Characterization of miRNAs in Milk Small Extracellular Vesicles from Enzootic Bovine Leukosis Cattle
Abstract
:1. Introduction
2. Results
2.1. BLV Infection and Clinical Status
2.2. Morphology and Nanoparticle Size Analysis of Milk sEVs
2.3. Microarray Analysis
2.4. Quantitative Real-Time PCR (qPCR) for Detection of Candidate miRNAs in Milk sEVs Used in Microarray Analysis
2.5. qPCR for the Evaluation of the Utility of Candidate miRNA Biomarkers
2.6. Correlation between the Levels of Candidate miRNA Biomarkers and Several Diagnostic Criteria of EBL
3. Discussion
4. Materials and Methods
4.1. Animals and Diagnosis
4.2. Hematology
4.2.1. Detection of Serum Antibodies against BLV
4.2.2. DNA Extraction from WBCs
4.2.3. Detection of BLV Provirus Using Nested Polymerase Chain Reaction (PCR)
4.2.4. Measurement of BLV Proviral Load Using Quantitative Real-Time PCR (qPCR)
4.2.5. LDH Analysis
4.3. Isolation and Characterization of Milk sEVs
4.4. RNA Extraction from Milk sEVs
4.5. Microarray Analysis
4.6. Quantification of miRNAs in Milk sEVs Using qPCR
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez, S.M.; Florins, A.; Gillet, N.; de Brogniez, A.; Sánchez-Alcaraz, M.T.; Boxus, M.; Boulanger, F.; Gutiérrez, G.; Trono, K.; Alvarez, I.; et al. Preventive and therapeutic strategies for bovine leukemia virus: Lessons for HTLV. Viruses 2011, 3, 1210–1248. [Google Scholar] [CrossRef] [PubMed]
- Burny, A.; Cleuter, Y.; Kettmann, R.; Mammerickx, M.; Marbaix, G.; Portetelle, D.; Van den Broeke, A.; Willems, L.; Thomas, R. Bovine leukaemia: Facts and hypotheses derived from the study of an infectious cancer. Vet. Microbiol. 1988, 17, 197–218. [Google Scholar] [CrossRef]
- Gillet, N.; Florins, A.; Boxus, M.; Burteau, C.; Nigro, A.; Vandermeers, F.; Balon, H.; Bouzar, A.-B.; Defoiche, J.; Burny, A.; et al. Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology 2007, 4, 18. [Google Scholar] [CrossRef]
- Tsutsui, T.; Kobayashi, S.; Hayama, Y.; Yamamoto, T. Fraction of bovine leukemia virus-infected dairy cattle developing enzootic bovine leukosis. Prev. Vet. Med. 2016, 124, 96–101. [Google Scholar] [CrossRef]
- Nuotio, L.; Rusanen, H.; Sihvonen, L.; Neuvonen, E. Eradication of enzootic bovine leukosis from Finland. Prev. Vet. Med. 2003, 59, 43–49. [Google Scholar] [CrossRef]
- Murakami, K.; Kobayashi, S.; Konishi, M.; Kameyama, K.; Tsutsui, T. Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009−2011. J. Vet. Med. Sci. 2013, 75, 1123–1126. [Google Scholar] [CrossRef]
- Annual Report on the Outbreak of Livestock Infectious Diseases. Available online: https://www.maff.go.jp/j/syouan/douei/kansi_densen/attach/pdf/kansi_densen-206.pdf (accessed on 10 November 2021).
- Acaite, J.; Tamosiunas, V.; Lukauskas, K.; Milius, J.; Pieskus, J. The eradication experience of enzootic bovine leukosis from Lithuania. Prev. Vet. Med. 2007, 82, 83–89. [Google Scholar] [CrossRef]
- Murakami, K.; Okada, K.; Ikawa, Y.; Aida, Y. Bovine leukemia virus induces CD5−B cell lymphoma in sheep despite temporarily increasing CD5+ B cells in asymptomatic stage. Virology 1994, 202, 458–465. [Google Scholar] [CrossRef]
- Fechner, H.; Blankenstein, P.; Looman, A.C.; Elwert, J.; Geue, L.; Albrecht, C.; Kurg, A.; Beier, D.; Marquardt, O.; Ebner, D. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology 1997, 237, 261–269. [Google Scholar] [CrossRef]
- Jimba, M.; Takashima, S.; Murakami, H.; Kohara, J.; Kobayashi, N.; Matsuhashi, T.; Ohmori, T.; Nunoya, T.; Aida, Y. BLV-CoCoMo-qPCR: A useful tool for evaluating bovine leukemia virus infection status. BMC Vet. Res. 2012, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Hessvik, N.P. Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, N.; Iguchi, H.; Ochiya, T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010, 101, 2087–2092. [Google Scholar] [CrossRef]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sato-Kuwabara, Y.; Melo, S.A.; Soares, F.A.; Calin, G.A. The fusion of two worlds: Non-coding RNAs and extracellular vesicles-diagnostic and therapeutic implications (Review). Int. J. Oncol. 2015, 46, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yu, D. Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom. Proteom. Bioinform. 2015, 13, 17–24. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Xu, C.; Zhang, Y.; Zhang, Q.; Chen, L.; Ding, Q.; Deng, Z. Exosomal miR-106b serves as a novel marker for lung cancer and promotes cancer metastasis via targeting PTEN. Life Sci. 2020, 244, 117297. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, W.-B.; Zhou, J.; Wei, Y.; Wang, H.-M.; Liu, X.-D.; Chen, X.-C.; Wang, W.; Ye, L.; Yao, L.-C.; et al. Circulating exosomal microRNAs as novel potential detection biomarkers in pancreatic cancer. Oncol. Lett. 2020, 20, 1432–1440. [Google Scholar] [CrossRef]
- Hata, T.; Murakami, K.; Nakatani, H.; Yamamoto, Y.; Matsuda, T.; Aoki, N. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem. Biophys. Res. Commun. 2010, 396, 528–533. [Google Scholar] [CrossRef]
- Nakanishi, R.; Takashima, S.; Wakihara, Y.; Kamatari, Y.O.; Kitamura, Y.; Shimizu, K.; Okada, A.; Inoshima, Y. Comparing microRNA in milk small extracellular vesicles among healthy cattle and cattle at high risk for bovine leukemia virus transmission. J. Dairy Sci. 2022, 105, 5370–5380. [Google Scholar] [CrossRef]
- Benmoussa, A.; Ly, S.; Shan, S.T.; Laugier, J.; Boilard, E.; Gilbert, C.; Provost, P. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J. Extracell. Vesicles 2017, 6, 1401897. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Shimizu, K.; Yamauchi, M.; Takase, H.; Ugawa, S.; Okada, A.; Inoshima, Y. Acidification effects on isolation of extracellular vesicles from bovine milk. PLoS ONE 2019, 14, e0222613. [Google Scholar] [CrossRef]
- Yamauchi, M.; Shimizu, K.; Rahman, M.; Ishikawa, H.; Takase, H.; Ugawa, S.; Okada, A.; Inoshima, Y. Efficient method for isolation of exosomes from raw bovine milk. Drug Dev. Ind. Pharm. 2019, 45, 359–364. [Google Scholar] [CrossRef]
- Reddy, R.B.; Bhat, A.R.; James, B.L.; Govindan, S.D.; Mathew, R.; Ravindra, D.R.; Hedne, N.; Illiayaraja, J.; Kekatpure, V.; Khora, S.S.; et al. Meta-analyses of microarray datasets identifies ANO1 and FADD as prognostic markers of head and neck cancer. PLoS ONE 2016, 11, e0147409. [Google Scholar] [CrossRef] [PubMed]
- Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, 1–25. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Sakha, S.; Muramatsu, T.; Ueda, K.; Inazawa, J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci. Rep. 2016, 6, 38750. [Google Scholar] [CrossRef]
- Huang, J.; Shen, M.; Yan, M.; Cui, Y.; Gao, Z.; Meng, X. Exosome-mediated transfer of miR-1290 promotes cell proliferation and invasion in gastric cancer via NKD1. Acta Biochim. Biophys. Sinica 2019, 51, 900–907. [Google Scholar] [CrossRef]
- Wei, S.; Li, Q.; Li, Z.; Wang, L.; Zhang, L.; Xu, Z. miR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway. Oncotarget 2016, 7, 75185–75196. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Grocock, R.J.; van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34, D140–D144. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Wang, W.; He, W.; Wang, J.; Wang, Y. Expression of peripheral blood miRNA-720 and miRNA-1246 can be used as a predictor for outcome in multiple myeloma patients. Clin. Lymphoma Myeloma Leuk. 2017, 17, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Hornick, N.I.; Huan, J.; Doron, B.; Goloviznina, N.A.; Lapidus, J.; Chang, B.H.; Kurre, P. Serum exosome microRNA as a minimally-invasive early biomarker of AML. Sci. Rep. 2015, 5, 11295. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cai, M.-C.; Wang, L.; Zhang, T.-H.; Luo, Z.-G.; Zhang, G.-W.; Zuo, F.-Y. MiR-1246 is upregulated and regulates lung cell apoptosis during heat stress in feedlot cattle. Cell Stress Chaperones 2018, 23, 1219–1228. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, K.-L.; Zheng, X.-M.; Li, H.-X.; Wang, G.-L. Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows. Cell Stress Chaperones 2014, 19, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Lai, Y.-T.; Rahman, M.M.; Chen, H.-W.; Husna, A.A.; Fujikawa, T.; Ando, T.; Kitahara, G.; Koiwa, M.; Kubota, C.; et al. Bovine milk transcriptome analysis reveals microRNAs and RNU2 involved in mastitis. FEBS J. 2019, 287, 1899–1918. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, C.-L.; Liao, X.-X.; Chen, D.; Wang, W.-Q.; Zhu, Y.-H.; Geng, X.-H.; Ji, D.-J.; Mao, Y.-J.; Gong, Y.-C.; et al. Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus. Int. J. Mol. Sci. 2015, 16, 4997–5013. [Google Scholar] [CrossRef]
- Sun, J.; Aswath, K.; Schroeder, S.G.; Lippolis, J.D.; Reinhardt, T.A.; Sonstegard, T.S. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics 2015, 16, 806. [Google Scholar] [CrossRef]
- Watanabe, A.; Murakami, H.; Kakinuma, S.; Murao, K.; Ohmae, K.; Isobe, N.; Akamatsu, H.; Seto, T.; Hashimura, S.; Konda, K.; et al. Association between bovine leukemia virus proviral load and severity of clinical mastitis. J. Vet. Med. Sci. 2019, 81, 1431–1437. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Hu, W.; Zhang, Y.; Sang, J.; Li, H.; Ma, T.; Bo, Y.; Bai, T.; Guo, H.; et al. miR-424-5p promotes proliferation, migration and invasion of laryngeal squamous cell carcinoma. Onco. Targets Ther. 2019, 12, 10441–10453. [Google Scholar] [CrossRef]
- Mani, R.; Murthy, S.S.; Jamil, K. Role of serum lactate dehydrogenase as a bio-marker in therapy related hematological malignancies. Int. J. Cancer 2006, 2, 383–389. [Google Scholar]
- Miura, S.; Inokuma, H. Evaluation of lactate dehydrogenase activity as an onset marker for enzootic bovine leukemia. Jpn. J. Large Anim. Clin. 2016, 6, 149–153. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Rana, S.; Malinowska, K.; Zoller, M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013, 15, 281–295. [Google Scholar] [CrossRef]
- Console, L.; Scalise, M. Indiveri, C. Exosomes in inflammation and role as biomarkers. Clin. Chim. Acta. 2019, 488, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Rahman, M.; Yamauchi, M.; Takashima, S.; Wakihara, Y.; Kamatari, Y.; Shimizu, K.; Okada, A.; Inoshima, Y. mRNA profile in milk extracellular vesicles from bovine leukemia virus-infected cattle. Viruses 2020, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, M.; Takashima, S.; Wakihara, Y.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. Identification of potential mRNA biomarkers in milk small extracellular vesicles of enzootic bovine leukosis cattle. Viruses 2022, 14, 1022. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Badr, Y.; Kitamura, Y.; Shimizu, K.; Okada, A.; Inoshima, Y. Proteomic profiling of milk extracellular vesicles from bovine leukemia virus-infected cattle. Sci. Rep. 2021, 11, 2951. [Google Scholar] [CrossRef]
- The Livestock Mutual Aid Office Handling Guidelines. Available online: https://www.maff.go.jp/j/keiei/nogyohoken/attach/pdf/kokujituuchi-145.pdf, (accessed on 15 November 2021).
- National Meat Hygiene Inspection Office Council. 12 Bovine Leukemia. In New Meat Hygiene Inspection Manual; Chuohoki Publishing: Tokyo, Japan, 2011; pp. 171–177. (In Japanese) [Google Scholar]
- Bendixen, H.J. Preventive measures in cattle leukemia: Leukosis enzootica bovis. Ann. N. Y. Acad. Sci. 1963, 108, 1241–1267. [Google Scholar] [CrossRef]
- Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Badr, Y.; Shimizu, K.; Okada, A.; Inoshima, Y. Putative internal control genes in bovine milk small extracellular vesicles suitable for normalization in quantitative real time-polymerase chain reaction. Membranes 2021, 11, 933. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Aoki, N.; Kuroda, H.; Urabe, M.; Taniguchi, Y.; Adachi, T.; Nakamura, R.; Matsuda, T. Production and characterization of monoclonal antibodies directed against bovine milk fat globule membrane (MFGM). Biochim. Biophys. Acta 1994, 1199, 87–95. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cow No. | Age *2 (Month) | ELISA *3 Antibody | Nested PCR | Proviral Load *4 (/10⁵WBCs) | WBC *5 (/μL) | Lymphocyte (/μL) | Total LDH *6 (IU/L) | LDH Isozyme (%) | Key of EC *7 | Sample Collection *8 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 2 + 3 | 4 | 5 | ||||||||||
Uninfected cattle | |||||||||||||||
1 | 66 | − | − | NT | 7100 | 3500 | 1233 | 69.1 | 18.4 | 7.8 | 26.2 | 1.8 | 2.9 | - | A |
2 | 81 | − | − | NT | 5400 | 2800 | 1009 | 63.9 | 20.2 | 10.9 | 31.1 | 3.7 | 1.3 | - | A |
3 | 34 | − | − | NT | 8600 | 4200 | 1222 | 66.8 | 19.4 | 9.7 | 29.1 | 3 | 1.1 | - | A |
4 | 55 | − | − | NT | 4800 | 2000 | 1246 | 68.4 | 17.8 | 9.6 | 27.4 | 3.1 | 1.1 | - | A |
EBL cattle *9 | |||||||||||||||
5 | 84 | + | + | 58,933 | 13,200 | 1600 | 1800 | 38.5 | 35.9 | 18.6 | 54.5 | 4.6 | 2.4 | - | B |
6 | 59 | + | + | 132,721 | over *10 | NT | 5439 | 30.7 | 32.1 | 17.6 | 49.7 | 6.2 | 13.4 | NT | C |
7 | 65 | + | + | 16,696 | 12,700 | 7100 | 1376 | 37.3 | 33.2 | 21.1 | 54.3 | 6.4 | 2 | + | C |
8 | 88 | + | + | 54,024 | 49,800 | 7700 | 2095 | 35.1 | 27.3 | 19.2 | 46.5 | 6.3 | 12.1 | + | C |
Cow No. | Age *2 (Month) | ELISA *3 Antibody | Nested PCR | Proviral Load *4 (/10⁵WBCs) | WBC *5 (/μL) | Lymphocyte (/μL) | Total LDH *6 (IU/L) | LDH Isozyme (%) | Key of EC *7 | Sample Collection *8 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 2 + 3 | 4 | 5 | ||||||||||
Uninfected cattle | |||||||||||||||
9 | 28 | − | − | NT | 6100 | 3200 | 1327 | 71.1 | 15.9 | 7.4 | 23.3 | 3.6 | 2 | − | A |
10 | 29 | − | − | NT | 9100 | 4400 | 1080 | 61.8 | 21.5 | 11.9 | 33.4 | 3.6 | 1.2 | − | A |
11 | 31 | − | − | NT | 4800 | 2100 | 1331 | 69.9 | 17.1 | 9.4 | 26.5 | 1.8 | 1.8 | − | A |
12 | 77 | − | − | NT | 6000 | 3100 | 1183 | 60.7 | 21.6 | 12 | 33.6 | 3.9 | 1.8 | − | A |
13 | 42 | − | − | NT | 8600 | 4200 | 1222 | 66.8 | 19.4 | 9.7 | 29.1 | 3 | 1.1 | − | A |
14 | 37 | − | − | NT | 5400 | 2400 | 1304 | 65.5 | 18.3 | 10.2 | 28.5 | 3.8 | 2.2 | − | A |
15 | 53 | − | − | NT | 5400 | 2700 | 1190 | 72.7 | 14.9 | 6.9 | 21.8 | 2.1 | 3.4 | − | A |
EBL *9 cattle | |||||||||||||||
16 | 100 | + | + | 32,670 | 10,700 | 6100 | 1434 | 49.4 | 31.8 | 14.8 | 46.6 | 3.1 | 0.9 | ± | C |
17 | 73 | + | + | 90,266 | 21,900 | 15,600 | 5000 | 17.5 | 12.5 | 5.7 | 18.2 | 3.9 | 60.4 | + | C |
18 | 92 | + | + | 58,096 | 5400 | 2700 | 4525 | 36.2 | 39.4 | 19.5 | 58.9 | 3.4 | 1.5 | − | C |
19 | 99 | + | + | 45,953 | 8900 | 5000 | 2128 | 35 | 29.1 | 13.9 | 43 | 8.5 | 3.5 | ± | C |
20 | 44 | + | + | 95,951 | 14,800 | 9700 | 3134 | 33 | 17.8 | 11.9 | 29.7 | 6.9 | 30.4 | + | C |
21 | 77 | + | + | 32,882 | 13,200 | 1600 | 3362 | 42.3 | 27.6 | 17.2 | 44.8 | 6 | 6.9 | − | C |
22 | 68 | NT | + | 8557 | 7000 | 3100 | 1536 | 35.4 | 30 | 23 | 53 | 8.7 | 2.9 | − | C |
23 | 60 | + | + | 54,442 | 13,600 | 7700 | 1404 | 56.3 | 23.9 | 11.4 | 35.3 | 5.1 | 3.3 | + | B |
24 | 48 | + | + | 212 | 12,600 | 7600 | 1937 | 51.3 | 25.8 | 12.9 | 38.7 | 5.6 | 4.4 | + | B |
25 | 62 | NT | + | 28,824 | 7200 | 4700 | 1980 | 47.6 | 33.6 | 12.2 | 45.8 | 3.4 | 3.2 | − | B |
26 | 100 | + | + | 95,092 | 20,500 | 8900 | 3171 | 41 | 38.3 | 16.1 | 54.4 | 3.6 | 1 | + | D |
27 | 72 | + | + | 58,203 | over *10 | NT | 2655 | 30 | 36.7 | 24.9 | 61.6 | 7.4 | 1 | NT | E |
28 | 55 | + | + | 2898 | over | NT | 1471 | 38.9 | 19.5 | 19.8 | 39.3 | 12.4 | 9.4 | NT | F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukada, F.; Takashima, S.; Wakihara, Y.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. Characterization of miRNAs in Milk Small Extracellular Vesicles from Enzootic Bovine Leukosis Cattle. Int. J. Mol. Sci. 2022, 23, 10782. https://doi.org/10.3390/ijms231810782
Tsukada F, Takashima S, Wakihara Y, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Characterization of miRNAs in Milk Small Extracellular Vesicles from Enzootic Bovine Leukosis Cattle. International Journal of Molecular Sciences. 2022; 23(18):10782. https://doi.org/10.3390/ijms231810782
Chicago/Turabian StyleTsukada, Fumi, Shigeo Takashima, Yoshiko Wakihara, Yuji O. Kamatari, Kaori Shimizu, Ayaka Okada, and Yasuo Inoshima. 2022. "Characterization of miRNAs in Milk Small Extracellular Vesicles from Enzootic Bovine Leukosis Cattle" International Journal of Molecular Sciences 23, no. 18: 10782. https://doi.org/10.3390/ijms231810782