Genomic Landscape of Mixed-Phenotype Acute Leukemia
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolach, O.; Stone, R.M. How I treat mixed-phenotype acute leukemia. Blood 2015, 125, 2477–2485. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, O.K.; Arber, D.A. Mixed-phenotype acute leukemia: Historical overview and a new definition. Leukemia 2010, 24, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405, Erratum in Blood 2016, 128, 462–463. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemia: Integrating Morphological, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Di Giacomo, D.; la Starza, R.; Gorello, P.; Pellanera, F.; Atak, Z.K.; de Keersmaecker, K.; Pierini, V.; Harrison, C.J.; Arniani, S.; Moretti, M.; et al. 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood 2021, 138, 773–784. [Google Scholar]
- Willis, T.G.; Zalcberg, I.R.; Coignet, L.J.A.; Wlodarska, I.; Stul, M.; Jadayel, D.M.; Bastard, C.; Treleaven, J.G.; Catovsky, D.; Silva, M.L.M.; et al. Molecular Cloning of Translocation t(1;14)(q21;q32) Defines a Novel Gene (BCL9)at Chromosome 1q21. Blood 1998, 91, 1873–1881. [Google Scholar] [CrossRef]
- Heesch, S.; Neumann, M.; Schwartz, S.; Bartram, I.; Schlee, C.; Burmeister, T.; Hänel, M.; Ganser, A.; Heuser, M.; Wendtner, C.-M.; et al. Acute leukemias of ambiguous lineage in adults: Molecular and clinical characterization. Ann. Hematol. 2013, 92, 747–758. [Google Scholar] [CrossRef]
- Eckstein, O.S.; Wang, L.; Punia, J.N.; Kornblau, S.M.; Andreeff, M.; Wheeler, D.A.; Goodell, M.A.; Rau, R.E. Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes. Exp. Hematol. 2016, 44, 740–744. [Google Scholar] [CrossRef]
- Quesada, A.E.; Hu, Z.; Routbort, M.J.; Patel, K.P.; Luthra, R.; Loghavi, S.; Zuo, Z.; Yin, C.C.; Kanagal-Shamanna, R.; Wang, S.A.; et al. Mixed phenotype acute leukemia contains heterogeneous genetic mutations by next-generation sequencing. Oncotarget 2018, 9, 8441–8449. [Google Scholar] [CrossRef]
- Matutes, E.; Pickl, W.F.; Veer, M.V.; Morilla, R.; Swansbury, J.; Strobl, H.; Attarbaschi, A.; Hopfinger, G.; Ashley, S.; Bene, M.C.; et al. Mixed-phenotype acute leukemia: Clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood 2011, 117, 3163–3171. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Ping, N.; Zhu, M.; Sun, A.; Xue, Y.; Ruan, C.; Drexler, H.G.; MacLeod, R.A.F.; Wu, D.; Chen, S. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica 2012, 97, 1708–1712. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Griffin, G.; Lee, W.; Patel, S.; Ohgami, R.; Ok, C.Y.; Wang, S.; Geyer, J.T.; Xiao, W.; Roshal, M.; et al. Genomic and clinical characterization of B/T mixed phenotype acute leukemia reveals recurrent features and T-ALL like mutations. Am. J. Hematol. 2018, 93, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Wang, F.; Morita, K.; Yan, Y.; Hu, P.; Zhao, P.; Zhar, A.A.; Wu, C.J.; Gumbs, C.; Little, L.; et al. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat. Commun. 2018, 9, 2670. [Google Scholar] [CrossRef]
- Alexander, T.B.; Gu, Z.; Iacobucci, I.; Dickerson, K.; Choi, J.K.; Xu, B.; Payne-Turner, D.; Yoshihara, H.; Loh, M.L.; Horan, J.; et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 2018, 562, 373–379. [Google Scholar] [CrossRef]
- Becker, M.W.; O’Dwyer, K.M. Comprehensive Genomic Classification of Pediatric Mixed-Phenotype Acute Leukemia. Hematologist 2019, 16. [Google Scholar] [CrossRef]
- Zhang, J.; Grubor, V.; Love, C.L.; Banerjee, A.; Richards, K.L.; Mieczkowski, P.A.; Dunphy, C.; Choi, W.; Au, W.Y.; Srivastava, G.; et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 1398–1403. [Google Scholar] [CrossRef]
- Abou Dalle, I.; Dinardo, C.D. The role of enasidenib in the treatment of mutant IDH2 acute myeloid leukemia. Ther. Adv. Hematol. 2018, 9, 163–173. [Google Scholar] [CrossRef]
- Davis, J.A.; Fiskus, W.C.; Daver, N.; Mill, C.P.; Birdwell, C.; Salazar, A.; Philip, K.; Kadia, T.M.; DiNardo, C.D.; Leoni, M.; et al. Clinical-Stage Menin Inhibitor KO-539 Is Synergistically Active with Multiple Classes of Targeted Agents in KMT2A-r and NPM1-Mutant AML Models. Blood 2021, 138 (Supp. S1), 3357. [Google Scholar] [CrossRef]
- Roloff, G.W.; Baron, J.I.; Neppalli, V.T.; Sait, S.; Griffiths, E.A. Next-Generation Sequencing Delineates Clonal Origins and Informs Therapeutic Strategies in Acute Lymphoblastic Leukemia and Histiocytic Sarcoma. JCO Precis. Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Frampton, G.M.; Fichtenholtz, A.; A Otto, G.; Wang, K.; Downing, S.R.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.; An, P.; et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Au, C.H.; Wa, A.; Ho, D.N.; Chan, T.L.; Ma, E.S.K. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms. Diagn. Pathol. 2016, 11, 11. [Google Scholar] [CrossRef] [PubMed]
Diagnosis | Clonality | Cytogenetics | FISH |
---|---|---|---|
B/myeloid | Biclonal | 47,XX,+6 [3]/46,XX [17] | BCR/ABL1-negative, MDS FISH-negative. |
T/B lymphoid | Biphenotypic | 65, XY, +X, +1, 1, add(1)(p33)x2, −2, +3, −4, +5, del(5q31q35)x2, +6, +6, +7, +8, −9, +11, +20, +20, −20, +21, +22, +mar [1]/46, XY [2] | |
T/myeloid | biphenotypic | 45,XY,t(2;14;5)(q23;q32;q13), der (12;16) (q10;p10), add (17)(q21) | Monosomy 16/16q, No rearrangement of CBFB, MLL, BCR/ABL, RUNX1T1/RUNX1, or PML/RARA. |
B/myeloid | Biphenotypic | 46,XY [20] | Normal for MLL, 5q and 7q. |
T/myeloid | Biphenotypic | 47,X,add(X)(p22.1),−5,add(6)(q13),−7,add(9)(p11),del(9)(q13q22),+21,+2mar [6]/ 46,XX [17] | No evidence of a BCR–ABL rearrangement. |
T/myeloid | Biphenotypic | 46,XX,t(2;14)(p13;q32)?c [20] | PML/RARα rearrangement is not detected. |
B/myeloid | Biclonal | t(9;22)(q34;q11.2);46, XY, der(16)t(1;16)(q12;q11.2),t(9;22)(q34;q11.2) [19]/46, XY [1]. | t(9,22) along with loss of CBFB/16q, and gain in RUNX1/21q. |
B/myeloid | Biphenotypic | No data available | |
B/myeloid | Biphenotypic | 47,XY,t(2;17;8)(p23;q25;q22),t(9;22)(q34;q11.2),del(13)(q22q32),+21 [cp20] | t(9;22)(q34;q11.2) translocation (97.5%) and gain of extra Ph chromosome. |
B/myeloid | Biclonal | 46,XX [20] | No evidence of a BCR/ABL1 gene rearrangement; deletion of 5q, 7q, 17q, and 20q not detected. Monosomy 7 and trisomy 8 not detected. |
B/myeloid | Biclonal | 46,XX,?ins(1;1)(p34;p32p36.1),t(9;22)(q34;q11.2) [18]/92,idem x2 [2] | A total of 5.5% of cells with tetrasomy 8 and tetrasomy 21. No evidence of RUNX1T1/RUNX1; No MLL gene rearrangement. The 4 MLL probe fusion signals (13.5%) indicate the presence of tetraploidy tumor clone in the specimen. |
B/myeloid | Biphenotypic | 46,XY,t(9;22)(q34;q11.2) [4] | Normal CDKN2A(P16), ETV6/RUNX1, TCF3; t(9;22)(q34;q11.2)(Normal). |
B/myeloid | Biclonal | 46,XX,t(4;11)(q21;q23) [10]/46,XX [1] | MLL rearrangement (12%). |
T/myeloid | Biphenotypic | 46,XY [20] | Deletion of 5q, 7q, 17p, and 20q not detected. Monosomy 7 and trisomy 8 not detected. |
B/myeloid | Biphenotypic | 45,XY,−7,t(9;22)(q34;q11.2) [15]/46,XY [5] | BCR/ABL1 rearrangement (92.5%). Positive for deletion of 7q or monosomy 7 (89%). |
B/myeloid | Biclonal | 46,XX [20] | No BCR/ABL1. |
B/myeloid | Biclonal | 93–108,XXYY,−2,−3,−6,−6,−7,−8,−8,−9,add(11)(q23)x2, −12,−12,+15,+10-25mar[cp3]/46,XY [19]; POSSIBLE KMT2A (MLL) ONCOGENE MEDIATED CLONE DETECTED | No BCR–ABL1, MLL or RUNX1/RUNXT1 rearrangements. Increased ABL1 and BCR signals, evidence of MLL gene amplification and increased RUNX1, RUNXT1 signals. |
B/myeloid | Biphenotypic | 46,XX [20] | Positive for del(17p/TP53), loss of ABL1 and BCL-6 genes, gain of BCR gene, and negative for BCR/ABL1 fusion, t(11;14), or BCL-2/BCL-6/MYC rearrangements. |
B/myeloid | Biphenotypic | 46,XY,+13,−21 [20] | Negative for PML–RARA, RUNX1–RUNXT1, CBFB–MYH11, BCR–ABL1, and MLL/KMT2A translocations. MDS FISH panel is normal. |
T/myeloid | Biphenotypic | 39–46,XX,-X,add(X)(p22.1),add(7)(q11.2),add(11)(p11.2),−14,−16,−17,−18,−20,del(20)(q11.2q13.3),add(21)(q22),−22,add(22)(q11.2)+r,+1-3mar[cp20] | Deletion 5q31-negative, deletion 7q31-positive, deletion 20q12-positive, deletion 17p13 (p53)-negative, Trisomy 8-positive. |
B/myeloid | Biphenotypic | 46,XX [20] | No RUNX1T1, RUNX1 (ETO/AML1), MLL GENE, BCR/ABL1-negative; Del 5q31 detected at relapse. |
T/myeloid | Biphenotypic | 46,XX,del(5)(q22:q35),del(11)(p11.2) with an abnormal BCR–ABL1 signal with only one ABL1 gene at 9q34 detected; First relapse: 48,XX,add(1)(p36.3),del(5)(q22),+6, del(11)(p11.2),+19[cp17]/46,XX [3] | FISH negative for BCR/ABL1; no AML OR ALL gene deletions or rearrangements. |
B/myeloid | Biphenotypic | 45,XX,der(3)t(1;3)(q21;p25), t(8;14)(q24;q32),der(14)t(8;14),−15, del(17)(p11.2),add(19)((q13.4)[cp20] | MLL deletion (63%); no BCR–ABL1 fusion. |
B/myeloid | Biclonal | 46,XY [20] | No t(8;21), t(9;22), 11q23, t(15;17) or inv16. |
T/myeloid | Biphenotypic | 46,XY,dup(1)(q23q32),del(3)(q21), +13,−21[cp10]/46,XY[4] | MDS FISH panel is normal; no t(9;22) translocation. |
T/myeloid | Biphenotypic | 46,XY [20] | No PML/RARA gene rearrangement. |
T/myeloid | Biclonal | 46, XX | Karyotypically occult translocation (5;14) resulting in the TLX3–BCL11b fusion (74%) with 60% heterozygous/hemizygous deletion of CDKN2a and with 8.5% of nuclei demonstrating a TRB rearrangement involving 7q34. |
B/myeloid | Biclonal | 46,XX,add(5)(q11.2),t(9;22)(q34.1;q11.2) [18]/47,idem,+der(22)t(9;22)[1]/46,XX [1]. | Positive for t(9;22), and negative for t(1;19), MYC, KMT2A or IGH gene rearrangements, negative for Trisomy 4, 6, 10 or 17. |
Heesch, S. et al. [8] | Eckstein, O.S. et al. [9] | Quesada, A.E. et al. [10] | Matutes, E. et al. [11] | Yan, L. et al. [12] | Mi, X. et al. [13] | Takahashi, K. et al. [14] | Alexander, T.B. et al. [15] | Becker, M. et al. [16] | ||
---|---|---|---|---|---|---|---|---|---|---|
Sex | ||||||||||
Female | 21 | 38 | 57 | 13 | ||||||
Male | 21 | 62 | 60 | 18 | ||||||
Age, years | ||||||||||
Median | 60 | 35 | 35 | 53 | 7 | |||||
Diagnosis | ||||||||||
AUL | 16 | 13 | 26 | 5 | ||||||
ALL | 39 | 51 | ||||||||
AML | 38 | 40 | ||||||||
MPAL (B/Myeloid) | 12 | 7 | 7 | 59 | 64 | 13 | 35 | 37 | ||
MPAL (T/Myeloid) | 12 | 15 | 6 | 35 | 38 | 18 | 49 | 52 | ||
MPAL (B/T-cell | 2 | 1 | 1 | 4 | 14 | |||||
MPAL (B/T/Myeloid) | 2 | 1 | ||||||||
Cytogenetics | ||||||||||
Normal Karyotype | 3 | 4 | 10 | 33 | 5 | |||||
Complex karyotype | 24 | 22 | 8 | |||||||
t(9;22)(q34;q11) | 7 | 1 | 1 | 15 | 14 | 4 | 2 | |||
Monosomy | 5 | 7 | ||||||||
Polysomy | 12 | |||||||||
t(v;11q23) | 6 | 4 | 1 | |||||||
t(10;11)(p15;q21) | 3 | |||||||||
MLL | 2 | 7 | 15 | |||||||
Other abnormalities | 11 | 21 | 21 | |||||||
Mutations | ||||||||||
WT1 | 4 | 3 | 3 | 0 | 1 | 28 | 24 | |||
FLT3 | 1 | 3 | 3 | 0 | 31 | 21 | ||||
DNMT3A | 6 | 1 | 0 | 7 | ||||||
MLL | 2 | 1 | ||||||||
RUNX1 | 4 | 2 | 8 | 1 | 8 | 15 | 13 | |||
IDH2 | 2 | 1 | 0 | |||||||
TP53 | 5 | 1 | 2 | |||||||
JAK2 | 1 | 1 | 1 | |||||||
NOTCH1 | 5 | 1 | 1 | 9 | ||||||
NRAS | 4 | 1 | 6 | 21 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennawi, M.; Pakasticali, N.; Tashkandi, H.; Hussaini, M. Genomic Landscape of Mixed-Phenotype Acute Leukemia. Int. J. Mol. Sci. 2022, 23, 11259. https://doi.org/10.3390/ijms231911259
Hennawi M, Pakasticali N, Tashkandi H, Hussaini M. Genomic Landscape of Mixed-Phenotype Acute Leukemia. International Journal of Molecular Sciences. 2022; 23(19):11259. https://doi.org/10.3390/ijms231911259
Chicago/Turabian StyleHennawi, Marah, Nagehan Pakasticali, Hammad Tashkandi, and Mohammad Hussaini. 2022. "Genomic Landscape of Mixed-Phenotype Acute Leukemia" International Journal of Molecular Sciences 23, no. 19: 11259. https://doi.org/10.3390/ijms231911259
APA StyleHennawi, M., Pakasticali, N., Tashkandi, H., & Hussaini, M. (2022). Genomic Landscape of Mixed-Phenotype Acute Leukemia. International Journal of Molecular Sciences, 23(19), 11259. https://doi.org/10.3390/ijms231911259