Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation
Abstract
:1. Introduction
2. FcεRI Structure and Function
3. Existing Treatments Targeting FcεRI and IgE
4. Alternative Splicing of FcεRIβ and the Functions of Splice Variants
5. Functional Outcomes of Modulating FcεRIβ Expression in Mast Cells
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pawankar, R. Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organ. J. 2014, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Ribatti, D. The development of human mast cells. An historical reappraisal. Exp. Cell Res. 2016, 342, 210–215. [Google Scholar] [CrossRef]
- Reber, L.L.; Sibilano, R.; Mukai, K.; Galli, S.J. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol. 2015, 8, 444–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, S.J. The Mast Cell-IgE Paradox: From Homeostasis to Anaphylaxis. Am. J. Pathol. 2016, 186, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Sutton, B.J.; Davies, A.M. Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol. Rev. 2015, 268, 222–235. [Google Scholar] [CrossRef]
- Burrows, B.; Martinez, F.D.; Halonen, M.; Barbee, R.A.; Cline, M.G. Association of asthma with serum IgE levels and skin-test reactivity to allergens. N. Engl. J. Med. 1989, 320, 271–277. [Google Scholar] [CrossRef]
- Gould, H.J.; Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol. 2008, 8, 205–217. [Google Scholar] [CrossRef]
- Holgate, S.; Casale, T.; Wenzel, S.; Bousquet, J.; Deniz, Y.; Reisner, C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J. Allergy Clin. Immunol. 2005, 115, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G.; Woodfolk, J.A.; Schuyler, A.J.; Stillman, L.C.; Chapman, M.D.; Platts-Mills, T.A. Half-life of IgE in serum and skin: Consequences for anti-IgE therapy in patients with allergic disease. J. Allergy Clin. Immunol. 2017, 139, 422–428.e4. [Google Scholar] [CrossRef] [Green Version]
- MacGlashan, D.W., Jr. Endocytosis, recycling, and degradation of unoccupied FcepsilonRI in human basophils. J. Leukoc. Biol. 2007, 82, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- MacGlashan DJr Xia, H.Z.; Schwartz, L.B.; Gong, J. IgE-regulated loss, not IgE-regulated synthesis, controls expression of FcepsilonRI in human basophils. J. Leukoc. Biol. 2001, 70, 207–218. [Google Scholar]
- Borkowski, T.A.; Jouvin, M.H.; Lin, S.Y.; Kinet, J.P. Minimal requirements for IgE-mediated regulation of surface Fc epsilon RI. J. Immunol. 2001, 167, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature 2008, 454, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinet, J.P. The high-affinity IgE receptor (Fc epsilon RI): From physiology to pathology. Annu. Rev. Immunol. 1999, 17, 931–972. [Google Scholar] [CrossRef]
- Garman, S.C.; Kinet, J.P.; Jardetzky, T.S. Crystal structure of the human high-affinity IgE receptor. Cell 1998, 95, 951–961. [Google Scholar] [CrossRef] [Green Version]
- Barata, L.T.; Ying, S.; Grant, J.A.; Humbert, M.; Barkans, J.; Meng, Q.; Durham, S.R.; Kay, A.B. Allergen-induced recruitment of Fc epsilon RI+ eosinophils in human atopic skin. Eur. J. Immunol. 1997, 27, 1236–1241. [Google Scholar] [CrossRef]
- Gounni, A.S.; Lamkhioued, B.; Ochiai, K.; Tanaka, Y.; Delaporte, E.; Capron, A.; Kinet, J.P.; Capron, M. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 1994, 367, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Gounni, A.S.; Lamkhioued, B.; Koussih, L.; Ra, C.; Renzi, P.M.; Hamid, Q. Human neutrophils express the high-affinity receptor for immunoglobulin E (Fc epsilon RI): Role in asthma. FASEB J. 2001, 15, 940–949. [Google Scholar] [PubMed]
- Gounni, A.S.; Wellemans, V.; Yang, J.; Bellesort, F.; Kassiri, K.; Gangloff, S.; Guenounou, M.; Halayko, A.J.; Hamid, Q.; Lamkhioued, B. Human airway smooth muscle cells express the high affinity receptor for IgE (Fc epsilon RI): A critical role of Fc epsilon RI in human airway smooth muscle cell function. J. Immunol. 2005, 175, 2613–2621. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, S.; Pawankar, R.; Suzuki, K.; Nakahata, T.; Furukawa, S.; Okumura, K.; Ra, C. Functional expression of the high affinity receptor for IgE (FcepsilonRI) in human platelets and its’ intracellular expression in human megakaryocytes. Blood 1999, 93, 2543–2551. [Google Scholar] [CrossRef]
- Maurer, D.; Fiebiger, E.; Reininger, B.; Wolff-Winiski, B.; Jouvin, M.H.; Kilgus, O.; Kinet, J.P.; Stingl, G. Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. J. Exp. Med. 1994, 179, 745–750. [Google Scholar] [CrossRef]
- Maurer, D.; Fiebiger, S.; Ebner, C.; Reininger, B.; Fischer, G.F.; Wichlas, S.; Jouvin, M.H.; Schmitt-Egenolf, M.; Kraft, D.; Kinet, J.-P.; et al. Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation. J. Immunol. 1996, 157, 607–616. [Google Scholar]
- Wang, B.; Rieger, A.; Kilgus, O.; Ochiai, K.; Maurer, D.; Födinger, D.; Kinet, J.P.; Stingl, G. Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J. Exp. Med. 1992, 175, 1353–1365. [Google Scholar] [CrossRef]
- Kraft, S.; Kinet, J.-P. New developments in FcepsilonRI regulation, function and inhibition. Nat. Rev. Immunol. 2007, 7, 365–378. [Google Scholar] [CrossRef]
- Garman, S.C.; Wurzburg, B.A.; Tarchevskaya, S.S.; Kinet, J.P.; Jardetzky, T.S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature 2000, 406, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Jouvin, M.H.; Adamczewski, M.; Numerof, R.; Letourneur, O.; Vallé, A.; Kinet, J.P. Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor. J. Biol. Chem. 1994, 269, 5918–5925. [Google Scholar] [CrossRef]
- Kihara, H.; Siraganian, R.P. Src homology 2 domains of Syk and Lyn bind to tyrosine-phosphorylated subunits of the high affinity IgE receptor. J. Biol. Chem. 1994, 269, 22427–22432. [Google Scholar] [CrossRef]
- Gilfillan, A.M.; Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 2006, 6, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Cicala, C.; Scharenberg, A.M.; Kinet, J.P. The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 1996, 85, 985–995. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.; Gilfillan, A.M. Molecular regulation of mast cell activation. J. Allergy Clin. Immunol. 2006, 117, 1214–1225, quiz 1226. [Google Scholar] [CrossRef]
- Hutchcroft, J.E.; Geahlen, R.L.; Deanin, G.G.; Oliver, J.M. Fc epsilon RI-mediated tyrosine phosphorylation and activation of the 72-kDa protein-tyrosine kinase, PTK72, in RBL-2H3 rat tumor mast cells. Proc. Natl. Acad. Sci. USA 1992, 89, 9107–9111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiue, L.; Zoller, M.J.; Brugge, J.S. Syk is activated by phosphotyrosine-containing peptides representing the tyrosine-based activation motifs of the high affinity receptor for IgE. J. Biol. Chem. 1995, 270, 10498–10502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, S.L.; Cleyrat, C.; Olah, M.J.; Relich, P.K.; Phillips, G.K.; Hlavacek, W.S.; Lidke, K.A.; Wilson, B.S.; Lidke, D.S. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol. Biol. Cell. 2017, 28, 3397–3414. [Google Scholar] [CrossRef]
- Travers, T.; Kanagy, W.K.; Mansbach, R.A.; Jhamba, E.; Cleyrat, C.; Goldstein, B.; Lidke, D.S.; Wilson, B.S.; Gnanakaran, S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. MBoC 2019, 30, 2331–2347. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Barua, D.; Cutler, P.; Lidke, D.S.; Espinoza, F.A.; Pehlke, C.; Grattan, R.; Kawakami, Y.; Tung, C.S.; Bradbury, A.R.; et al. Optimal aggregation of FcεRI with a structurally defined trivalent ligand overrides negative regulation driven by phosphatases. ACS Chem. Biol. 2014, 9, 1508–1519. [Google Scholar] [CrossRef]
- Wilson, B.S.; Oliver, J.M.; Lidke, D.S. Spatio-temporal signaling in mast cells. Adv. Exp. Med Biol. 2011, 716, 91–106. [Google Scholar]
- Johnson, S.A.; Pleiman, C.M.; Pao, L.; Schneringer, J.; Hippen, K.; Cambier, J.C. Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. J. Immunol. 1995, 155, 4596–4603. [Google Scholar]
- Sigalov, A. Multi-chain immune recognition receptors: Spatial organization and signal transduction. Semin Immunol. 2005, 17, 51–64. [Google Scholar] [CrossRef]
- Ashmole, I.; Duffy, S.M.; Leyland, M.L.; Morrison, V.S.; Begg, M.; Bradding, P. CRACM/Orai ion channel expression and function in human lung mast cells. J. Allergy Clin. Immunol. 2012, 129, 1628–1635.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.L.; Yu, Y.; Roos, J.; Kozak, J.A.; Deerinck, T.J.; Ellisman, M.H.; Stauderman, K.A.; Cahalan, M.D. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005, 437, 902–905. [Google Scholar] [CrossRef]
- Arthur, G.K.; Ehrhardt-Humbert, L.C.; Snider, D.B.; Jania, C.; Tilley, S.L.; Metcalfe, D.D.; Cruse, G. The FcεRIβ homologue, MS4A4A, promotes FcεRI signal transduction and store-operated Ca2+ entry in human mast cells. Cell Signal. 2020, 71, 109617. [Google Scholar] [CrossRef]
- Lewis, R.S. Calcium oscillations in T-cells: Mechanisms and consequences for gene expression. Biochem. Soc. Trans. 2003, 31 Pt 5, 925–929. [Google Scholar] [CrossRef]
- Bradding, P.; Arthur, G. Mast cells in asthma—State of the art. Clin. Exp. Allergy 2016, 46, 194–263. [Google Scholar] [CrossRef] [PubMed]
- Di Capite, J.; Parekh, A.B. CRAC channels and Ca2+ signaling in mast cells. Immunol. Rev. 2009, 231, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Holowka, D.; Wilkes, M.; Stefan, C.; Baird, B. Roles for Ca2+ mobilization and its regulation in mast cell functions: Recent progress. Biochem. Soc. Trans. 2016, 44, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.-T.; Beaven, M.A. Regulation of Ca2+ signaling with particular focus on mast cells. Crit. Rev. Immunol. 2009, 29, 155–186. [Google Scholar] [CrossRef]
- Parekh, A.B. Local Ca2+ influx through CRAC channels activates temporally and spatially distinct cellular responses. Acta Physiol. 2009, 195, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Rådinger, M.; Gilfillan, A.M. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol. 2008, 29, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Hartman, M.-L.; Lin, S.-Y.; Jouvin, M.-H.; Kinet, J.-P. Role of the extracellular domain of Fc epsilon RI alpha in intracellular processing and surface expression of the high affinity receptor for IgE Fc epsilon RI. Mol. Immunol. 2008, 45, 2307–2311. [Google Scholar] [CrossRef]
- Ra, C.; Jouvin, M.H.; Kinet, J.P. Complete structure of the mouse mast cell receptor for IgE (Fc epsilon RI) and surface expression of chimeric receptors (rat-mouse-human) on transfected cells. J. Biol. Chem. 1989, 264, 15323–15327. [Google Scholar] [CrossRef]
- Shin, J.-S.; Greer, A.M. The role of FcεRI expressed in dendritic cells and monocytes. Cell Mol. Life Sci. 2015, 72, 2349–2360. [Google Scholar] [CrossRef] [Green Version]
- Platzer, B.; Baker, K.; Vera, M.P.; Singer, K.; Panduro, M.; Lexmond, W.S.; Turner, D.; Vargas, S.O.; Kinet, J.P.; Maurer, D.; et al. Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. Mucosal Immunol. 2015, 8, 516–532. [Google Scholar] [CrossRef] [Green Version]
- Greer, A.M.; Wu, N.; Putnam, A.L.; Woodruff, P.G.; Wolters, P.; Kinet, J.-P.; Shin, J.S. Serum IgE clearance is facilitated by human FcεRI internalization. J. Clin. Invest. 2014, 124, 1187–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozpinar, E.W.; Frey, A.L.; Arthur, G.K.; Mora-Navarro, C.; Biehl, A.; Snider, D.B.; Cruse, G.; Freytes, D.O. Dermal Extracellular Matrix-Derived Hydrogels as an In Vitro Substrate to Study Mast Cell Maturation. Tissue Eng. Part A 2020, 27, 1008–1022. [Google Scholar] [CrossRef]
- Kubo, S.; Nakayama, T.; Matsuoka, K.; Yonekawa, H.; Karasuyama, H. Long term maintenance of IgE-mediated memory in mast cells in the absence of detectable serum IgE. J. Immunol. 2003, 170, 775–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, L.A.; Marcotte, G.V.; MacGlashan, D.; Togias, A.; Saini, S. Omalizumab-induced reductions in mast cell Fce psilon RI expression and function. J. Allergy Clin. Immunol. 2004, 114, 527–530. [Google Scholar] [CrossRef]
- Deza, G.; Bertolín-Colilla, M.; Sánchez, S.; Soto, D.; Pujol, R.M.; Gimeno, R.; Giménez-Arnau, A.M. Basophil FcεRI expression is linked to time to omalizumab response in chronic spontaneous urticaria. J. Allergy Clin. Immunol. 2018, 141, 2313–2316.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedaj, R.; Unsel, L. Case study: A Combination of Mepolizumab and Omaluzimab injections for severe asthma. J. Asthma 2019, 56, 473–474. [Google Scholar] [CrossRef]
- Katsaounou, P.; Buhl, R.; Brusselle, G.; Pfister, P.; Martínez, R.; Wahn, U.; Bousquet, J. Omalizumab as alternative to chronic use of oral corticosteroids in severe asthma. Respir. Med. 2019, 150, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, G.; Gallelli, L.; Renda, T.; Romeo, P.; Busceti, M.T.; Grembiale, R.D.; Maselli, R.; Marsico, S.A.; Vatrella, A. Update on optimal use of omalizumab in management of asthma. J. Asthma Allergy 2011, 4, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, J.; Humbert, M.; Gibson, P.G.; Kostikas, K.; Jaumont, X.; Pfister, P.; Nissen, F. Real-world effectiveness of omalizumab in severe allergic asthma: A meta-analysis of observational studies. J. Allergy Clin. Immunol. Pract. 2021, 9, 2702–2714. [Google Scholar] [CrossRef]
- Bachert, C.; Zhang, L.; Gevaert, P. Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis. J. Allergy Clin. Immunol. 2015, 136, 1431–1440. [Google Scholar] [CrossRef]
- Nadeau, K.C.; Kohli, A.; Iyengar, S.; DeKruyff, R.H.; Umetsu, D.T. Oral immunotherapy and anti-IgE antibody-adjunctive treatment for food allergy. Immunol. Allergy Clin. N. Am. 2012, 32, 111–133. [Google Scholar] [CrossRef]
- Schneider, L.C.; Rachid, R.; LeBovidge, J.; Blood, E.; Mittal, M.; Umetsu, D.T. A pilot study of omalizumab to facilitate rapid oral desensitization in high-risk peanut-allergic patients. J. Allergy Clin. Immunol. 2013, 132, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Iyengar, S.R.; Hoyte, E.G.; Loza, A.; Bonaccorso, S.; Chiang, D.; Umetsu, D.T.; Nadeau, K.C. Immunologic effects of omalizumab in children with severe refractory atopic dermatitis: A randomized, placebo-controlled clinical trial. Int. Arch. Allergy Immunol. 2013, 162, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Park, K.Y.; Kim, B.J.; Kim, M.N.; Mun, S.K. Anti-immunoglobulin E in the treatment of refractory atopic dermatitis. Clin. Exp. Dermatol. 2013, 38, 496–500. [Google Scholar] [CrossRef]
- Maurer, M.; Metz, M.; Brehler, R.; Hillen, U.; Jakob, T.; Mahler, V.; Pföhler, C.; Staubach, P.; Treudler, R.; Wedi, B.; et al. Omalizumab treatment in patients with chronic inducible urticaria: A systematic review of published evidence. J. Allergy Clin. Immunol. 2018, 141, 638–649. [Google Scholar] [CrossRef] [Green Version]
- Saini, S.S.; Bindslev-Jensen, C.; Maurer, M.; Grob, J.-J.; Bülbül Baskan, E.; Bradley, M.S.; Canvin, J.; Rahmaoui, A.; Georgiou, P.; Alpan, O.; et al. Efficacy and safety of omalizumab in patients with chronic idiopathic/spontaneous urticaria who remain symptomatic on H1 antihistamines: A randomized, placebo-controlled study. J. Invest Dermatol. 2015, 135, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Terhorst-Molawi, D.; Altrichter, S.; Hawro, T.; Chen, Y.-D.; Liu, B.; Song, X.T.; Zhao, Z.T.; Maurer, M. Omalizumab in chronic inducible urticaria a real-life study of efficacy, safety, predictors of treatment outcome and time to response. Clin. Exp. Allergy 2021, 51, 730–734. [Google Scholar] [CrossRef]
- Just, J.; Thonnelier, C.; Bourgoin-Heck, M.; Mala, L.; Molimard, M.; Humbert, M.; STELLAIR Investigators. Omalizumab Effectiveness in Severe Allergic Asthma with Multiple Allergic Comorbidities: A Post-Hoc Analysis of the STELLAIR Study. J. Asthma Allergy 2021, 14, 1129–1138. [Google Scholar] [CrossRef]
- Chan, Y.-C.; Ramadani, F.; Santos, A.F.; Pillai, P.; Ohm-Laursen, L.; Harper, C.E.; Fang, C.; Dodev, T.S.; Wu, S.Y.; Ying, S.; et al. “Auto-anti-IgE”: Naturally occurring IgG anti-IgE antibodies may inhibit allergen-induced basophil activation. J. Allergy Clin. Immunol. 2014, 134, 1394–1401.e4. [Google Scholar] [CrossRef] [Green Version]
- MacGlashan, D. Therapeutic efficacy of omalizumab. J. Allergy Clin. Immunol. 2009, 123, 114–115. [Google Scholar] [CrossRef]
- Fahy, J.V.; Fleming, H.E.; Wong, H.H.; Liu, J.T.; Su, J.Q.; Reimann, J.; Fick, R.B., Jr.; Boushey, H.A. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am. J. Respir. Crit. Care Med. 1997, 155, 1828–1834. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.Y.; Sampson, H.A.; Yunginger, J.W.; Burks, A.W., Jr.; Schneider, L.C.; Wortel, C.H.; Davis, F.M.; Hyun, J.D.; Shanahan, W.R., Jr. Avon Longitudinal Study of Parents and Children Study Team. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 2003, 348, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Holgate, S.; Buhl, R.; Bousquet, J.; Smith, N.; Panahloo, Z.; Jimenez, P. The use of omalizumab in the treatment of severe allergic asthma: A clinical experience update. Respir. Med. 2009, 103, 1098–1113. [Google Scholar] [CrossRef] [Green Version]
- Gasser, P.; Tarchevskaya, S.S.; Guntern, P.; Brigger, D.; Ruppli, R.; Zbären, N.; Kleinboelting, S.; Heusser, C.; Jardetzky, T.S.; Eggel, A. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat. Commun. 2020, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Maeyama, K.; Hohman, R.J.; Metzger, H.; Beaven, M.A. Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water. J. Biol. Chem. 1986, 261, 2583–2592. [Google Scholar] [CrossRef]
- Coleman, J.W.; Godfrey, R.C. The number and affinity of IgE receptors on dispersed human lung mast cells. Immunology 1981, 44, 859–863. [Google Scholar]
- Arm, J.P.; Bottoli, I.; Skerjanec, A.; Floch, D.; Groenewegen, A.; Maahs, S.; Owen, C.E.; Jones, I.; Lowe, P.J. Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin. Exp. Allergy 2014, 44, 1371–1385. [Google Scholar] [CrossRef] [Green Version]
- Gauvreau, G.M.; Arm, J.P.; Boulet, L.-P.; Leigh, R.; Cockcroft, D.W.; Davis, B.E.; Mayers, I.; FitzGerald, J.M.; Dahlen, B.; Killian, K.J.; et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J. Allergy Clin. Immunol. 2016, 138, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Maurer, M.; Giménez-Arnau, A.; Bernstein, J.A.; Chu, C.Y.; Danilycheva, I.; Hide, M.; Makris, M.; Metz, M.; Savic, S.; Sitz, K.; et al. Sustained safety and efficacy of ligelizumab in patients with chronic spontaneous urticaria: A one-year extension study. Allergy 2021. [Google Scholar] [CrossRef]
- Khodoun, M.V.; Kucuk, Z.Y.; Strait, R.T.; Krishnamurthy, D.; Janek, K.; Lewkowich, I.; Morris, S.C.; Finkelman, F.D. Rapid polyclonal desensitization with antibodies to IgE and FcεRIα. J. Allergy Clin. Immunol. 2013, 131, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- Khodoun, M.V.; Morris, S.C.; Angerman, E.; Potter, C.; Schuman, R.; Wunderlich, M.; Maciag, J.J.; Sullivan Locker, K.C.; Mulloy, J.C.; Herr, A.B.; et al. Rapid desensitization of humanized mice with anti-human FcεRIα monoclonal antibodies. J. Allergy Clin. Immunol. 2020, 145, 907–921.e3. [Google Scholar] [CrossRef] [Green Version]
- Saini, S.S.; MacGlashan, D. How IgE upregulates the allergic response. Curr. Opin. Immunol. 2002, 14, 694–697. [Google Scholar] [CrossRef]
- Molfetta, R.; Gasparrini, F.; Santoni, A.; Paolini, R. Ubiquitination and endocytosis of the high affinity receptor for IgE. Mol. Immunol. 2010, 47, 2427–2434. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, J.; Truong, T.; Zukin, E.; Chen, W.; Saxon, A. Blocking Allergic Reaction through Targeting Surface-Bound IgE with Low-Affinity Anti-IgE Antibodies. J. Immunol. 2017, 198, 3823–3834. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, G.R.; Starovasnik, M.A.; Reynolds, M.E.; Lowman, H.B. A novel family of hairpin peptides that inhibit IgE activity by binding to the high-affinity IgE receptor. Biochemistry 2001, 40, 9828–9835. [Google Scholar] [CrossRef]
- Rossi, M.; Ruvo, M.; Marasco, D.; Colombo, M.; Cassani, G.; Verdoliva, A. Anti-allergic properties of a new all-D synthetic immunoglobulin-binding peptide. Mol. Immunol. 2008, 45, 226–234. [Google Scholar] [CrossRef]
- Zhou, J.S.; Sandomenico, A.; Severino, V.; Burton, O.T.; Darling, A.; Oettgen, H.C.; Ruvo, M. An IgE receptor mimetic peptide (PepE) protects mice from IgE mediated anaphylaxis. Mol. Biosyst. 2013, 9, 2853–2859. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, T.W.; Williams, P.B.; Dreskin, S.C.; Jouvin, M.H.; Kinet, J.P.; Tasset, D. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J. Immunol. 1996, 157, 221–230. [Google Scholar]
- Eggel, A.; Baumann, M.J.; Amstutz, P.; Stadler, B.M.; Vogel, M. DARPins as bispecific receptor antagonists analyzed for immunoglobulin E receptor blockage. J. Mol. Biol. 2009, 393, 598–607. [Google Scholar] [CrossRef]
- Eggel, A.; Baravalle, G.; Hobi, G.; Kim, B.; Buschor, P.; Forrer, P.; Shin, J.S.; Vogel, M.; Stadler, B.M.; Dahinden, C.A.; et al. Accelerated dissociation of IgE-FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells. J. Allergy Clin. Immunol. 2014, 133, 1709–1719.e8. [Google Scholar] [CrossRef] [Green Version]
- Delgado, S.J.; Dehmel, S.; Twisterling, E.; Wichmann, J.; Jonigk, D.; Warnecke, G.; Braubach, P.; Fieguth, H.G.; Wilkens, L.; Dahlmann, F.; et al. Disruptive anti-IgE inhibitors prevent mast cell-dependent early airway response in viable atopic lung tissue. J. Allergy Clin. Immunol. 2020, 145, 719–722.e1. [Google Scholar] [CrossRef] [Green Version]
- Pennington, L.F.; Gasser, P.; Brigger, D.; Guntern, P.; Eggel, A.; Jardetzky, T.S. Structure-guided design of ultrapotent disruptive IgE inhibitors to rapidly terminate acute allergic reactions. J. Allergy Clin. Immunol. 2021, 148, 1049–1060. [Google Scholar] [CrossRef]
- Fong, D.C.; Malbec, O.; Arock, M.; Cambier, J.C.; Fridman, W.H.; Daëron, M. Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated Fc gammaRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunol. Lett. 1996, 54, 83–91. [Google Scholar] [CrossRef]
- Ono, M.; Bolland, S.; Tempst, P.; Ravetch, J.V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 1996, 383, 263–266. [Google Scholar] [CrossRef]
- Bolland, S.; Pearse, R.N.; Kurosaki, T.; Ravetch, J.V. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 1998, 8, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Malbec, O.; Attal, J.-P.; Fridman, W.H.; Daëron, M. Negative regulation of mast cell proliferation by FcgammaRIIB. Mol. Immunol. 2002, 38, 1295–1299. [Google Scholar] [CrossRef]
- Cemerski, S.; Chu, S.Y.; Moore, G.L.; Muchhal, U.S.; Desjarlais, J.R.; Szymkowski, D.E. Suppression of mast cell degranulation through a dual-targeting tandem IgE-IgG Fc domain biologic engineered to bind with high affinity to FcγRIIb. Immunol. Lett. 2012, 143, 34–43. [Google Scholar] [CrossRef]
- Ekoff, M.; Möller, C.; Xiang, Z.; Nilsson, G. Coaggregation of FcepsilonRI with FcgammaRIIB Inhibits Degranulation but Not Induction of Bcl-2 Family Members A1 and Bim in Mast Cells. Allergy Asthma Clin. Immunol. 2006, 2, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Kepley, C.L.; Taghavi, S.; Mackay, G.; Zhu, D.; Morel, P.A.; Zhang, K.; Ryan, J.J.; Satin, L.S.; Zhang, M.; Pandolfi, P.P.; et al. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J. Biol. Chem. 2004, 279, 35139–35149. [Google Scholar] [CrossRef] [Green Version]
- Zellweger, F.; Gasser, P.; Brigger, D.; Buschor, P.; Vogel, M.; Eggel, A. A novel bispecific DARPin targeting FcγRIIB and FcεRI-bound IgE inhibits allergic responses. Allergy 2017, 72, 1174–1183. [Google Scholar] [CrossRef] [Green Version]
- Barker, M.D.; Liddle, J.; Atkinson, F.L.; Wilson, D.M.; Dickson, M.C.; Ramirez-Molina, C.; Lewis, H.; Davis, R.P.; Somers, D.O.; Neu, M.; et al. Discovery of potent and selective Spleen Tyrosine Kinase inhibitors for the topical treatment of inflammatory skin disease. Bioorg. Med. Chem. Lett. 2018, 28, 3458–3462. [Google Scholar] [CrossRef]
- Lin, W.; Su, F.; Gautam, R.; Wang, N.; Zhang, Y.; Wang, X. Raf kinase inhibitor protein negatively regulates FcεRI-mediated mast cell activation and allergic response. Proc. Natl. Acad. Sci. USA 2018, 115, E9859–E9868. [Google Scholar] [CrossRef] [Green Version]
- Ramirez Molina, C.; Falkencrone, S.; Skov, P.S.; Hooper-Greenhill, E.; Barker, M.; Dickson, M.C. GSK2646264, a spleen tyrosine kinase inhibitor, attenuates the release of histamine in ex vivo human skin. Br. J. Pharmacol. 2019, 176, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Evans, E.K.; Gardino, A.K.; Kim, J.L.; Hodous, B.L.; Shutes, A.; Davis, A.; Zhu, X.J.; Schmidt-Kittler, O.; Wilson, D.; Wilson, K.; et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Koziol-White, C.J.; Jia, Y.; Baltus, G.A.; Cooper, P.R.; Zaller, D.M.; Crackower, M.A.; Sirkowski, E.E.; Smock, S.; Northrup, A.B.; Himes, B.E.; et al. Inhibition of spleen tyrosine kinase attenuates IgE-mediated airway contraction and mediator release in human precision cut lung slices. Br. J. Pharmacol. 2016, 173, 3080–3087. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, S.; Li, G.; Takeda, K.; Loader, J.E.; Pine, P.; Masuda, E.S.; Miyahara, N.; Miyahara, S.; Lucas, J.J.; Dakhama, A.; et al. Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 2006, 173, 56–63. [Google Scholar] [CrossRef]
- Penton, P.C.; Wang, X.; Amatullah, H.; Cooper, J.; Godri, K.; North, M.L.; Khanna, N.; Scott, J.A.; Chow, C.W. Spleen tyrosine kinase inhibition attenuates airway hyperresponsiveness and pollution-induced enhanced airway response in a chronic mouse model of asthma. J. Allergy Clin. Immunol. 2013, 131, e1–e10. [Google Scholar] [CrossRef]
- Adra, C.N.; Mao, X.Q.; Kawada, H.; Gao, P.S.; Korzycka, B.; Donate, J.L.; Shaldon, S.R.; Coull, P.; Dubowitz, M.; Enomoto, T.; et al. Chromosome 11q13 and atopic asthma. Clin. Genet. 1999, 55, 431–437. [Google Scholar] [CrossRef]
- Hill, M.R.; Cookson, W.O. A new variant of the beta subunit of the high-affinity receptor for immunoglobulin E (Fc epsilon RI-beta E237G): Associations with measures of atopy and bronchial hyper-responsiveness. Hum. Mol. Genet. 1996, 5, 959–962. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K.; Park, H.-W.; Yang, J.-S.; Oh, S.-Y.; Chang, Y.-S.; Shin, E.-S.; Lee, J.E.; Kim, S.; Gho, Y.S.; Cho, S.H.; et al. Association and functional relevance of E237G, a polymorphism of the high-affinity immunoglobulin E-receptor beta chain gene, to airway hyper-responsiveness. Clin. Exp. Allergy. 2007, 37, 592–598. [Google Scholar] [CrossRef]
- Laprise, C.; Boulet, L.P.; Morissette, J.; Winstall, E.; Raymond, V. Evidence for association and linkage between atopy, airway hyper-responsiveness, and the beta subunit Glu237Gly variant of the high-affinity receptor for immunoglobulin E in the French-Canadian population. Immunogenetics 2000, 51, 695–702. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Qiu, D.; Sandford, A.; Tan, W.C. The E237G polymorphism of the high-affinity IgE receptor beta chain and asthma. Ann. Allergy Asthma Immunol. 2004, 93, 499–503. [Google Scholar]
- Ishizawa, M.; Shibasaki, M.; Yokouchi, Y.; Noguchi, E.; Arinami, T.; Yamakawa-Kobayashi, K.; Matsui, A.; Hamaguchi, H. No association between atopic asthma and a coding variant of Fc epsilon R1 beta in a Japanese population. J. Hum. Genet. 1999, 44, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Simon Thomas, N.; Wilkinson, J.; Lonjou, C.; Morton, N.E.; Holgate, S.T. Linkage analysis of markers on chromosome 11q13 with asthma and atopy in a United Kingdom population. Am. J. Respir. Crit. Care Med. 2000, 162 Pt 1, 1268–1272. [Google Scholar] [CrossRef]
- Zhu, S.; Chan-Yeung, M.; Becker, A.B.; Dimich-Ward, H.; Ferguson, A.C.; Manfreda, J.; Watson, W.T.; Paré, P.D.; Sandford, A.J. Polymorphisms of the IL-4, TNF-alpha, and Fcepsilon RIbeta genes and the risk of allergic disorders in at-risk infants. Am. J. Respir. Crit. Care Med. 2000, 161, 1655–1659. [Google Scholar] [CrossRef]
- Donnadieu, E.; Jouvin, M.H.; Kinet, J.P. A second amplifier function for the allergy-associated Fc(epsilon)RI-beta subunit. Immunity 2000, 12, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Furumoto, Y.; Hiraoka, S.; Kawamoto, K.; Masaki, S.; Kitamura, T.; Okumura, K.; Ra, C. Polymorphisms in FcepsilonRI beta chain do not affect IgE-mediated mast cell activation. Biochem. Biophys. Res. Commun. 2000, 273, 765–771. [Google Scholar] [CrossRef]
- Kim, S.-H.; Bae, J.-S.; Holloway, J.W.; Lee, J.-T.; Suh, C.-H.; Nahm, D.-H.; Park, H.S. A polymorphism of MS4A2 (- 109T > C) encoding the beta-chain of the high-affinity immunoglobulin E receptor (FcepsilonR1beta) is associated with a susceptibility to aspirin-intolerant asthma. Clin. Exp. Allergy 2006, 36, 877–883. [Google Scholar] [CrossRef]
- Nishiyama, C.; Akizawa, Y.; Nishiyama, M.; Tokura, T.; Kawada, H.; Mitsuishi, K.; Hasegawa, M.; Ito, T.; Nakano, N.; Okamoto, A.; et al. Polymorphisms in the Fc epsilon RI beta promoter region affecting transcription activity: A possible promoter-dependent mechanism for association between Fc epsilon RI beta and atopy. J. Immunol. 2004, 173, 6458–6464. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-J.; Zheng, L.; Zhang, X.-F.; Yang, M.; Huang, X. Association of the MS4A2 gene promoter C-109T or the 7th exon E237G polymorphisms with asthma risk: A meta-analysis. Clin. Biochem. 2014, 47, 605–611. [Google Scholar] [CrossRef]
- Baralle, F.E.; Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 2017, 18, 437–451. [Google Scholar] [CrossRef]
- Will, C.L.; Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 2011, 3, a003707. [Google Scholar] [CrossRef] [Green Version]
- Kraft, S.; Rana, S.; Jouvin, M.-H.; Kinet, J.-P. The role of the FcepsilonRI beta-chain in allergic diseases. Int. Arch. Allergy Immunol. 2004, 135, 62–72. [Google Scholar] [CrossRef]
- Singleton, T.E.; Platzer, B.; Dehlink, E.; Fiebiger, E. The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. Mol. Immunol. 2009, 46, 2333–2339. [Google Scholar] [CrossRef] [Green Version]
- Donnadieu, E.; Jouvin, M.-H.; Rana, S.; Moffatt, M.F.; Mockford, E.H.; Cookson, W.O.; Kinet, J.P. Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene. Immunity 2003, 18, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Cruse, G.; Kaur, D.; Leyland, M.; Bradding, P. A novel FcεRIβ-chain truncation regulates human mast cell proliferation and survival. FASEB J. 2010, 24, 4047–4057. [Google Scholar] [CrossRef] [Green Version]
- Cruse, G.; Beaven, M.A.; Ashmole, I.; Bradding, P.; Gilfillan, A.M.; Metcalfe, D.D. A truncated splice-variant of the FcεRIβ receptor subunit is critical for microtubule formation and degranulation in mast cells. Immunity 2013, 38, 906–917. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Yamasaki, S.; Ito, Y.; Kabu, K.; Hattori, K.; Tezuka, T.; Nishizumi, H.; Kitamura, D.; Goitsuka, R.; Geha, R.S.; et al. Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell Biol. 2005, 170, 115–126. [Google Scholar] [CrossRef]
- Cruse, G.; Yin, Y.; Fukuyama, T.; Desai, A.; Arthur, G.K.; Bäumer, W.; Beaven, M.A.; Metcalfe, D.D. Exon skipping of FcεRIβ eliminates expression of the high-affinity IgE receptor in mast cells with therapeutic potential for allergy. Proc. Natl. Acad. Sci. USA 2016, 113, 14115–14120. [Google Scholar] [CrossRef] [Green Version]
- Lundin, K.E.; Gissberg, O.; Smith, C.I.E. Oligonucleotide Therapies: The Past and the Present. Hum. Gene Ther. 2015, 26, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Keinath, M.C.; Prior, D.E.; Prior, T.W. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. Appl. Clin. Genet. 2021, 14, 11–25. [Google Scholar] [CrossRef]
- Potaczek, D.P.; Garn, H.; Unger, S.D.; Renz, H. Antisense molecules: A new class of drugs. J. Allergy Clin. Immunol. 2016, 137, 1334–1346. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.-F.E.; Aartsma-Rus, A. Developments in reading frame restoring therapy approaches for Duchenne muscular dystrophy. Expert Opin. Biol. Ther. 2020, 1, 343–359. [Google Scholar] [CrossRef]
- Snider, D.B.; Arthur, G.K.; Falduto, G.H.; Olivera, A.; Ehrhardt-Humbert, L.C.; Smith, E.; Smith, C.; Metcalfe, D.D.; Cruse, G. Targeting KIT by frameshifting mRNA transcripts as a therapeutic strategy for aggressive mast cell neoplasms. Mol. Ther. 2021, 30, 295–310. [Google Scholar] [CrossRef]
- Ham, K.A.; Keegan, N.P.; McIntosh, C.S.; Aung-Htut, M.T.; Zaw, K.; Greer, K.; Fletcher, S.; Wilton, S.D. Induction of cryptic pre-mRNA splice-switching by antisense oligonucleotides. Sci. Rep. 2021, 11, 15137. [Google Scholar] [CrossRef]
- Havens, M.A.; Hastings, M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016, 44, 6549–6563. [Google Scholar] [CrossRef]
- Nakamura, A. Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy. J. Hum. Genet. 2017, 62, 871–876. [Google Scholar] [CrossRef]
- Aslesh, T.; Yokota, T. Development of Antisense Oligonucleotide Gapmers for the Treatment of Dyslipidemia and Lipodystrophy. Methods Mol. Biol. 2020, 2176, 69–85. [Google Scholar] [CrossRef]
- Aoki, Y.; Wood, M.J.A. Emerging Oligonucleotide Therapeutics for Rare Neuromuscular Diseases. J. Neuromuscul. Dis. 2021, 8, 869–884. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthur, G.K.; Cruse, G. Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation. Int. J. Mol. Sci. 2022, 23, 788. https://doi.org/10.3390/ijms23020788
Arthur GK, Cruse G. Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation. International Journal of Molecular Sciences. 2022; 23(2):788. https://doi.org/10.3390/ijms23020788
Chicago/Turabian StyleArthur, Greer K., and Glenn Cruse. 2022. "Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation" International Journal of Molecular Sciences 23, no. 2: 788. https://doi.org/10.3390/ijms23020788
APA StyleArthur, G. K., & Cruse, G. (2022). Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation. International Journal of Molecular Sciences, 23(2), 788. https://doi.org/10.3390/ijms23020788