Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype
Abstract
:1. Introduction
2. PWS
3. PWS Gene
4. The SNORD116 Gene
5. Genotype to Phenotype
6. Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Holland, A.; Manning, K.; Whittington, J.E. The paradox of Prader-Willi syndrome revisited: Making sense of the phenotype. BioMedicine 2022, 78, 103952. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.S.G.; Manning, K.E.; Fletcher, P.; Holland, A. In-vivo neuroimaging evidence of hypothalamic alteration in Prader-Willi syndrome. Brain Commun. 2022, 4, fcac229. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.L.; Lynn, C.H.; Driscoll, D.C.; Goldstone, A.P.; Gold, J.A.; Kimonis, V.; Dykens, E.; Butler, M.G.; Shuster, J.J.; Driscoll, D.J. Nutritional phases in Prader-Willi syndrome. Am. J. Med. Genet. A. 2011, 155A, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Boer, H.; Holland, A.J.; Whittington, J.E.; Butler, J.V.; Webb, T.; Clarke, D.J. Psychotic illness in people with Prader-Willi syndrome due to chromosome 15 maternal uniparental disomy. Lancet 2002, 359, 135–136. [Google Scholar] [CrossRef]
- Bennett, J.A.; Germani, T.; Haqq, A.M.; Zwaigenbaum, L. Autism spectrum disorder in Prader-Willi syndrome: A systematic review. Am. J. Med. Genet. A. 2015, 167A, 2936–2944. [Google Scholar] [CrossRef] [PubMed]
- Holm, V.A.; Cassidy, S.B.; Butler, M.G.; Hanchett, J.M.; Greenswag, L.R.; Whitman, B.Y.; Greenberg, F. Prader-Willi syndrome: Consensus Diagnostic Criteria. Pediatrics 1993, 91, 398–402. [Google Scholar] [CrossRef]
- De Souza, M.A.; McAllister, C.; Suttie, M.; Perrotta, C.; Mattina, T.; Faravelli, F.; Forzano, F.; Holland, A.; Hammond, P. Growth hormone, gender and face shape in Prader-Willi syndrome. Am. J. Med. Genet. A. 2013, 161A, 2453–2463. [Google Scholar] [CrossRef]
- Wawrzik, M.; Unmehopa, U.A.; Swaab, D.F.; van de Nes, J.; Buiting, K.; Horsthemke, B. The C15orf2 gene in the Prader-Willi syndrome region is subject to genomic imprinting and positive selection. Neurogenetics 2010, 11, 153–156. [Google Scholar] [CrossRef]
- Fountain, M.D.; Tao, H.; Chen, C.A.; Yin, J.; Schaaf, C.P. Magel2 knockout mice manifest altered social phenotypes and a deficit in preference for social novelty. Genes Brain Behav. 2017, 16, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Fountain, M.D.; Schaaf, C.P. Prader-Willi Syndrome and Schaaf-Yang Syndrome: Neurodevelopmental Diseases Intersecting at the MAGEL2 Gene. Diseases 2016, 4, 2. [Google Scholar] [CrossRef]
- Matarazzo, V.; Caccialupi, L.; Schaller, F.; Shvarev, Y.; Kourdougli, N.; Bertoni, A.; Menuet, C.; Voituron, N.; Deneris, E.; Gaspar, P.; et al. Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome. eLife 2017, 31, e32640. [Google Scholar] [CrossRef] [PubMed]
- Muscatelli, F.; Abrous, D.N.; Massacrier, A.; Boccaccio, L.; Le Moal, M.; Cau, P.; Cremer, H. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 2000, 9, 3101–3110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, F.; Watrin, F.; Sturny, R.; Massacrier, A.; Szepetowski, P.; Muscatelli, F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 2010, 15, 4895–4905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, L.J.; Einfeld, S.L.; Hu, N.; Carter, C.S. A review of clinical trials of oxytocin in Prader-Willi syndrome. Curr. Opin. Psychiatry 2018, 31, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Althammer, F.; Muscatelli, F.; Grinevich, V.; Schaaf, C.P. Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: Evidence, disappointments, and future research strategies. Transl. Psychiatry 2022, 12, 318. [Google Scholar] [CrossRef] [PubMed]
- Kanber, D.; Giltay, J.; Wieczorek, D.; Zogel, C.; Hochstenbach, R.; Caliebe, A.; Kuechler, A.; Horsthemke, B.; Buiting, K. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader-Willi syndrome. Eur. J. Hum. Genet. 2009, 17, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Buiting, K.; Di Donato, N.; Beygo, J.; Bens, S.; von der Hagen, M.; Hackmann, K.; Horsthemke, B. Clinical phenotypes of MAGEL2 mutations and deletions. Orphanet J. Rare Dis. 2014, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, T.; del Gaudio, D.; German, J.R.; Shinawi, M.; Peters, S.U.; Person, R.; Garnica, A.; Cheung, S.W.; Beaudet, A.L. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 2008, 40, 719–721. [Google Scholar] [CrossRef] [Green Version]
- De Smith, A.J.; Purmann, C.; Walters, R.G.; Ellis, R.J.; Holder, S.E.; Van Haelst, M.M.; Brady, A.F.; Fairbrother, U.L.; Dattani, M.; Keogh, J.M.; et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum. Mol. Genet. 2009, 18, 3257–3265. [Google Scholar] [CrossRef] [Green Version]
- Duker, A.L.; Ballif, B.C.; Bawle, E.V.; Person, R.E.; Mahadevan, S.; Alliman, S.; Thompson, R.; Traylor, R.; Bejjani, B.A.; Shaffer, L.G.; et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 2010, 18, 1196–1201. [Google Scholar] [CrossRef]
- Zhang, Q.; Bouma, G.J.; McClellan, K.; Tobet, S. Hypothalamic expression of snoRNA Snord116 is consistent with a link to the hyperphagia and obesity symptoms of Prader-Willi syndrome. Int. J. Dev. Neurosci. 2012, 30, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, J.A.; Zigman, J.M. Hypothalamic loss of Snord116 and Prader-Willi syndrome hyperphagia: The buck stops here? J. Clin. Investig. 2018, 128, 900–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.R.; Dent, C.L.; McNamara, G.I.; Isles, A.R. Behavioural effects of imprinted genes. Curr. Opin. Behav. Sci. 2015, 2, 28–33. [Google Scholar] [CrossRef]
- Good, D.J.; Kocher, M.A. Phylogenetic Analysis of the SNORD116 Locus. Genes 2017, 8, 358. [Google Scholar]
- Falaleeva, M.; Surface, J.; de la Grange, P.; Stamm, S. SNORD116 and SNORD115 change expression of multiple genes and modify each other’s activity. Gene 2015, 72, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Purtell, L.; Fu, M.; Zhang, L.; Zolotukhin, S.; Campbell, L.; Herzog, H.J. Hypothalamus Specific Re-Introduction of SNORD116 into Otherwise Snord116 Deficient Mice Increased Energy Expenditure. J. Neuroendocrinol. 2017, 29, e12457. [Google Scholar] [CrossRef] [Green Version]
- Hinton, E.C.; Holland, A.J.; Gellatly, M.S.N.; Soni, S.; Ghatei, M.A.; Owen, A.M. Neural Representations of hunger and satiety in Prader-Willi syndrome. Int. J. Obes. 2006, 30, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Hinton, E.C.; Holland, A.J.; Gellatly, M.S.; Soni, S.; Owen, A.M. An investigation into food preferences and the neural basis of food-related incentive motivation in Prader-Willi syndrome. J. Intellect Disabil. Res. 2006, 50, 633–642. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Bini, S.; Grugni, G.; Agosti, F.; DeCol, A.; Mallone, M.; Cella, S.G.; Sartorio, A. Unexpectedly increasedanorexigenic postprandial responses of PYY and GLP-1 to fast ice cream consumption in adult patients with Prader-Willi syndrome. Clin. Endoccrinol. 2014, 81, 542–550. [Google Scholar] [CrossRef]
- Franco, M.L.; Melero, C.; Sarasola, E.; Acebo, P.; Luque, A.; Calatayud-Baselga, I.; García-Barcina, M.; Vilar, M. Mutations in TrkA causing congenital insensitivity to pain with anhidrosis (CIPA) induce misfolding, aggregation, and mutation-dependent neurodegeneration by dysfunction of the autophagic flux. J. Biol Chem. 2016, 291, 21363–21374. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whittington, J.; Holland, A. Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype. Int. J. Mol. Sci. 2022, 23, 12089. https://doi.org/10.3390/ijms232012089
Whittington J, Holland A. Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype. International Journal of Molecular Sciences. 2022; 23(20):12089. https://doi.org/10.3390/ijms232012089
Chicago/Turabian StyleWhittington, Joyce, and Anthony Holland. 2022. "Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype" International Journal of Molecular Sciences 23, no. 20: 12089. https://doi.org/10.3390/ijms232012089
APA StyleWhittington, J., & Holland, A. (2022). Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype. International Journal of Molecular Sciences, 23(20), 12089. https://doi.org/10.3390/ijms232012089