NACA and LRP6 Are Part of a Common Genetic Pathway Necessary for Full Anabolic Response to Intermittent PTH
Abstract
:1. Introduction
2. Results
2.1. Phenotype of Naca99S/A Mice
2.2. Phenotype of Compound Naca99S/A;Lrp6+/fl;Ocn-Cre Heterozygous Mice (Compound Heterozygotes)
2.3. Response of Compound Heterozygotes to iPTH
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Generation of Naca99S/A Knock-in Strain
5.2. Generation of Compound Naca99S/A;Lrp6+/fl;Ocn-Cre Heterozygous Mice (Compound Heterozygotes)
5.3. Genotyping
5.4. PTH Treatment
5.5. Microcomputed Tomography (μCT)
5.6. Biomechanical Testing
5.7. Gene Expression Monitoring
5.8. Immunoblotting
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jilka, R.L.; Weinstein, R.S.; Bellido, T.; Roberson, P.; Parfitt, A.M.; Manolagas, S.C. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest. 1999, 104, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Pajevic, P.D.; Selig, M.; Barry, K.J.; Yang, J.Y.; Shin, C.S.; Baek, W.Y.; Kim, J.E.; Kronenberg, H.M. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J. Bone Miner. Res. 2012, 27, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, C.A.; Plotkin, L.I.; Galli, C.; Goellner, J.J.; Gortazar, A.R.; Allen, M.R.; Robling, A.G.; Bouxsein, M.; Schipani, E.; Turner, C.H.; et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 2008, 3, e2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariri, H.; Pellicelli, M.; St-Arnaud, R. New PTH signals mediating bone anabolism. Curr. Mol. Bio. Rep. 2017, 3, 133–141. [Google Scholar] [CrossRef]
- Wein, M.N. Parathyroid hormone signaling in osteocytes. JBMR Plus 2018, 2, 22–30. [Google Scholar] [CrossRef]
- Pellicelli, M.; Miller, J.A.; Arabian, A.; Gauthier, C.; Akhouayri, O.; Wu, J.Y.; Kronenberg, H.M.; St-Arnaud, R. The PTH-gas-protein kinase a cascade controls aNAC localization to regulate bone mass. Mol. Cell Biol. 2014, 34, 1622–1633. [Google Scholar] [CrossRef] [Green Version]
- Akhouayri, O.; Quelo, I.; St-Arnaud, R. Sequence-specific DNA binding by the alphaNAC coactivator is required for potentiation of c-Jun-dependent transcription of the osteocalcin gene. Mol. Cell Biol. 2005, 25, 3452–3460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meury, T.; Akhouayri, O.; Jafarov, T.; Mandic, V.; St-Arnaud, R. Nuclear alpha NAC influences bone matrix mineralization and osteoblast maturation in vivo. Mol. Cell Biol. 2010, 30, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, A.; Yotov, W.V.; Glorieux, F.H.; St-Arnaud, R. Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol. Cell Biol. 1998, 18, 1312–1321. [Google Scholar] [CrossRef] [Green Version]
- Pellicelli, M.; Hariri, H.; Miller, J.A.; St-Arnaud, R. Lrp6 is a target of the PTH-activated alphaNAC transcriptional coregulator. Biochim. Biophys. Acta 2018, 1861, 61–71. [Google Scholar] [CrossRef]
- Pinson, K.I.; Brennan, J.; Monkley, S.; Avery, B.J.; Skarnes, W.C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000, 407, 535–538. [Google Scholar] [CrossRef]
- He, X.; Semenov, M.; Tamai, K.; Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development 2004, 131, 1663–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Holmen, S.L.; Giambernardi, T.A.; Zylstra, C.R.; Buckner-Berghuis, B.D.; Resau, J.H.; Hess, J.F.; Glatt, V.; Bouxsein, M.L.; Ai, M.; Warman, M.L.; et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J. Bone Miner. Res. 2004, 19, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.E.; Bullock, W.A.; Horan, D.J.; Williams, B.O.; Warman, M.L.; Robling, A.G. Co-deletion of Lrp5 and Lrp6 in the skeleton severely diminishes bone gain from sclerostin antibody administration. Bone 2021, 143, 115708. [Google Scholar] [CrossRef] [PubMed]
- Brance, M.L.; Brun, L.R.; Coccaro, N.M.; Aravena, A.; Duan, S.; Mumm, S.; Whyte, M.P. High bone mass from mutation of low-density lipoprotein receptor-related protein 6 (LRP6). Bone 2020, 141, 115550. [Google Scholar] [CrossRef] [PubMed]
- Whyte, M.P.; McAlister, W.H.; Zhang, F.; Bijanki, V.N.; Nenninger, A.; Gottesman, G.S.; Lin, E.L.; Huskey, M.; Duan, S.; Dahir, K.; et al. New explanation for autosomal dominant high bone mass: Mutation of low-density lipoprotein receptor-related protein 6. Bone 2019, 127, 228–243. [Google Scholar] [CrossRef]
- Li, C.; Xing, Q.; Yu, B.; Xie, H.; Wang, W.; Shi, C.; Crane, J.L.; Cao, X.; Wan, M. Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH. J. Bone Miner. Res. 2013, 28, 2094–2108. [Google Scholar] [CrossRef]
- Vinyoles, M.; del Valle-Perez, B.; Curto, J.; Vinas-Castells, R.; Alba-Castellon, L.; Garcia de Herreros, A.; Dunach, M. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol. Cell 2014, 53, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Revollo, L.; Kading, J.; Jeong, S.Y.; Li, J.; Salazar, V.; Mbalaviele, G.; Civitelli, R. N-cadherin restrains PTH activation of Lrp6/beta-catenin signaling and osteoanabolic action. J. Bone Miner. Res. 2015, 30, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Dong, J.; Xiong, W.; Fang, Z.; Guan, H.; Li, F. N-cadherin restrains PTH repressive effects on sclerostin/SOST by regulating LRP6-PTH1R interaction. Ann. N. Y. Acad. Sci. 2016, 1385, 41–52. [Google Scholar] [CrossRef]
- Zhang, M.; Xuan, S.; Bouxsein, M.L.; von Stechow, D.; Akeno, N.; Faugere, M.C.; Malluche, H.; Zhao, G.; Rosen, C.J.; Efstratiadis, A.; et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J. Biol. Chem. 2002, 277, 44005–44012. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Yang, C.; Li, J.; Wu, X.; Yuan, H.; Ma, H.; He, X.; Nie, S.; Chang, C.; Cao, X. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 2008, 22, 2968–2979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaniec, U.T.; Wronski, T.J.; Liu, J.; Rivera, M.F.; Arzaga, R.R.; Hansen, G.; Brommage, R. PTH stimulates bone formation in mice deficient in Lrp5. J. Bone Miner. Res. 2007, 22, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimori, S.; O’Meara, M.J.; Castro, C.D.; Noda, H.; Cetinbas, M.; da Silva Martins, J.; Ayturk, U.; Brooks, D.J.; Bruce, M.; Nagata, M.; et al. Salt-inducible kinases dictate parathyroid hormone 1 receptor action in bone development and remodeling. J. Clin. Invest. 2019, 129, 5187–5203. [Google Scholar] [CrossRef]
- Wein, M.N.; Liang, Y.; Goransson, O.; Sundberg, T.B.; Wang, J.; Williams, E.A.; O’Meara, M.J.; Govea, N.; Beqo, B.; Nishimori, S.; et al. SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 2016, 7, 13176. [Google Scholar] [CrossRef] [PubMed]
- Hekmatnejad, B.; Mandic, V.; Yu, V.W.; Akhouayri, O.; Arabian, A.; St-Arnaud, R. Altered gene dosage confirms the genetic interaction between FIAT and alphaNAC. Gene 2014, 538, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Hariri, H.; Pellicelli, M.; St-Arnaud, R. Nfil3, a target of the NACA transcriptional coregulator, affects osteoblast and osteocyte gene expression differentially. Bone 2020, 141, 115624. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, S.J.; Liang, Q.; Rairdan, X.Y.; Moran, J.L.; Prosser, H.M.; Beier, D.R.; Lloyd, K.C.; Bradley, A.; Skarnes, W.C. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods 2009, 6, 493–495. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.J.; Wang, Y.Z.; Yamagami, T.; Zhao, T.; Song, L.; Wang, K. Generation of Lrp6 conditional gene-targeting mouse line for modeling and dissecting multiple birth defects/congenital anomalies. Dev. Dyn. 2010, 239, 318–326. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
St-Arnaud, R.; Pellicelli, M.; Ismail, M.; Arabian, A.; Jafarov, T.; Zhou, C.J. NACA and LRP6 Are Part of a Common Genetic Pathway Necessary for Full Anabolic Response to Intermittent PTH. Int. J. Mol. Sci. 2022, 23, 940. https://doi.org/10.3390/ijms23020940
St-Arnaud R, Pellicelli M, Ismail M, Arabian A, Jafarov T, Zhou CJ. NACA and LRP6 Are Part of a Common Genetic Pathway Necessary for Full Anabolic Response to Intermittent PTH. International Journal of Molecular Sciences. 2022; 23(2):940. https://doi.org/10.3390/ijms23020940
Chicago/Turabian StyleSt-Arnaud, René, Martin Pellicelli, Mahmoud Ismail, Alice Arabian, Toghrul Jafarov, and Chengji J. Zhou. 2022. "NACA and LRP6 Are Part of a Common Genetic Pathway Necessary for Full Anabolic Response to Intermittent PTH" International Journal of Molecular Sciences 23, no. 2: 940. https://doi.org/10.3390/ijms23020940
APA StyleSt-Arnaud, R., Pellicelli, M., Ismail, M., Arabian, A., Jafarov, T., & Zhou, C. J. (2022). NACA and LRP6 Are Part of a Common Genetic Pathway Necessary for Full Anabolic Response to Intermittent PTH. International Journal of Molecular Sciences, 23(2), 940. https://doi.org/10.3390/ijms23020940