COVID-19, Vaccination, and Female Fertility in the Czech Republic
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Study Group
4.3. Determination of Steroids
4.4. Determination of LH, FSH, SHBG, AMH, Anti-SARS-CoV-2 and Anti-SARS-CoV-2S
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toth-Manikowski, S.M.; Swirsky, E.S.; Gandhi, R.; Piscitello, G. COVID-19 vaccination hesitancy among health care workers, communication, and policy-making. Am. J. Infect. Control 2021, 50, 20–25. [Google Scholar] [CrossRef]
- Schaler, L.; Wingfield, M. COVID-19 vaccine-can it affect fertility? Ir. J. Med. Sci. 2021, 1–3. [Google Scholar] [CrossRef]
- Hillson, K.; Clemens, S.C.; Madhi, S.A.; Voysey, M.; Pollard, A.J.; Minassian, A.M. Fertility rates and birth outcomes after ChAdOx1 nCoV-19 (AZD1222) vaccination. Lancet 2021, 398, 1683–1684. [Google Scholar] [CrossRef]
- Stanovisko České Lékařské Společnosti (ČLS) Jana Evangelisty Purkyně (JEP); České Gynekologické a Porodnické Společnosti ČLS JEP. Očkování Proti Onemocnění COVID-19 u Těhotných a Kojících Žen. 2021. Available online: https://koronavirus.mzcr.cz/wp-content/uploads/2021/06/Stanovisko-k-očkován%C3%AD-proti-onemocněn%C3%AD-covid-19-u-těhotných-a-koj%C3%ADc%C3%ADch-žen.pdf (accessed on 11 September 2021).
- Han, A.R.; Lee, D.; Kim, S.K.; Choo, C.W.; Park, J.C.; Lee, J.R.; Choi, W.J.; Jun, J.H.; Rhee, J.H.; Kim, S.H.; et al. Effects and safety of COVID-19 vaccination on assisted reproductive technology and pregnancy: A comprehensive review and joint statements of the KSRM, the KSRI, and the KOSAR. Clin. Exp. Reprod. Med. 2022, 49, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Statement—COVID-19 Vaccination-Male and Female fertility, treatments to get pregnant, pregnancy. JBRA Assist. Reprod. 2022, 26, 197–198.
- Gonzalez, D.C.; Nassau, D.E.; Khodamoradi, K.; Ibrahim, E.; Blachman-Braun, R.; Ory, J.; Ramasamy, R. Sperm Parameters before and after COVID-19 mRNA Vaccination. JAMA 2021, 326, 273–274. [Google Scholar] [CrossRef]
- Chen, F.; Zhu, S.; Dai, Z.; Hao, L.; Luan, C.; Guo, Q.; Meng, C.; Zhang, Y. Effects of COVID-19 and mRNA vaccines on human fertility. Hum. Reprod. 2021, 37, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.S.; Feil, K.; Reiser, E.; Weiss, G.; von Steuben, T.; Pinggera, G.M.; Kohn, F.M.; Toth, B. Corona and Reproduction, or Why the Corona Vaccination Does Not Result in Infertility. Geburtshilfe Frauenheilkd 2022, 82, 490–500. [Google Scholar] [CrossRef]
- Mirza, S.A.; Sheikh, A.A.E.; Barbera, M.; Ijaz, Z.; Javaid, M.A.; Shekhar, R.; Pal, S.; Sheikh, A.B. COVID-19 and the Endocrine System: A Review of the Current Information and Misinformation. Infect. Dis. Rep. 2022, 14, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Markert, U.R.; Szekeres-Bartho, J.; Schleussner, E. Adverse effects on female fertility from vaccination against COVID-19 unlikely. J. Reprod. Immunol. 2021, 148, 103428. [Google Scholar] [CrossRef]
- Bentov, Y.; Beharier, O.; Moav-Zafrir, A.; Kabessa, M.; Godin, M.; Greenfield, C.S.; Ketzinel-Gilad, M.; Ash Broder, E.; Holzer, H.E.G.; Wolf, D.; et al. Ovarian follicular function is not altered by SARS-CoV-2 infection or BNT162b2 mRNA COVID-19 vaccination. Hum. Reprod. 2021, 36, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Galanis, P.; Vraka, I.; Katsiroumpa, A.; Siskou, O.; Konstantakopoulou, O.; Katsoulas, T.; Mariolis-Sapsakos, T.; Kaitelidou, D. First COVID-19 Booster Dose in the General Population: A Systematic Review and Meta-Analysis of Willingness and Its Predictors. Vaccines 2022, 10, 1097. [Google Scholar] [CrossRef]
- Doporučení ČLS JEP (ČVS). ČLS JEP (ČSAKI) a ČLS JEP (SEM) k Přeočkování a Aplikaci Dodatečných (Třetích) Dávek Vakcíny Proti Onemocnění COVID-19. 2021. Available online: https://www.infekce.cz/zprava21-45.htm (accessed on 11 September 2021).
- Jing, Y.; Li, R.-Q.; Wang, H.-R.; Chen, H.-R.; Liu, Y.-B.; Yang, G.; Fei, C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 2020, 26, 367–373. [Google Scholar] [CrossRef]
- Zupin, L.; Pascolo, L.; Zito, G.; Ricci, G.; Crovella, S. SARS-CoV-2 and the next generations: Which impact on reproductive tissues? J. Assist. Reprod. Genet. 2020, 37, 2399–2403. [Google Scholar] [CrossRef] [PubMed]
- Morelli, F.; Meirelles, L.E.F.; de Souza, M.V.F.; Mari, N.L.; Mesquita, C.S.S.; Dartibale, C.B.; Damke, G.; Damke, E.; da Silva, V.R.S.; Souza, R.P.; et al. COVID-19 Infection in the Human Reproductive Tract of Men and Nonpregnant Women. Am. J. Trop. Med. Hyg. 2021, 104, 814–825. [Google Scholar] [CrossRef]
- Madjunkov, M.; Dviri, M.; Librach, C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: A Canadian perspective. J. Ovarian Res. 2020, 13, 140. [Google Scholar] [CrossRef]
- Song, H.; Seddighzadeh, B.; Cooperberg, M.R.; Huang, F.W. Expression of ACE2, the SARS-CoV-2 receptor, and TMPRSS2 in prostate epithelial cells. Eur. Urol. 2020, 78, 296–298. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: Can testicular-adrenal crosstalk be ruled-out? J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20200205. [Google Scholar] [CrossRef]
- Lu, M.; Qiu, L.; Jia, G.; Guo, R.; Leng, Q. Single-cell expression profiles of ACE2 and TMPRSS2 reveals potential vertical transmission and fetus infection of SARS-CoV-2. Aging 2020, 12, 19880–19897. [Google Scholar] [CrossRef] [PubMed]
- Stanley, K.E.; Thomas, E.; Leaver, M.; Wells, D. Coronavirus disease-19 and fertility: Viral host entry protein expression in male and female reproductive tissues. Fertil. Steril. 2020, 114, 33–43. [Google Scholar] [CrossRef]
- Mollica, V.; Rizzo, A.; Massari, F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020, 16, 2029–2033. [Google Scholar] [CrossRef] [PubMed]
- Montopoli, M.; Zumerle, S.; Vettor, R.; Rugge, M.; Zorzi, M.; Catapano, C.V.; Carbone, G.M.; Cavalli, A.; Pagano, F.; Ragazzi, E.; et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: A population-based study (N = 4532). Ann. Oncol. 2020, 31, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, Q.; Ren, X.; Hu, J.; Li, Z.; Long, R.; Xi, Q.; Zhu, L.; Jin, L. Investigating the impact of asymptomatic or mild SARS-CoV-2 infection on female fertility and in vitro fertilization outcomes: A retrospective cohort study. eClinicalMedicine 2021, 38, 101013. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Gornet, M.; Sims, H.; Kisanga, E.; Knight, Z.; Segars, J. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its effect on gametogenesis and early pregnancy. Am. J. Reprod. Immunol. 2020, 84, e13351. [Google Scholar] [CrossRef] [PubMed]
- Knizatova, N.; Massanyi, M.; Roychoudhury, S.; Guha, P.; Greifova, H.; Tokarova, K.; Jambor, T.; Massanyi, P.; Lukac, N. Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility? Physiol. Res. 2021, 70 (Suppl. 2), S161–S175. [Google Scholar] [CrossRef]
- Freire Santana, M.; Borba, M.G.S.; Baia-da-Silva, D.C.; Val, F.; Alexandre, M.A.A.; Brito-Sousa, J.D.; Melo, G.C.; Queiroga, M.V.O.; Leao Farias, M.E.; Camilo, C.C.; et al. Case Report: Adrenal Pathology Findings in Severe COVID-19: An Autopsy Study. Am. J. Trop. Med. Hyg. 2020, 103, 1604–1607. [Google Scholar] [CrossRef]
- Orvieto, R.; Noach-Hirsh, M.; Segev-Zahav, A.; Haas, J.; Nahum, R.; Aizer, A. Does mRNA SARS-CoV-2 vaccine influence patients’ performance during IVF-ET cycle? Reprod. Biol. Endocrinol. 2021, 19, 69. [Google Scholar] [CrossRef]
- Bowman, C.J.; Bouressam, M.; Campion, S.N.; Cappon, G.D.; Catlin, N.R.; Cutler, M.W.; Diekmann, J.; Rohde, C.M.; Sellers, R.S.; Lindemann, C. Lack of effects on female fertility and prenatal and postnatal offspring development in rats with BNT162b2, a mRNA-based COVID-19 vaccine. Reprod. Toxicol. 2021, 103, 28–35. [Google Scholar] [CrossRef]
- Stebbings, R.; Maguire, S.; Armour, G.; Jones, C.; Goodman, J.; Maguire, A.K.; Tang, C.M.; Skellett, V.; Harris, J. Developmental and reproductive safety of AZD1222 (ChAdOx1 nCoV-19) in mice. Reprod. Toxicol. 2021, 104, 134–142. [Google Scholar] [CrossRef]
- Mohr-Sasson, A.; Haas, J.; Abuhasira, S.; Sivan, M.; Doitch Amdurski, H.; Dadon, T.; Blumenfeld, S.; Derazne, E.; Hemi, R.; Orvieto, R.; et al. The effect of COVID-19 mRNA vaccine on serum anti-Mullerian hormone levels. Hum. Reprod. 2022, 37, 534–541. [Google Scholar] [CrossRef]
- Kolanska, K.; Hours, A.; Jonquiere, L.; Mathieu d’Argent, E.; Dabi, Y.; Dupont, C.; Touboul, C.; Antoine, J.M.; Chabbert-Buffet, N.; Darai, E. Mild COVID-19 infection does not alter the ovarian reserve in women treated with ART. Reprod. Biomed. Online 2021, 43, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, A.F.; Zaami, S.; Pallottini, M.; Perelli, F.; Vidiri, A.; Marinelli, E.; Straface, G.; Signore, F.; Scambia, G.; Marchi, L. Flu and Tdap Maternal Immunization Hesitancy in Times of COVID-19: An Italian Survey on Multiethnic Sample. Vaccines 2021, 9, 1107. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, A.F.; Marchi, L.; Aquilini, D.; Brunelli, T.; Vasarri, P.L. Passive immunity in newborn from SARS-CoV-2-infected mother. J. Med. Virol. 2021, 93, 1810–1813. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, A.F.; Carabaneanu, A.I.; Perelli, F.; Matarrese, D.; Brunelli, T.; Casprini, P.; Vasarri, P.L. Universal screening for SARS-CoV-2 in pregnant women admitted for delivery: How to manage antibody testing? J. Mattern. Fetal Neonatal Med. 2022, 35, 3005–3006. [Google Scholar] [CrossRef]
- Castiglione Morelli, M.A.; Iuliano, A.; Schettini, S.C.A.; Ferri, A.; Colucci, P.; Viggiani, L.; Matera, I.; Ostuni, A. Are the Follicular Fluid Characteristics of Recovered Coronavirus Disease 2019 Patients Different from Those of Vaccinated Women Approaching in vitro Fertilization? Front. Physiol. 2022, 13, 840109. [Google Scholar] [CrossRef]
- Odeh-Natour, R.; Shapira, M.; Estrada, D.; Freimann, S.; Tal, Y.; Atzmon, Y.; Bilgory, A.; Aslih, N.; Abu-Raya, Y.S.; Shalom-Paz, E. Does mRNA SARS-CoV-2 vaccine in the follicular fluid impact follicle and oocyte performance in IVF treatments? Am. J. Reprod. Immunol. 2022, 87, e13530. [Google Scholar] [CrossRef]
- Cui, J.; Shen, Y.; Li, R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med. 2013, 19, 197–209. [Google Scholar] [CrossRef]
- Findlay, J.K.; Liew, S.H.; Simpson, E.R.; Korach, K.S. Estrogen signaling in the regulation of female reproductive functions. Handb. Exp. Pharmacol. 2010, 198, 29–35. [Google Scholar]
- Li, K.; Chen, G.; Hou, H.; Liao, Q.; Chen, J.; Bai, H.; Lee, S.; Wang, C.; Li, H.; Cheng, L.; et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod. Biomed. Online 2021, 42, 260–267. [Google Scholar] [CrossRef]
- Cattrini, C.; Bersanelli, M.; Latocca, M.M.; Conte, B.; Vallome, G.; Boccardo, F. Sex Hormones and Hormone Therapy during COVID-19 Pandemic: Implications for Patients with Cancer. Cancers 2020, 12, 2325. [Google Scholar] [CrossRef]
- Traish, A.M. Sex steroids and COVID-19 mortality in women. Trends Endocrinol. Metab. 2021, 32, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Smetana, K.; Jakubek, M.; Drábek, J. Chrání estrogeny před těžkým průběhem COVID-19? Vesmír 2021, 100, 596. [Google Scholar]
- Sundstrom-Poromaa, I.; Comasco, E.; Sumner, R.; Luders, E. Progesterone-Friend or foe? Front. Neuroendocrinol. 2020, 59, 100856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nadeau, M.; Faucher, F.; Lescelleur, O.; Biron, S.; Daris, M.; Rheaume, C.; Luu-The, V.; Tchernof, A. Progesterone metabolism in adipose cells. Mol. Cell. Endocrinol. 2009, 298, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Rossato, M.; Nogara, A.; Merico, M.; Ferlin, A.; Foresta, C. Identification of functional binding sites for progesterone in rat Leydig cell plasma membrane. Steroids 1999, 64, 168–175. [Google Scholar] [CrossRef]
- Anderson, G.D.; Odegard, P.S. Pharmacokinetics of estrogen and progesterone in chronic kidney disease. Adv. Chronic Kidney Dis. 2004, 11, 357–360. [Google Scholar] [CrossRef]
- Kancheva, R.; Hill, M.; Cibula, D.; Vcelakova, H.; Kancheva, L.; Vrbikova, J.; Fait, T.; Parizek, A.; Starka, L. Relationships of circulating pregnanolone isomers and their polar conjugates to the status of sex, menstrual cycle, and pregnancy. J. Endocrinol. 2007, 195, 67–78. [Google Scholar] [CrossRef]
- Hill, M.; Cibula, D.; Havlikova, H.; Kancheva, L.; Fait, T.; Kancheva, R.; Parizek, A.; Starka, L. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 2007, 105, 166–175. [Google Scholar] [CrossRef]
- Hirst, J.J.; Kelleher, M.A.; Walker, D.W.; Palliser, H.K. Neuroactive steroids in pregnancy: Key regulatory and protective roles in the foetal brain. J. Steroid Biochem. Mol. Biol. 2014, 139, 144–153. [Google Scholar] [CrossRef]
- Duarte-Neto, A.N.; Monteiro, R.A.A.; da Silva, L.F.F.; Malheiros, D.; de Oliveira, E.P.; Theodoro-Filho, J.; Pinho, J.R.R.; Gomes-Gouvea, M.S.; Salles, A.P.M.; de Oliveira, I.R.S.; et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology 2020, 77, 186–197. [Google Scholar] [CrossRef]
- Stárka, L.; Dušková, M. Androgeny v nákaze koronavirem SARS-CoV-2. Diabetol. Metab. Endokrinol. Vyziv. 2021, 2, 74–77. [Google Scholar]
- Male, V. Menstrual changes after COVID-19 vaccination. BMJ 2021, 374, n2211. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Hosono, A. No association between HPV vaccine and reported post-vaccination symptoms in Japanese young women: Results of the Nagoya study. Papillomavirus Res. 2018, 5, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Monin, L.; Whettlock, E.M.; Male, V. Immune responses in the human female reproductive tract. Immunology 2020, 160, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.M.; Shilen, A.; Heslin, K.M.; Ishimwe, P.; Allen, A.M.; Jacobs, E.T.; Farland, L.V. SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study. Am. J. Obstet. Gynecol. 2022, 226, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Kolatorova Sosvorova, L.; Chlupacova, T.; Vitku, J.; Vlk, M.; Heracek, J.; Starka, L.; Saman, D.; Simkova, M.; Hampl, R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta 2017, 174, 21–28. [Google Scholar] [CrossRef]
- Simkova, M.; Kolatorova, L.; Drasar, P.; Vitku, J. An LC-MS/MS method for the simultaneous quantification of 32 steroids in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1201–1202, 123294. [Google Scholar] [CrossRef]
- Vitku, J.; Chlupacova, T.; Sosvorova, L.; Hampl, R.; Hill, M.; Heracek, J.; Bicikova, M.; Starka, L. Development and validation of LC-MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid. Talanta 2015, 140, 62–67. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
Characteristics | n (%) | Characteristics | n (%) |
---|---|---|---|
COVID-19 vaccine manufacturer-1st and 2nd dose | COVID-19 infection before vaccination | ||
Pfizer/BioNTech | 22 (88) | Yes-all mild disease course | 6 (24) |
Moderna | 3 (12) | No | 19 (76) |
Reaction after the 1st dose of vaccine | MC changes after the 1st dose of vaccine | ||
Fatigue | 7 (28) | MC shortening | 1 (4) |
Injection site pain | 14 (56) | MC prolongation | 1 (4) |
Elevated temperature | 1 (4) | Bleeding out of the cycle | 0 (0) |
Headache | 2 (8) | Headache | 0 (0) |
Chills | 0 (0) | Premenstrual syndrome | 0 (0) |
Vertigo | 0 (0) | Ovulation pain | 0 (0) |
None | 8 (32) | None | 23 (92) |
Reaction after the 2nd dose of vaccine | MC changes after the 2nd dose of vaccine | ||
Fatigue | 16 (64) | MC shortening | 1 (4) |
Injection site pain | 12 (48) | MC prolongation | 1 (4) |
Elevated temperature | 3 (48) | Bleeding out of the cycle | 0 (0) |
Headache | 5 (20) | Headache | 0 (0) |
Chills | 1 (4) | Premenstrual syndrome | 0 (0) |
Vertigo | 1 (4) | Ovulation pain | 0 (0) |
None | 8 (32) | None | 23 (92) |
COVID-19 vaccine manufacturer-3rd dose | COVID-19 infection during the study | ||
Pfizer/BioNTech | 15 (60) | Yes-all mild disease course | 6 (24) (4 Omicron) |
Moderna | 10 (40) | No | 19 (76) |
Reaction after the 3rd dose of vaccine | MC after the 3rd dose of vaccine | ||
Fatigue | 12 (48) | MC shortening | 2 (8) |
Injection site pain | 15 (60) | MC prolongation | 5 (20) |
Elevated temperature | 3 (12) | Bleeding out of the cycle | 1 (4) |
Headache | 4 (16) | Headache | 0 (0) |
Chills | 0 (0) | Premenstrual syndrome | 0 (0) |
Vertigo | 0 (0) | Ovulation pain | 0 (0) |
None | 5 (20) | None | 16 (64) |
Analyte (Steroids in ng/mL) | Before the 3rd Dose of COVID-19 Vaccine | After the 3rd Dose of COVID-19 Vaccine | p-Value |
---|---|---|---|
Estrone | 0.035 (0.029, 0.046) | 0.0375 (0.031, 0.044) | 0.424 |
Estradiol | 0.024 (0.021, 0.032) | 0.0299 (0.023, 0.040) | 0.424 |
Estriol | 0.003 (0.001, 0.005) | 0.004 (0.002, 0.007) | 0.23 |
Progesterone | 0.097 (0.052, 0.146) | 0.103 (0.063, 0.132) | 0.838 |
17-OH-Progesterone | 0.315 (0.283, 0.446) | 0.396 (0.268, 0.556) | 0.214 |
5α-Dihydroprogesterone | 0.656 (0.346, 1.106) | 0.696 (0.396, 1.611) | 0.831 |
Pregnenolone | 0.928 (0.755, 1.291) | 0.97 (0.620, 1.708) | 0.953 |
17-OH-Pregnenolone | 1.322 (0.888, 2.320) | 1.137 (0.522, 2.527) | 0.838 |
DHEA | 6.807 (4.071, 9.248) | 5.114 (3.900, 9.404) | 0.689 |
7α-OH-DHEA | 0.252 (0.115, 0.376) | 0.188 (0.115, 0.382) | 0.359 |
7β-OH-DHEA | 0.092 (0.067, 0.115) | 0.079 (0.060, 0.132) | 0.383 |
7-oxo-DHEA | 0.032 (0.024, 0.055) | 0.028 (0.024, 0.068) | 0.264 |
Testosterone | 0.224 (0.166, 0.263) | 0.215 (0.176, 0.266) | 0.368 |
DHT | 0.078 (0.058, 0.096) | 0.077 (0.054, 0.121) | 0.689 |
Androstenedione | 0.89 (0.646, 1.045) | 0.793 (0.669, 1.219) | 0.424 |
11β-OH-Androstenedione | 1.21 (0.899, 1.702) | 1.01 (0.738, 1.532) | 0.23 |
11-OH-Testosterone | 0.135 (0.112, 0.166) | 0.127 (0.091, 0.174) | 0.54 |
11-Keto-testosterone | 0.307 (0.224, 0.395) | 0.318 (0.208, 0.405) | 0.525 |
Cortisol | 144 (128, 153) | 131 (114, 167) | 0.424 |
Cortisone | 29.9 (26, 34.8) | 27.5 (23.0, 35.7) | 0.935 |
Corticosterone | 2.404 (1.440, 4.007) | 2.038 (1.634, 3.646) | 0.4 |
11-Deoxycortisol | 0.339 (0.217, 0.451) | 0.311 (0.190, 0.479) | 0.567 |
21-Deoxycortisol | 0.026 (0.017, 0.049) | 0.029 (0.012, 0.055) | 0.831 |
11-Deoxycorticosterone | 0.035 (0.026, 0.053) | 0.043 (0.025, 0.057) | 0.831 |
LH (IU/L) | 6.36 (4.80, 7.42) | 6.11 (5.70, 7.50) | 0.424 |
FSH (IU/L) | 6.2 (5.8, 8.6) | 6.49 (5.045, 8.660) | 0.424 |
SHBG (nmol/L) | 67.4 (49.7, 105.3) | 70.17 (56.76, 97.50) | 0.75 |
AMH (ng/mL) | 3.25 (1.46, 5.09) | 3.03 (1.68, 5.04) | 0.689 |
AFC | 23 (19.5, 28.75) | 24 (21.50, 28.75) | 0.19 |
Characteristics | n (%) | Characteristics | n (%) |
---|---|---|---|
Age (years) | BMI | ||
<25 | 6 (24) | <18.5 | 2 (8) |
25–35 | 13 (52) | 18.5–25 | 15 (60) |
>35 | 6 (24) | >25 | 8 (32) |
Mean (±STD) | 30(6.8) | Mean (±STD) | 24.1 (5.3) |
Average length of MC | First MC | ||
<26 | 2 (8) | <11 | 2 (8) |
26–30 | 17 (68) | 11–13 | 18 (72) |
>30 | 6 (24) | >13 | 5 (20) |
Mean (±STD) | 28.8 (2.8) | Mean (±STD) | 12.5 (1.4) |
Smoking | Alcohol | ||
Yes | 2 (8) | Regularly | 2 (8) |
No | 19 (76) | Occasionally | 21 (84) |
In the past | 4 (16) | None | 2 (8) |
Eating habits | Physical activity | ||
Common | 19 (76) | Common | 16 (64) |
Vegetarian/vegan | 3 (12) | Fitness sport | 7 (28) |
Intermittent fasting | 2 (8) | Competitive sport | 2 (8) |
Diets | 1 (4) | ||
Contraception in the past | Pregnancy in the past | ||
Yes | 15 (60) | Yes | 4 (16) |
No | 10 (40) | −3 women have children | |
No | 21 (84) |
Method | Units | Measuring Range | Limit of Detection | Reference Range/ Data Interpretation |
---|---|---|---|---|
Elecsys®LH | IU/L | 0.100–200 | 0.1 | women in follicular phase: 2.4–12.6 |
Elecsys®FSH | IU/L | 0.100–200 | <0.100 | women in follicular phase: 3.5–12.5 |
Elecsys®AMH | ng/mL | 0.01–23 | 0.01 | women 20–24 years: 1.22–11.7 women 25–29 years: 0.890–9.85 women 30–34 years: 0.576–8.13 women 35–39 years 0.147–7.49 women 40–44 years: 0.027–5.47 |
Elecsys®SHBG | nmol/L | 0.350–200 | 0.35 | 43–95 |
Elecsys®Anti-SARS-CoV-2 | COI | qualitative | 99.5% of specificity | ≥1.0 indicates positive |
Elecsys®Anti-SARS-CoV-2 S | U/mL | 0.40–250 | 0.35 | ≥0.8 indicates positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolatorova, L.; Adamcova, K.; Vitku, J.; Horackova, L.; Simkova, M.; Hornova, M.; Vosatkova, M.; Vaisova, V.; Parizek, A.; Duskova, M. COVID-19, Vaccination, and Female Fertility in the Czech Republic. Int. J. Mol. Sci. 2022, 23, 10909. https://doi.org/10.3390/ijms231810909
Kolatorova L, Adamcova K, Vitku J, Horackova L, Simkova M, Hornova M, Vosatkova M, Vaisova V, Parizek A, Duskova M. COVID-19, Vaccination, and Female Fertility in the Czech Republic. International Journal of Molecular Sciences. 2022; 23(18):10909. https://doi.org/10.3390/ijms231810909
Chicago/Turabian StyleKolatorova, Lucie, Karolina Adamcova, Jana Vitku, Lenka Horackova, Marketa Simkova, Marketa Hornova, Michala Vosatkova, Veronika Vaisova, Antonin Parizek, and Michaela Duskova. 2022. "COVID-19, Vaccination, and Female Fertility in the Czech Republic" International Journal of Molecular Sciences 23, no. 18: 10909. https://doi.org/10.3390/ijms231810909
APA StyleKolatorova, L., Adamcova, K., Vitku, J., Horackova, L., Simkova, M., Hornova, M., Vosatkova, M., Vaisova, V., Parizek, A., & Duskova, M. (2022). COVID-19, Vaccination, and Female Fertility in the Czech Republic. International Journal of Molecular Sciences, 23(18), 10909. https://doi.org/10.3390/ijms231810909