |
Penicillium chrysogenum (Industrial fungus) | Yeast-to-mycelia transition | Intracellular glutathione levels were increased within yeast-like cells in autolysing culture. | [71] |
Saccharomyces cerevisiae (Model yeast) | Sporulation | - Glutathione was required for sporulation. - Intracellular glutathione levels were decreased during sporulation and completely undetectable during maximum sporulation. | [62,63,76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangsanut, T.; Pongpom, M. The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi. Int. J. Mol. Sci. 2022, 23, 10645. https://doi.org/10.3390/ijms231810645
Wangsanut T, Pongpom M. The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi. International Journal of Molecular Sciences. 2022; 23(18):10645. https://doi.org/10.3390/ijms231810645
Chicago/Turabian StyleWangsanut, Tanaporn, and Monsicha Pongpom. 2022. "The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi" International Journal of Molecular Sciences 23, no. 18: 10645. https://doi.org/10.3390/ijms231810645
APA StyleWangsanut, T., & Pongpom, M. (2022). The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi. International Journal of Molecular Sciences, 23(18), 10645. https://doi.org/10.3390/ijms231810645