Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis?
Abstract
:1. Introduction
2. Results
2.1. Production and Purification of RNase A Oligomers
2.2. RNase A Oligomers Characterized by the Swapping of at Least One N-Termini’s Couple Produce Very High MW Species upon 4 °C Long-Term Storage
2.3. The UV-Vis Spectra of SAs Are Altered with Respect to RNase A Monomer and Oligomers
RNase A Species | M.W. (Da) | SEC Elut. Vol. ± SD (mL) * | “Kunitz” Activity ** | A260/A280 |
---|---|---|---|---|
Monomer (M) | 13,686 | 13.80 ± 0.04 | 100 | 0.414/0.795 = 0.52 |
RNase S | 13,686 | 13.68 ± 0.09 | See [35] | N.D. *** |
S-protein | 11,540 | 14.11 ± 0.05 | N.D. *** | N.D. *** |
N-dimer (ND) | 27,372 **** | 12.56 ± 0.07 | See [9,14] | 0.332/0.425 = 0.78 |
C-dimer (CD) | 27,372 **** | 12.21 ± 0.08 | See [9,14] | 0.256/0.451 = 0.57 |
NC-trimer (NCT) | 41,058 **** | 11.78 ± 0.05 | See [9,20] | N.D. *** |
C-trimer (CT) | 41,058 **** | 11.78 ± 0.05 | See [9,20] | N.D. *** |
SA-1 | N.D. *** | 6.22 ± 0.12 | 6.4 ± 0.9 | 0.147/0.116 = 1.27 |
SA-2 | N.D. *** | 6.90 ± 0.08 | 9.5 ± 0.6 | 0.187/0.145 = 1.29 |
SA-3 | N.D. *** | 7.21 ± 0.10 | 12.4 ± 1.3 | 0.123/0.102 = 1.21 |
2.4. Do SAs Actually Derive from Oligomers of Unaffected RNase A?
2.5. S-Peptide/S-Protein Analyses Exclude That SAs Derive from RNase A S-Peptide
2.6. SAs Retain Low Enzymatic Activity
2.7. SAs Are Partially Resistant to Heat while Immunoblotting Confirms They Are RNase A Derivatives
2.8. Thioflavin-T (ThT) Fluorescence Emission Indicates That SAs Are Large Aggregates Not Fibrils
2.9. Transmission Electron Microscopy (TEM) Indicates SAs Are Circular, Very Large Aggregates
2.10. Kinetics Evaluation of RNase A SAs’ Formation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. RNase A Oligomerization and Storage of the Purified Oligomers
4.3. Chromatographic Isolation of RNase A “Super Aggregates” (SAs)
4.4. Preliminary Characterization of SAs
4.5. Estimation of SAs Enzymatic Activity
4.6. Non-Denaturing Cathodic PAGE
4.7. Western Blot Analysis
4.8. Thioflavin-T (ThT) Assays
4.9. Investigations with Transmission Electron Microscopy (TEM)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahnert, S.E.; Marsh, J.A.; Hernandez, H.; Robinson, C.V.; Teichmann, S.A. Principles of assembly reveal a periodic table of protein complexes. Science 2015, 350, aaa2245. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell 2012, 148, 1188–1203. [Google Scholar] [CrossRef] [PubMed]
- McPartland, L.; Heller, D.M.; Eisenberg, D.S.; Hochschild, A.; Sawaya, M.R. Atomic insights into the genesis of cellular filaments by globular proteins. Nat. Struct. Mol. Biol. 2018, 25, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Schlunegger, M.P.; Eisenberg, D. 3D domain swapping: A mechanism for oligomer assembly. Protein Sci. 1995, 4, 2455–2468. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Sawaya, M.R.; Eisenberg, D. Deposition diseases and 3D domain swapping. Structure 2006, 14, 811–824. [Google Scholar] [CrossRef]
- Gronenborn, A.M. Protein acrobatics in pairs--dimerization via domain swapping. Curr. Opin. Struct. Biol. 2009, 19, 39–49. [Google Scholar] [CrossRef]
- Sorrentino, S.; Libonati, M. Human pancreatic-type and nonpancreatic-type ribonucleases: A direct side-by-side comparison of their catalytic properties. Arch. Biochem. Biophys. 1994, 312, 340–348. [Google Scholar] [CrossRef]
- Marzotto, A.; Galzigna, L. Molecular aggregation of bovine pancreatic ribonuclease induced by substrate. Arch. Biochem. Biophys. 1970, 137, 373–378. [Google Scholar] [CrossRef]
- Libonati, M.; Gotte, G. Oligomerization of bovine ribonuclease A: Structural and functional features of its multimers. Biochem. J. 2004, 380 Pt 2, 311–327. [Google Scholar] [CrossRef]
- Gotte, G.; Laurents, D.V.; Libonati, M. Three-dimensional domain-swapped oligomers of ribonuclease A: Identification of a fifth tetramer, pentamers and hexamers, and detection of trace heptameric, octameric and nonameric species. Biochim. Biophys. Acta 2006, 1764, 44–54. [Google Scholar] [CrossRef]
- Cozza, G.; Moro, S.; Gotte, G. Elucidation of the ribonuclease a aggregation process mediated by 3D domain swapping: A computational approach reveals possible new multimeric structures. Biopolymers 2008, 89, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Crestfield, A.M.; Stein, W.H.; Moore, S. On the aggregation of bovine pancreatic ribonuclease. Arch. Biochem. Biophys. 1962, (Suppl. S1), 217–222. [Google Scholar]
- Gotte, G.; Vottariello, F.; Libonati, M. Thermal aggregation of ribonuclease A. A contribution to the understanding of the role of 3D domain swapping in protein aggregation. J. Biol. Chem. 2003, 278, 10763–10769. [Google Scholar] [CrossRef] [PubMed]
- Montioli, R.; Campagnari, R.; Fasoli, S.; Fagagnini, A.; Caloiu, A.; Smania, M.; Menegazzi, M.; Gotte, G. RNase A Domain-Swapped Dimers Produced Through Different Methods: Structure-Catalytic Properties and Antitumor Activity. Life 2021, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hart, P.J.; Schlunegger, M.P.; Eisenberg, D. The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. Proc. Natl. Acad. Sci. USA 1998, 95, 3437–3442. [Google Scholar] [CrossRef]
- Liu, Y.; Gotte, G.; Libonati, M.; Eisenberg, D. A domain-swapped RNase A dimer with implications for amyloid formation. Nat. Struct. Biol. 2001, 8, 211–214. [Google Scholar] [CrossRef]
- Liu, Y.; Gotte, G.; Libonati, M.; Eisenberg, D. Structures of the two 3D domain-swapped RNase A trimers. Protein Sci. 2002, 11, 371–380. [Google Scholar] [CrossRef]
- Nenci, A.; Gotte, G.; Bertoldi, M.; Libonati, M. Structural properties of trimers and tetramers of ribonuclease A. Protein Sci. 2001, 10, 2017–2027. [Google Scholar] [CrossRef]
- Liu, Y.; Eisenberg, D. 3D domain swapping: As domains continue to swap. Protein Sci. 2002, 11, 1285–1299. [Google Scholar] [CrossRef]
- Gotte, G.; Bertoldi, M.; Libonati, M. Structural versatility of bovine ribonuclease A. Distinct conformers of trimeric and tetrameric aggregates of the enzyme. Eur. J. Biochem. 1999, 265, 680–687. [Google Scholar] [CrossRef]
- Gotte, G.; Donadelli, M.; Laurents, D.V.; Vottariello, F.; Morbio, M.; Libonati, M. Increase of RNase a N-terminus polarity or C-terminus apolarity changes the two domains’ propensity to swap and form the two dimeric conformers of the protein. Biochemistry 2006, 45, 10795–10806. [Google Scholar] [CrossRef] [PubMed]
- Gotte, G.; Libonati, M.; Laurents, D.V. Glycosylation and specific deamidation of ribonuclease B affect the formation of three-dimensional domain-swapped oligomers. J. Biol. Chem. 2003, 278, 46241–46251. [Google Scholar] [CrossRef] [PubMed]
- Fagagnini, A.; Montioli, R.; Caloiu, A.; Ribo, M.; Laurents, D.V.; Gotte, G. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping. Biochim. Biophys. Acta 2017, 1865, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, L.; Teng, P.K.; Riek, R.; Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 2010, 107, 3487–3492. [Google Scholar] [CrossRef]
- Noji, M.; Samejima, T.; Yamaguchi, K.; So, M.; Yuzu, K.; Chatani, E.; Akazawa-Ogawa, Y.; Hagihara, Y.; Kawata, Y.; Ikenaka, K.; et al. Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun. Biol. 2021, 4, 120. [Google Scholar] [CrossRef]
- Teng, P.K.; Anderson, N.J.; Goldschmidt, L.; Sawaya, M.R.; Sambashivan, S.; Eisenberg, D. Ribonuclease A suggests how proteins self-chaperone against amyloid fiber formation. Protein Sci. 2012, 21, 26–37. [Google Scholar] [CrossRef]
- Sambashivan, S.; Liu, Y.; Sawaya, M.R.; Gingery, M.; Eisenberg, D. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 2005, 437, 266–269. [Google Scholar] [CrossRef]
- Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C.M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416, 507–511. [Google Scholar] [CrossRef]
- Pepys, M.B. Amyloidosis. Annu Rev Med 2006, 57, 223–241. [Google Scholar] [CrossRef]
- Fandrich, M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell. Mol. Life Sci. 2007, 64, 2066–2078. [Google Scholar] [CrossRef]
- Glabe, C.G. Structural classification of toxic amyloid oligomers. J. Biol. Chem. 2008, 283, 29639–29643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fandrich, M. Oligomeric intermediates in amyloid formation: Structure determination and mechanisms of toxicity. J. Mol. Biol. 2012, 421, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid nomenclature 2018: Recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2018, 25, 215–219. [Google Scholar] [CrossRef]
- Gotte, G.; Libonati, M. Two different forms of aggregated dimers of ribonuclease A. Biochim. Biophys. Acta 1998, 1386, 106–112. [Google Scholar] [CrossRef]
- Lopez-Alonso, J.P.; Bruix, M.; Font, J.; Ribo, M.; Vilanova, M.; Rico, M.; Gotte, G.; Libonati, M.; Gonzalez, C.; Laurents, D.V. Formation, structure, and dissociation of the ribonuclease S three-dimensional domain-swapped dimer. J. Biol. Chem. 2006, 281, 9400–9406. [Google Scholar] [CrossRef]
- Lopez-Alonso, J.P.; Gotte, G.; Laurents, D.V. Kinetic analysis provides insight into the mechanism of ribonuclease A oligomer formation. Arch. Biochem. Biophys. 2009, 489, 41–47. [Google Scholar] [CrossRef]
- Vottariello, F.; Giacomelli, E.; Frasson, R.; Pozzi, N.; De Filippis, V.; Gotte, G. RNase A oligomerization through 3D domain swapping is favoured by a residue located far from the swapping domains. Biochimie 2011, 93, 1846–1857. [Google Scholar] [CrossRef] [PubMed]
- Morgado, I.; Wieligmann, K.; Bereza, M.; Ronicke, R.; Meinhardt, K.; Annamalai, K.; Baumann, M.; Wacker, J.; Hortschansky, P.; Malesevic, M.; et al. Molecular basis of beta-amyloid oligomer recognition with a conformational antibody fragment. Proc. Natl. Acad. Sci. USA 2012, 109, 12503–12508. [Google Scholar] [CrossRef]
- Gotte, G.; Libonati, M. Oligomerization of ribonuclease A: Two novel three-dimensional domain-swapped tetramers. J. Biol. Chem. 2004, 279, 36670–36679. [Google Scholar] [CrossRef]
- Kunitz, M. A spectrophotometric method for the measurement of ribonuclease activity. J. Biol. Chem. 1946, 164, 563–568. [Google Scholar] [CrossRef]
- Richards, F.M.; Vithayathil, P.J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J. Biol. Chem. 1959, 234, 1459–1465. [Google Scholar] [CrossRef]
- Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.; McFarlane, H.T.; et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007, 447, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Nenci, A.; Gotte, G.; Maras, B.; Libonati, M. Different susceptibility of the two dimers of ribonuclease A to subtilisin. Implications for their structure. Biochim. Biophys. Acta 2001, 1545, 255–262. [Google Scholar] [CrossRef]
- Goldenberg, D.P. Analysis of Protein Conformation by Gel Electrophoresis; Information Press Ltd. (IRL): Oxford, UK, 1989; p. 26. [Google Scholar]
- Teng, P.K.; Eisenberg, D. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng. Des. Sel. 2009, 22, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, M.; Makabe, K.; Koide, A.; Koide, S. Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J. Mol. Biol. 2009, 385, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Kayed, R.; Pensalfini, A.; Margol, L.; Sokolov, Y.; Sarsoza, F.; Head, E.; Hall, J.; Glabe, C. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J. Biol. Chem. 2009, 284, 4230–4237. [Google Scholar] [CrossRef] [PubMed]
- Westermark, P.; Benson, M.D.; Buxbaum, J.N.; Cohen, A.S.; Frangione, B.; Ikeda, S.; Masters, C.L.; Merlini, G.; Saraiva, M.J.; Sipe, J.D. A primer of amyloid nomenclature. Amyloid 2007, 14, 179–183. [Google Scholar] [CrossRef]
- Sawaya, M.R.; Hughes, M.P.; Rodriguez, J.A.; Riek, R.; Eisenberg, D.S. The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell 2021, 184, 4857–4873. [Google Scholar] [CrossRef]
- Gotte, G.; Laurents, D.V.; Merlino, A.; Picone, D.; Spadaccini, R. Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: New scaffolds for potential antitumor drugs. FEBS Lett. 2013, 587, 3601–3608. [Google Scholar] [CrossRef]
- Mompean, M.; Hervas, R.; Xu, Y.; Tran, T.H.; Guarnaccia, C.; Buratti, E.; Baralle, F.; Tong, L.; Carrion-Vazquez, M.; McDermott, A.E.; et al. Structural Evidence of Amyloid Fibril Formation in the Putative Aggregation Domain of TDP-43. J. Phys. Chem. Lett. 2015, 6, 2608–2615. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mompean, M.; Buratti, E.; Guarnaccia, C.; Brito, R.M.; Chakrabartty, A.; Baralle, F.E.; Laurents, D.V. Structural characterization of the minimal segment of TDP-43 competent for aggregation. Arch. Biochem. Biophys. 2014, 545, 53–62. [Google Scholar] [CrossRef]
- Guo, Z.; Eisenberg, D. Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proc. Natl. Acad. Sci. USA 2006, 103, 8042–8047. [Google Scholar] [CrossRef] [PubMed]
- Wahlbom, M.; Wang, X.; Lindstrom, V.; Carlemalm, E.; Jaskolski, M.; Grubb, A. Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J. Biol. Chem. 2007, 282, 18318–18326. [Google Scholar] [CrossRef] [PubMed]
- Elam, J.S.; Taylor, A.B.; Strange, R.; Antonyuk, S.; Doucette, P.A.; Rodriguez, J.A.; Hasnain, S.S.; Hayward, L.J.; Valentine, J.S.; Yeates, T.O.; et al. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat. Struct. Biol. 2003, 10, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Neira, J.L.; Sevilla, P.; Menendez, M.; Bruix, M.; Rico, M. Hydrogen exchange in ribonuclease A and ribonuclease S: Evidence for residual structure in the unfolded state under native conditions. J. Mol. Biol. 1999, 285, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, S.; Piccoli, R.; Sica, F.; Mazzarella, L. BS-RNase tetramers: An example of domain-swapped oligomers. FEBS Lett. 1996, 398, 326–332. [Google Scholar] [CrossRef]
- Russo, N.; Antignani, A.; D’Alessio, G. In vitro evolution of a dimeric variant of human pancreatic ribonuclease. Biochemistry 2000, 39, 3585–3591. [Google Scholar] [CrossRef]
- Canals, A.; Pous, J.; Guasch, A.; Benito, A.; Ribo, M.; Vilanova, M.; Coll, M. The structure of an engineered domain-swapped ribonuclease dimer and its implications for the evolution of proteins toward oligomerization. Structure 2001, 9, 967–976. [Google Scholar] [CrossRef]
- Pica, A.; Merlino, A.; Buell, A.K.; Knowles, T.P.; Pizzo, E.; D’Alessio, G.; Sica, F.; Mazzarella, L. Three-dimensional domain swapping and supramolecular protein assembly: Insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase. Acta Crystallogr. D Biol. Crystallogr. 2013, 69 Pt 10, 2116–2123. [Google Scholar] [CrossRef]
- Gotte, G.; Menegazzi, M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front. Immunol. 2019, 10, 2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasoli, S.; Bettin, I.; Montioli, R.; Fagagnini, A.; Peterle, D.; Laurents, D.V.; Gotte, G. Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 10068. [Google Scholar] [CrossRef] [PubMed]
- Gotte, G.; Campagnari, R.; Loreto, D.; Bettin, I.; Calzetti, F.; Menegazzi, M.; Merlino, A. The crystal structure of the domain-swapped dimer of onconase highlights some catalytic and antitumor activity features of the enzyme. Int. J. Biol. Macromol. 2021, 191, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Janowski, R.; Kozak, M.; Jankowska, E.; Grzonka, Z.; Grubb, A.; Abrahamson, M.; Jaskolski, M. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Struct. Biol. 2001, 8, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Knaus, K.J.; Morillas, M.; Swietnicki, W.; Malone, M.; Surewicz, W.K.; Yee, V.C. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 2001, 8, 770–774. [Google Scholar] [CrossRef]
- Eakin, C.M.; Attenello, F.J.; Morgan, C.J.; Miranker, A.D. Oligomeric assembly of native-like precursors precedes amyloid formation by beta-2 microglobulin. Biochemistry 2004, 43, 7808–7815. [Google Scholar] [CrossRef]
- Liu, C.; Sawaya, M.R.; Eisenberg, D. β(2)-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat. Struct. Mol. Biol. 2011, 18, 49–55. [Google Scholar] [CrossRef]
- Murray, K.A.; Hu, C.J.; Griner, S.L.; Pan, H.; Bowler, J.T.; Abskharon, R.; Rosenberg, G.M.; Cheng, X.; Seidler, P.M.; Eisenberg, D.S. De novo designed protein inhibitors of amyloid aggregation and seeding. Proc. Natl. Acad. Sci. USA 2022, 119, e2206240119. [Google Scholar] [CrossRef]
- Kolodziejczyk, R.; Michalska, K.; Hernandez-Santoyo, A.; Wahlbom, M.; Grubb, A.; Jaskolski, M. Crystal structure of human cystatin C stabilized against amyloid formation. FEBS J. 2010, 277, 1726–1737. [Google Scholar] [CrossRef]
- Wang, D.; Moore, S. Polyspermine-ribonuclease prepared by cross-linkage with dimethyl suberimidate. Biochemistry 1977, 16, 2937–2942. [Google Scholar] [CrossRef]
- De Lorenzo, C.; Nigro, A.; Piccoli, R.; D’Alessio, G. A new RNase-based immunoconjugate selectively cytotoxic for ErbB2-overexpressing cells. FEBS Lett. 2002, 516, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Naiki, H.; Higuchi, K.; Hosokawa, M.; Takeda, T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal. Biochem. 1989, 177, 244–249. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, P.K.; Kumbhakar, M.; Mukherjee, T.; Chattopadyay, S.; Pal, H.; Nath, S. Identifying the bond responsible for the fluorescence modulation in an amyloid fibril sensor. Chemistry 2010, 16, 9257–9263. [Google Scholar] [CrossRef] [PubMed]
- LeVine, H., 3rd; Thioflavine, T. interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993, 2, 404–410. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotte, G.; Butturini, E.; Bettin, I.; Noro, I.; Mahmoud Helmy, A.; Fagagnini, A.; Cisterna, B.; Malatesta, M. Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Int. J. Mol. Sci. 2022, 23, 11192. https://doi.org/10.3390/ijms231911192
Gotte G, Butturini E, Bettin I, Noro I, Mahmoud Helmy A, Fagagnini A, Cisterna B, Malatesta M. Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? International Journal of Molecular Sciences. 2022; 23(19):11192. https://doi.org/10.3390/ijms231911192
Chicago/Turabian StyleGotte, Giovanni, Elena Butturini, Ilaria Bettin, Irene Noro, Alexander Mahmoud Helmy, Andrea Fagagnini, Barbara Cisterna, and Manuela Malatesta. 2022. "Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis?" International Journal of Molecular Sciences 23, no. 19: 11192. https://doi.org/10.3390/ijms231911192
APA StyleGotte, G., Butturini, E., Bettin, I., Noro, I., Mahmoud Helmy, A., Fagagnini, A., Cisterna, B., & Malatesta, M. (2022). Slow Evolution toward “Super-Aggregation” of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? International Journal of Molecular Sciences, 23(19), 11192. https://doi.org/10.3390/ijms231911192