Genetic Mechanism of Tissue-Specific Expression of PPAR Genes in Turbot (Scophthalmus maximus) at Different Temperatures
Abstract
:1. Introduction
2. Results
2.1. SSP Analysis of Variance
2.2. AMMI Analysis
2.3. GGE Biplot Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Experimental Methods
4.2.1. Total RNA Extraction, Quantification, Integrity Detection, and cDNA Synthesis
4.2.2. Fluorescence qPCR
4.3. Data Analysis
4.3.1. SSP Analysis of Variance
4.3.2. AMMI Analysis
4.3.3. GGE Biplot Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, T.T.; Yang, S.S.; Ma, A.J.; Huang, Z.H.; Sun, Z.B.; Wang, X.A.; Xia, D.D. Tissue expression of lipid metabolism related genes PPARs and their responses to heat stress in turbot (Scophthalmus maximus). J. Fish. China 2020, 44, 515–522. [Google Scholar]
- An, M.I.; Choi, C.Y. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: Effects on hemolymph and biochemical parameters. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 155, 34–42. [Google Scholar]
- Li, W.Y.; Xu, Z.J.; Yi, X.J.; Chen, S.; Ma, X.B.; Zhang, X.; Qiu, H.J.; Zhang, X.L.; Jiang, X.M. Effects of temperature on growth, immune factor activity and related gene expression of juvenile Centropristis striata. Oceanol. Et Limnol. Sin. 2021, 52, 708–717. [Google Scholar]
- Mushtaq, M.Y.; Marçal, R.; Champagne, D.L.; van der Kooy, F.; Verpoorte, R.; Choi, Y.H. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics. Planta Med. 2014, 80, 1227–1233. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.C.; Kang, C.K.; Tang, C.H.; Lee, T.H.; Chen, T.Y. Transcriptomic Analysis of Metabolic Pathways in Milkfish That Respond to Salinity and Temperature Changes. PLoS ONE 2015, 10, e0134959. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, N.I.; Tunnah, L.; Currie, S.; MacCormack, T.J. Metabolic adjustments to short-term diurnal temperature fluctuation in the rainbow trout (Oncorhynchus mykiss). Physiol. Biochem. Zool. 2016, 89, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Forgati, M.; Kandalski, P.K.; Herrerias, T.; Zaleski, T.; Machado, C.; Souza, M.R.D.P.; Donatti, L. Effects of heat stress on the renal and branchial carbohydrate metabolism and antioxidant system of Antarctic fish. J. Comp. Physiol. B 2017, 187, 1137–1154. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.H.; Liu, Y.R.; Tian, J.L.; Huang, K.Y.; Shi, T.R.; Dai, X.X.; Zhang, W.J. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Front. Plant Sci. 2017, 8, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.A.; Ma, A.J. Dissection of genotype × tissue interactions for immunological factors in turbot (Scophthalmus maximus) infected with Vibrio anguillarum. Fish Shellfish. Immunol. 2021, 119, 60–66. [Google Scholar]
- Fernandez, M.V.S.; Johnson, J.S.; Abuajamieh, M.; Stoakes, S.K.; Seibert, J.T.; Cox, L.; Kahl, S.; Elsasser, T.H.; Ross, J.W.; Isom, S.C.; et al. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs. Physiol. Rep. 2015, 3, e12315. [Google Scholar] [CrossRef]
- Martins, D.A.; Rocha, F.; Castanheira, F.; Rocha, F.; Castanheira, F.; Mendes, A.; Pousão-Ferreira, P.; Bandarra, N.; Coutinho, J.; Morais, S.; et al. Effects of dietary arachidonic acid on cortisolproduction and gene expression in stressresponse in Senegalese sole (Solea senegalensis) post-larvae. Fish Physiol. Biochem. 2013, 39, 1223–1238. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.; Qian, Y.X.; Tong, L.J. Cloning of full-length cDNA and RT-PCR expression analysis of PPARβ in Larimichthys crocea. J. Biol. 2010, 27, 1–4. [Google Scholar]
- Carlota, G.Z. Tissue Distribution of Peroxisome Proliferator-Activated Receptors in Salmon Fish (Salmo salar L.). Sver. Lantbr. Inst. För Livsmed. 2013, 373, 1–22. [Google Scholar]
- Fang, L.L.; Chen, G.; Wang, Z.L.; Tang, B.G.; Zhang, J.D.; Huang, J.S.; Zhou, H. Molecular Cloning and Expression Distribution and Bioinformatics Analysis of Peroxisome Proliferator Activated Receptors-α in Trachinotus ovatus. J. Guangdong Ocean. Univ. 2015, 35, 1–9. [Google Scholar]
- Gao, J.; Xu, G.C.; Du, F.K.; Gu, R.B. Progress on tissue expression and function of PPARs gene in fish. J. Yangtze Univ. (Nat. Sci. Ed.) 2016, 13, 43–46. [Google Scholar]
- Zhang, Q.Z.; Wang, W.P. Progress of Cloning and expression of PPARs in fish. Sci. Technol. Inf. 2019, 17, 242–244. [Google Scholar]
- Issemann, I.; Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990, 347, 645–650. [Google Scholar] [CrossRef]
- Xu, Y. The relationship between PPAR with animal lipocyte’s differentiation and lipometabolism. Guangdong J. Anim. Vet. Sci. 2007, 32, 9–11, 15. [Google Scholar]
- Dong, X.; Xu, H.; Mai, K.; Xu, W.; Zhang, Y.J.; Ai, Q.H. Cloning and characterization of SREBP-1 and PPAR-αin Japanese seabass Lateolabrax japonicus, and their gene expressions in response to different dietary fatty acid profiles. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014, 180C, 48–56. [Google Scholar]
- Ibabe, A.; Bilbao, E.; Cajaraville, M.P. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochem. Cell Biol. 2005, 123, 75–87. [Google Scholar] [CrossRef]
- Boukouvala, E.; Antonopoulou, E.; Favre-Krey, L.; Diez, A.; Bautista, J.M.; Leaver, M.J.; Tocher, D.R.; Krey, G. Molecular characterization of three peroxisome proliferator-activated receptors from the sea bass (Dicentrarchus labrax). Lipids 2004, 39, 1085–1092. [Google Scholar]
- Kondo, H.; Misaki, R.; Gelman, L. Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. Gen. Comp. Endocrinol. 2007, 154, 120–127. [Google Scholar]
- Schwerin, M.; Voigt, J.; Wegner, J.; Kühn, C.; Ender, K.; Hagemeister, H. Gene expression in different tissues of lactating cows of differing metabolic type: Comparison of mRNA patterns by the differential display method. J. Anim. Physiol. Anim. Nutr. 1999, 81, 113–123. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.L.; Deng, W.D.; Mao, H. Differential Gene Expression in Different Tissues of Black-Bone Sheep and Normal Sheep. Asian J. Anim. Vet. Adv. 2011, 6, 379–384. [Google Scholar]
- Farzane, A.; Ali-Reza, A.; Zahra, B.; Abolfazl, M. Novel Study of Model-Based Clustering Time Series Gene Expression in Different Tissues: Applications to Aging Process. Curr. Aging Sci. 2020, 13, 178–187. [Google Scholar]
- Li, J.; Mao, S.M.; Zhou, D.; Feng, W.W.; Li, P.; Chen, D.F.; Long, Q.M.; Li, J.W.; Xie, Y.; Wang, S.; et al. The study on mRNA expression of MC4R and SIMI genes in different tissues for congjiang pigs. Swine Prod. 2020, 3, 65–68. [Google Scholar]
- Ling, A.; Li, X.; Hu, X.; Ma, Z.; Wu, K.; Zhang, H.; Hao, M.; Wei, S. Dynamic changes in polyphenol compounds, antioxidant activity, and PAL gene expression in different tissues of buckwheat during germination. J. Sci. Food Agric. 2018, 98, 5723–5730. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.; Li, Y.; Hou, N.; Chang, Y.M.; Liang, L.Q.; Lei, Q.Q. Influence on the expression quantity of five genes in the different tissues of common carps Cyprinus carpio under the low temperature. Acta Zool. Sin. 2008, 54, 460–466. [Google Scholar]
- Sun, J.H. Differential Gene Expression Analysis of Low Temperture Transcriptome and Genealogical Identification from Takifugu rubripes. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2017. [Google Scholar]
- Yu, W.B.; Zhu, K.H.; Guo, H.Y.; Zhang, N.; Sun, X.X.; Wu, N.; Zhang, D.C. Cloning and expression analysis of MHC II β gene in Trachinotus ovatus. South China Fish. Sci. 2017, 13, 69–79. [Google Scholar]
- Wolfram, J.P.K.; Roger, G.; Dosch, H.M. Quantitative analysis of gene expression in different tissues by template-calibrated RT-PCR and Laser-induced fluorescence. PCR Methods Appl. 1994, 4, 154–159. [Google Scholar]
- Braissant, O.; Foufelle, F.; Scotto, C.; Dauça, M.; Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Braissant, O.; Wahli, W. Differential Expression of Peroxisome Proliferator-Activated Receptor -α, -β, and -γ during Rat Embryonic Development. Endocrinology 1998, 139, 2748–2754. [Google Scholar] [CrossRef]
- Loviscach, M.; Rehman, N.; Carter, L.; Mudaliar, S.; Mohadeen, P.; Ciaraldi, T.P.; Veerkamp, J.H.; Henry, R.R. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: Relation to insulin action. Diabetologia 2000, 43, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Pascal, E.; Olivier, B.; Sharmila, B.M.; Liliane, M.; Walter, W.; Beatrice, D. Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. Endocrinology 2001, 142, 4195–4202. [Google Scholar]
- Meng, H.; Lib, H.; Zhaob, J.G.; Gub, Z.L. Differential expression of peroxisome proliferator-activated receptors alpha and gamma gene in various chicken tissues. Domest. Anim. Endocrinol. 2005, 28, 105–110. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.L.; Xiao, H.W.; Zhang, H.L. The differential expression of peroxisome proliferators-activated receptors in various duck tissues. Mol. Biol. Rep. 2010, 37, 1235–1240. [Google Scholar] [CrossRef]
- Urbatzka, B.; Galante-Oliveira, S.; Rocha, E.; Castro, L.F.C.; Cunha, I. Tissue expression of PPAR-alpha isoforms in Scophthalmus maximus and transcriptional response of genes in the heart after exposure to WY-14643. Fish Physiol. Biochem. 2013, 39, 1043–1055. [Google Scholar] [CrossRef]
- Gollob, H.F.A. Statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 1968, 33, 73–115. [Google Scholar] [CrossRef]
- Yan, W.K.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Yan, W.K.; Holland, J.B. A heritability-adjusted GGE Biplot for test environment evaluation. Euphytica 2010, 171, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Trattner, S. Quality of Lipids in Fish Fed Vegetable Oils. Diss. Uppsala: Sveriges Lantrbuksuniv. Doctoral Thesis, Swedish University of Agricultural Sciences Uppsala, Uppsala, Sweden, 2009. [Google Scholar]
- Ibabe, A.; Grabenbauer, M.; Baumgart, E.; Fahimi, D.H.; Cajaraville, M.P. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio). Histochem. Cell Biol. 2002, 118, 231–239. [Google Scholar] [CrossRef]
- Oku, H.; Umino, T. Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 268–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista-Pinto, C.; Rodrigues, P.; Rocha, E.; Lobo-da-Cunha, A. Identification and organ expression of peroxisome proliferator activated receptors in brown trout (Salmo trutta f. fario). Biochim. Biophys. Acta 2005, 1731, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Leaver, M.J.; Boukouvala, E.; Antonopoulou, E.; Diez, A.; Favre-Krey, L.; Ezaz, M.T.; Bautista, J.M.; Tocher, D.R.; Krey, G. Three peroxisome proliferator-activated receptor isotype from each of two species of marine fish. Endocrinology 2005, 146, 3150–3162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, A.; Xu, J.; Jerks, E.; Mangelsdorf, D.J.; Jump, D.B. Fatty Acid Regulation of Liver X Receptors (LXR) and Peroxisome Proliferator-activated Receptor α (PPARα) in HEK293 Cells. J. Biol. Chem. 2002, 277, 39243–39250. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.A.; Ma, A.J.; Huang, Z.H.; Sun, Z.B.; Cui, W.X.; Qu, J.B.; Yu, H. Estimation of genetic parameters for upper thermal tolerances and growth-related traits in turbot Scophthalmus maximus. J. Oceanol. Limnol. 2019, 37, 1736–1745. [Google Scholar] [CrossRef]
- Ndong, D.; Chen, Y.Y.; Lin, Y.H.; Vaseeharan, B.; Chen, J.C. The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish Shellfish. Immunol. 2007, 22, 686–694. [Google Scholar] [CrossRef]
- Wang, X.A.; Liu, Z.F.; Ma, A.J. Interpretation of the genotype by tissue Interactions of four genes (AFP1, CIRP, YB-1, and HMGB1) in Takifugu rubripes under different low-temperature conditions. Front. Mol. Biosci. 2022, 9, 897935. [Google Scholar] [CrossRef]
- Wang, J.Q.; Hou, L.; Li, X.Y.; Zhao, X.T.; Zhang, R.F.; Jiang, L.J.; Sun, W.J.; An, J.L. The cloning and analysis of the β-actin gene in Turbot. Fish. Sci. 2007, 26, 214–217. [Google Scholar]
- Schmittgen, T.D.; Zakrajsek, B.A. Effect of experimental treatment on housekeeping gene expression: Validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 2000, 46, 69–81. [Google Scholar] [CrossRef]
- Piepho, H.P.; Edmondson, R.N. A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels. J. Agron. Crop Sci. 2018, 204, 429–455. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.K. Methodology of Cultivar Evaluation Based on Yield Trial Data-with Special Reference to Winter Wheat in Ontario; University of Guelph: Guelph, ON, Canada, 1999. [Google Scholar]
- Yan, W.K. GGEbiplot—A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Yan, W. Singular value partitioning for biplot analysis of multi-environment trial data. Agron. J. 2002, 94, 990–996. [Google Scholar]
- Tang, Q. DPS Data Processing System; Science Press: Beijing, China, 2007. [Google Scholar]
Source of Variation | Sum of Square | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Blocks (replicates) | 1.2927 | 2 | 0.6464 | ||
Temperature | 58.603 | 4 | 14.651 | 18.398 ** | 0.0004 |
Main-plot error | 6.3707 | 8 | 0.7963 | ||
Tissue | 270.57 | 9 | 30.063 | 128.02 ** | 0 |
Temperature × tissue | 328.25 | 36 | 9.1181 | 38.83 ** | 0 |
Split-plot error | 21.134 | 90 | 0.2348 | ||
Gene | 180.69 | 3 | 60.229 | 249.7 ** | 1 × 10−7 |
Temperature × gene | 321.96 | 12 | 26.83 | 111.23 ** | 1 × 10−7 |
Tissue × gene | 222.42 | 27 | 8.2378 | 34.153 ** | 1 × 10−7 |
Temperature × tissue × gene | 485.05 | 108 | 4.4912 | 18.62 ** | 1 × 10−7 |
Split-split-plot error | 72.361 | 300 | 0.2412 |
Temperatures | Source of Variation | df | SS | MS | F | Prob. | % of Total SS |
---|---|---|---|---|---|---|---|
Total | 119 | 21.5253 | 0.1809 | ||||
Treatment | 39 | 15.2082 | 0.39 | 4.9384 ** | 0 | ||
Gene | 3 | 0.0548 | 0.0183 | 0.2311 | 0.87444 | 0.2545 | |
Tissue | 9 | 5.9496 | 0.6611 | 8.3718 ** | 0 | 27.6400 | |
14 °C | Interaction | 27 | 9.2039 | 0.3409 | 4.317 ** | 0 | 42.7585 |
IPCA1 | 11 | 4.39599 | 0.39964 | 5.06101 ** | 6 × 10−6 | 47.7622 | |
IPCA2 | 9 | 3.2454 | 0.3606 | 4.56665 ** | 7.1 × 10−5 | 35.2611 | |
Residual | 7 | 1.5625 | 0.22321 | ||||
Error | 80 | 6.31709 | 0.07896 | ||||
Total | 119 | 480.995 | 4.042 | ||||
Treatment | 39 | 447.293 | 11.4691 | 27.2247 ** | 0 | ||
Gene | 3 | 47.154 | 15.718 | 37.3106 ** | 0 | 9.8034 | |
Tissue | 9 | 256.9 | 28.5444 | 67.7573 ** | 0 | 53.4100 | |
20 °C | Interaction | 27 | 143.239 | 5.3052 | 12.5931 ** | 0 | 29.7797 |
IPCA1 | 11 | 120.236 | 10.9305 | 25.9463 ** | 0 | 83.9403 | |
IPCA2 | 9 | 17.053 | 1.89477 | 4.49772 ** | 8.5 × 10−5 | 11.9052 | |
Residual | 7 | 5.9508 | 0.85011 | ||||
Error | 80 | 33.702 | 0.42127 | ||||
Total | 119 | 370.434 | 3.1129 | ||||
Treatment | 39 | 347.314 | 8.9055 | 30.8149 ** | 0 | ||
Gene | 3 | 127.261 | 42.4204 | 146.784 ** | 0 | 34.3546 | |
Tissue | 9 | 74.5141 | 8.2793 | 28.6483 ** | 0 | 20.1153 | |
23 °C | Interaction | 27 | 145.539 | 5.3903 | 18.6517 ** | 0 | 39.2886 |
IPCA1 | 11 | 95.9195 | 8.71996 | 30.1729 ** | 0 | 65.9065 | |
IPCA2 | 9 | 37.9649 | 4.21832 | 14.5963 ** | 0 | 26.0857 | |
Residual | 7 | 11.6543 | 1.6649 | ||||
Error | 80 | 23.12 | 0.289 | ||||
Total | 119 | 524.157 | 4.4047 | ||||
Treatment | 39 | 498.347 | 12.7781 | 39.6067 ** | 0 | ||
Gene | 3 | 195.432 | 65.1441 | 201.919 ** | 0 | 37.2850 | |
Tissue | 9 | 133.402 | 14.8224 | 45.9432 ** | 0 | 25.4507 | |
25 °C | Interaction | 27 | 169.512 | 6.2782 | 19.4598 ** | 0 | 32.3400 |
IPCA1 | 11 | 132.551 | 12.0501 | 37.3501 ** | 0 | 78.1954 | |
IPCA2 | 9 | 35.5725 | 3.9525 | 12.2511 ** | 0 | 20.9852 | |
Residual | 7 | 1.38891 | 0.19842 | ||||
Error | 80 | 25.8101 | 0.32263 | ||||
Total | 119 | 512.987 | 4.3108 | ||||
Treatment | 39 | 500.778 | 12.8405 | 84.1362 ** | 0 | ||
Gene | 3 | 132.745 | 44.2483 | 289.934 ** | 0 | 25.8768 | |
Tissue | 9 | 128.053 | 14.2281 | 93.229 ** | 0 | 24.9622 | |
28 °C | Interaction | 27 | 239.979 | 8.8881 | 58.2389 ** | 0 | 46.7808 |
IPCA1 | 11 | 224.367 | 20.397 | 133.65 ** | 0 | 93.4943 | |
IPCA2 | 9 | 15.3029 | 1.70032 | 11.1412 ** | 0 | 6.3767 | |
Residual | 7 | 0.30941 | 0.0442 | ||||
Error | 80 | 12.2092 | 0.15261 |
Temperature | PPARs Gene/Tissue | PCA1 | PCA2 | PCA3 | Distance From Center Point (Di) |
---|---|---|---|---|---|
PPARα1 | 0.3631 | -0.3388 | 0.5799 | 0.7635 | |
PPARα2 | −0.2853 | −0.6881 | −0.4031 | 0.8470 | |
PPARβ | −0.7873 | 0.5357 | 0.1337 | 0.9616 | |
PPARγ | 0.7094 | 0.4912 | −0.3105 | 0.9171 | |
Brain | −0.1959 | −0.1842 | 0.2120 | 0.3424 | |
Gill | 0.3742 | 0.2135 | 0.3533 | 0.5571 | |
Heart | −0.2033 | 0.0081 | −0.0187 | 0.2043 | |
14 °C | Intestine | 0.0757 | −0.3207 | 0.0136 | 0.3298 |
Kidney | 0.1718 | −0.2942 | 0.1449 | 0.3703 | |
Liver | −0.7228 | 0.5105 | −0.049 | 0.8863 | |
Muscle | −0.0716 | −0.5338 | −0.4938 | 0.7307 | |
Skin | 0.2494 | 0.1629 | −0.0821 | 0.3090 | |
Spleen | 0.2178 | 0.4764 | −0.3899 | 0.6530 | |
Stomach | 0.6664 | 0.2204 | −0.1291 | 0.7137 | |
PPARα1 | 1.0137 | 0.5744 | 0.8333 | 1.4325 | |
PPARα2 | −0.5413 | −1.2729 | 0.2258 | 1.4016 | |
PPARβ | −1.9714 | 0.6681 | −0.2492 | 2.0964 | |
PPARγ | 1.4990 | 0.0304 | −0.8098 | 1.7041 | |
Brain | −0.4701 | −1.0778 | −0.1075 | 1.1808 | |
Gill | −2.0521 | −0.3423 | 0.4680 | 2.1324 | |
Heart | −1.7196 | 0.6663 | −0.5255 | 1.9176 | |
20 °C | Intestine | −0.1222 | 0.0793 | −0.0252 | 0.1479 |
Kidney | 0.0731 | 0.2832 | 0.8371 | 0.8867 | |
Liver | −0.1064 | 0.7261 | 0.2317 | 0.7696 | |
Muscle | 0.0370 | 0.2154 | −0.1444 | 0.2620 | |
Skin | −0.1720 | 0.0282 | 0.0462 | 0.1803 | |
Spleen | −0.0496 | −0.0232 | 0.3393 | 0.3437 | |
Stomach | 0.0133 | −0.1143 | −0.2517 | 0.2767 | |
PPARα1 | 2.4252 | −0.4588 | 0.0502 | 2.4687 | |
PPARα2 | −1.0131 | −0.5212 | −1.1106 | 1.5910 | |
PPARβ | −1.2498 | −0.6838 | 0.9882 | 1.7339 | |
PPARγ | −0.1622 | 1.6639 | 0.0721 | 1.6734 | |
Brain | 1.4789 | −0.3157 | 0.4705 | 1.5838 | |
Gill | 1.7790 | −0.6510 | −0.1629 | 1.9014 | |
Heart | 0.9966 | −0.4567 | 0.0363 | 1.0969 | |
23 °C | Intestine | 0.1985 | 0.0565 | −0.2898 | 0.3558 |
Kidney | 0.1161 | −0.4054 | −0.0442 | 0.4240 | |
Liver | 0.6440 | 0.4309 | −1.2183 | 1.4438 | |
Muscle | 1.2598 | 1.2849 | 0.3835 | 1.8399 | |
Skin | 0.1683 | −0.1650 | −0.4971 | 0.5502 | |
Spleen | 0.1445 | 0.3581 | 0.0620 | 0.3911 | |
Stomach | 0.2155 | 0.9091 | −0.0159 | 0.9345 | |
PPARα1 | 1.9616 | −1.3496 | 0.1036 | 2.3833 | |
PPARα2 | −1.7486 | −0.1206 | 0.5524 | 1.8377 | |
PPARβ | −1.2483 | −0.4003 | −0.6314 | 1.4550 | |
PPARγ | 1.0353 | 1.8706 | −0.0247 | 2.1382 | |
Brain | 1.8721 | −1.2646 | 0.3754 | 2.2902 | |
Gill | 0.8757 | 0.5911 | 0.0162 | 1.0567 | |
Heart | 1.4477 | −0.3709 | −0.5774 | 1.6021 | |
25 °C | Intestine | 0.3812 | −0.4361 | 0.1814 | 0.6070 |
Kidney | 0.4074 | 0.6864 | −0.0198 | 0.7985 | |
Liver | 0.0646 | 0.6955 | 0.4082 | 0.8091 | |
Muscle | 1.2839 | 0.9041 | 0.0284 | 1.5706 | |
Skin | 0.9093 | 0.4450 | −0.0753 | 1.0152 | |
Spleen | 0.1557 | 0.5520 | −0.1217 | 0.5864 | |
Stomach | 0.5938 | 0.9715 | 0.1387 | 1.1470 | |
PPARα1 | 2.7550 | −0.2784 | 0.0241 | 2.7691 | |
PPARα2 | −1.2142 | −0.6114 | 0.3761 | 1.4105 | |
PPARβ | −1.0348 | −0.8981 | −0.3546 | 1.4154 | |
PPARγ | −0.5059 | 1.7880 | −0.045 | 1.8588 | |
Brain | 2.7607 | −0.7314 | 0.0951 | 2.8575 | |
Gill | 0.7933 | 0.7247 | −0.1139 | 1.0805 | |
Heart | 1.1408 | 0.9294 | −0.0646 | 1.4729 | |
28 °C | Intestine | 0.4358 | 0.2129 | 0.0948 | 0.4942 |
Kidney | 0.2706 | 0.2908 | −0.0118 | 0.3974 | |
Liver | 0.1054 | 0.7348 | 0.4034 | 0.8449 | |
Muscle | 0.3547 | 0.1679 | −0.1111 | 0.4079 | |
Skin | 0.6312 | 0.2448 | −0.1734 | 0.6989 | |
Spleen | −0.1638 | 1.0535 | 0.0795 | 1.0691 | |
Stomach | 0.1145 | 0.8142 | −0.1518 | 0.8362 |
Temperatures | ||||||
---|---|---|---|---|---|---|
Evaluation Index | Ranking | 14 °C | 20 °C | 23 °C | 25 °C | 28 °C |
High expression | 1 | PPARγ | PPARβ | PPARα1 | PPARγ | PPARα1 |
2 | PPARα1 | PPARα2 | PPARγ | PPARα1 | PPARγ | |
3 | PPARβ | PPARα1 | PPARα2 | PPARβ | PPARα2 | |
4 | PPARα2 | PPARγ | PPARβ | PPARα2 | PPARβ | |
Stable expression | 1 | PPARγ | PPARγ | PPARα2 | PPARβ | PPARβ |
2 | PPARα1 | PPARβ | PPARβ | PPARα2 | PPARα2 | |
3 | PPARα2 | PPARα1 | PPARα1 | PPARγ | PPARα1 | |
4 | PPARβ | PPARα2 | PPARγ | PPARα1 | PPARγ | |
Comprehensive evaluation of high and stable expression | 1 | PPARγ | PPARβ | PPARα1 | PPARγ | PPARα1 |
2 | PPARα1 | PPARα2 | PPARγ | PPARα1 | PPARγ | |
3 | PPARα2 | PPARα1 | PPARα2 | PPARβ | PPARα2 | |
4 | PPARβ | PPARγ | PPARβ | PPARα2 | PPARβ |
Primer Name | Gene Name | Sequence (5′ to 3′) | Annealing Temperature | Amplification Efficiency |
---|---|---|---|---|
P1(S) | PPARα1 | CTACTCAAGCCTGGACCTCAACGA | 6 °C | 93.095% |
P2(AS) | PPARα1 | TCACTGAAGGGACGCCGCA | ||
P3(S) | PPARα2 | CCCTGATAACACCTTCCTCTTTCCC | 60 °C | 93.92% |
P4(AS) | PPARα2 | TGTCTCGGTCGTCTTGATGTCCTG | ||
P5(S) | PPARβ | ACGGCAAAGGCTTCGTTACC | 60 °C | 96.944% |
P6(AS) | PPARβ | CTAATGGCAGCAACAAACAGG | ||
P7(S) | PPARγ | ATCTGAAATACTTCCCCCTCACCAC | 60 °C | 106.12% |
P8(AS) | PPARγ | GCTGATGCTCGTCATTCCCAA | ||
P9(S) | β-actin | CATGTACGTTGCCATCCAAG | 60 °C | 97.36% |
P10(AS) | β-actin | ACCAGAGGCATACAGGGACA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhao, T.; Ma, A. Genetic Mechanism of Tissue-Specific Expression of PPAR Genes in Turbot (Scophthalmus maximus) at Different Temperatures. Int. J. Mol. Sci. 2022, 23, 12205. https://doi.org/10.3390/ijms232012205
Wang X, Zhao T, Ma A. Genetic Mechanism of Tissue-Specific Expression of PPAR Genes in Turbot (Scophthalmus maximus) at Different Temperatures. International Journal of Molecular Sciences. 2022; 23(20):12205. https://doi.org/10.3390/ijms232012205
Chicago/Turabian StyleWang, Xinan, Tingting Zhao, and Aijun Ma. 2022. "Genetic Mechanism of Tissue-Specific Expression of PPAR Genes in Turbot (Scophthalmus maximus) at Different Temperatures" International Journal of Molecular Sciences 23, no. 20: 12205. https://doi.org/10.3390/ijms232012205
APA StyleWang, X., Zhao, T., & Ma, A. (2022). Genetic Mechanism of Tissue-Specific Expression of PPAR Genes in Turbot (Scophthalmus maximus) at Different Temperatures. International Journal of Molecular Sciences, 23(20), 12205. https://doi.org/10.3390/ijms232012205