Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect
Abstract
:1. Introduction
2. Results
2.1. The Group Characteristics
2.2. The Doppler Ultrasound Findings
2.3. The Serum Measurements and the Placental Expression
2.4. The Neonatal Complications
2.5. The Association between the Serum and Placental Measurements, and the Newborns’ Neurological Disorders
3. Discussion
4. Methods and Materials
4.1. The Studied Groups
4.2. Collection of Blood and Placental Samples
4.3. The Serum Measurements
4.4. The Analyzis of Placental TJPs Expression
4.5. The Protocol of the Neurological Examination
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Figueras, F.; Gratacós, E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn. Ther. 2014, 36, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvis, S.; Glinianaia, S.V.; Torrioli, M.-G.; Platt, M.J.; Miceli, M.; Jouk, P.S.; Johnson, A.; Hutton, J.; Hemming, K.; Hagberg, G.; et al. Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 2003, 362, 1106–1111. [Google Scholar] [CrossRef]
- Romo, A.; Carceller, R.; Tobajas, J. Intrauterine growth retardation (IUGR): Epidemiology and etiology. Pediatr. Endocrinol. Rev. 2009, 6 (Suppl. 3), 332–336. [Google Scholar] [PubMed]
- Wixey, J.A.; Chand, K.K.; Pham, L.; Colditz, P.B.; Bjorkman, S.T. Therapeutic potential to reduce brain injury in growth restricted newborns. J. Physiol. 2018, 596, 5675–5686. [Google Scholar] [CrossRef]
- Miller, S.L.; Huppi, P.S.; Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 2016, 594, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Rees, S.; Harding, R.; Walker, D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int. J. Dev. Neurosci. 2011, 29, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Poudel, R.; McMillen, I.C.; Dunn, S.L.; Zhang, S.; Morrison, J.L. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R151–R162. [Google Scholar] [CrossRef] [Green Version]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr. Pediatr. Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef]
- Giussani, D.A. The fetal brain sparing response to hypoxia: Physiological mechanisms. J. Physiol. 2016, 594, 1215–1230. [Google Scholar] [CrossRef]
- Verburg, B.O.; Jaddoe, V.W.; Wladimiroff, J.W.; Hofman, A.; Witteman, J.C.; Steegers, E.A. Fetal hemodynamic adaptive changes related to intrauterine growth: The Generation R Study. Circulation 2008, 117, 649–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Canadilla, P.; Rudenick, P.A.; Crispi, F.; Cruz-Lemini, M.; Palau, G.; Camara, O.; Gratacos, E.; Bijnens, B.H. A computational model of the fetal circulation to quantify blood redistribution in intrauterine growth restriction. PLoS Comput. Biol. 2014, 10, e1003667. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.M.; Hui, L.; Tong, S. Reduced growth velocity across the third trimester is associated with placental insufficiency in fetuses born at a normal birthweight: A prospective cohort study. BMC Med. 2017, 15, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.; Wong, F.Y.; Horne, R.S.; Yiallourou, S.R. Intrauterine growth restriction: Impact on cardiovascular development and function throughout infancy. Pediatr. Res. 2016, 79, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Andrade, E.; Figueroa-Diesel, H.; Jansson, T.; Rangel-Nava, H.; Gratacos, E. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses. Ultrasound Obstet. Gynecol. 2008, 32, 71–76. [Google Scholar] [CrossRef]
- Thompson, L.P.; Crimmins, S.; Telugu, B.P.; Turan, S. Intrauterine hypoxia: Clinical consequences and therapeutic perspectives. Res. Rep. Neonatol. 2015, 5, 79–89. [Google Scholar] [CrossRef]
- Malhotra, A.; Ditchfield, M.; Fahey, M.C. Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr. Res. 2017, 82, 184–193. [Google Scholar] [CrossRef]
- Esteban, F.J.; Padilla, N.; Sanz-Cortés, M.; de Miras, J.R.; Bargalló, N.; Villoslada, P.; Gratacós, E. Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction. Neuroimage 2010, 53, 1225–1232. [Google Scholar] [CrossRef]
- Padilla, N.; Falcón, C.; Sanz-Cortés, M.; Figueras, F.; Bargallo, N.; Crispi, F.; Eixarch, E.; Arranz, A.; Botet, F.; Gratacós, E. Differential effects of intrauterine growth restriction on brain structure and development in preterm infants: A magnetic resonance imaging study. Brain Res. 2011, 1382, 98–108. [Google Scholar] [CrossRef]
- Tolsa, C.B.; Zimine, S.; Warfield, S.K.; Freschi, M.; Rossignol, A.S.; Lazeyras, F.; Hanquinet, S.; Pfizenmaier, M.; Hüppi, P.S. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr. Res. 2004, 56, 132–138. [Google Scholar] [CrossRef]
- Dubois, J.; Benders, M.; Borradori-Tolsa, C.; Cachia, A.; Lazeyras, F.; Leuchter, R.H.-V.; Sizonenko, S.V.; Warfield, S.K.; Mangin, J.F.; Hüppi, P.S. Primary cortical folding in the human newborn: An early marker of later functional development. Brain 2008, 131 Pt 8, 2028–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsen, G.B.; Pakkenberg, B.; Bogdanović, N.; Gundersen, H.J.; Larsen, J.F.; Græm, N.; Laursen, H. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants. Am. J. Obstet. Gynecol. 2007, 197, 56.e1–56.e7. [Google Scholar] [CrossRef] [PubMed]
- Khazardoost, S.; Ghotbizadeh, F.; Sahebdel, B. Predictors of Cranial Ultrasound Abnormalities in Intrauterine Growth-Restricted Fetuses Born between 28 and 34 Weeks of Gestation: A Prospective Cohort Study. Fetal Diagn. Ther. 2019, 45, 238–247. [Google Scholar] [CrossRef]
- Marsoosi, V.; Bahadori, F.; Esfahani, F.; Ghasemi-Rad, M. The role of Doppler indices in predicting intra ventricular hemorrhage and perinatal mortality in fetal growth restriction. Med. Ultrason. 2012, 14, 125–132. [Google Scholar]
- Bernstein, I.M.; Horbar, J.D.; Badger, G.J.; Ohlsson, A.; Golan, A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am. J. Obstet. Gynecol. 2000, 182 Pt 1, 198–206. [Google Scholar] [CrossRef]
- Gilbert, W.M.; Danielsen, B. Pregnancy outcomes associated with intrauterine growth restriction. Am. J. Obstet. Gynecol. 2003, 188, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Guellec, I.; Marret, S.; Baud, O. Intrauterine Growth Restriction, Head Size at Birth, and Outcome in Very Preterm Infants. J. Pediatr. 2015, 167, 975–981.e2. [Google Scholar] [CrossRef] [PubMed]
- Padilla, N.; Perapoch, J.; Carrascosa, A.; Acosta-Rojas, R.; Botet, F.; Gratacós, E. Twelve-month neurodevelopmental outcome in preterm infants with and without intrauterine growth restriction. Acta Paediatr. 2010, 99, 1498–1503. [Google Scholar] [CrossRef]
- Ramenghi, L.A.; Martinelli, A.; de Carli, A. Cerebral maturation in IUGR and appropriate for gestational age preterm babies. Reprod. Sci. 2011, 18, 469–475. [Google Scholar] [CrossRef]
- Lodygensky, G.A.; Seghier, M.L.; Warfield, S.K. Intrauterine growth restriction affects the preterm infant’s hippocampus. Pediatr. Res. 2008, 63, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Batalle, D.; Eixarch, E.; Figueras, F. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome. Neuroimage 2012, 60, 1352–1366. [Google Scholar] [CrossRef] [PubMed]
- Fischi-Gómez, E.; Vasung, L.; Meskaldji, D.E. Structural Brain Connectivity in School-Age Preterm Infants Provides Evidence for Impaired Networks Relevant for Higher Order Cognitive Skills and Social Cognition. Cereb. Cortex 2015, 25, 2793–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsing, E.; Asard, M.; Ley, D.; Stjernqvist, K.; Marsál, K. Cognitive function after intrauterine growth restriction and very preterm birth. Pediatrics 2011, 127, e874–e882. [Google Scholar] [CrossRef] [PubMed]
- Vossbeck, S.; de Camargo, O.K.; Grab, D.; Bode, H.; Pohlandt, F. Neonatal and neurodevelopmental outcome in infants born before 30 weeks of gestation with absent or reversed end-diastolic flow velocities in the umbilical artery. Eur. J. Pediatr. 2001, 160, 128–134. [Google Scholar] [CrossRef]
- Scherjon, S.; Briët, J.; Oosting, H.; Kok, J. The discrepancy between maturation of visual-evoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic signs of fetal brain-sparing. Pediatrics 2000, 105, 385–391. [Google Scholar] [CrossRef]
- Scherjon, S.A.; Oosting, H.; Smolders-DeHaas, H.; Zondervan, H.A.; Kok, J.H. Neurodevelopmental outcome at three years of age after fetal ‘brain-sparing’. Early Hum. Dev. 1998, 52, 67–79. [Google Scholar] [CrossRef]
- Baschat, A.A. Neurodevelopment after fetal growth restriction. Fetal Diagn. Ther. 2014, 36, 136–142. [Google Scholar] [CrossRef]
- Herrera, E.A.; González-Candia, A. Gestational Hypoxia and Blood-Brain Barrier Permeability: Early Origins of Cerebrovascular Dysfunction Induced by Epigenetic Mechanisms. Front. Physiol. 2021, 12, 717550. [Google Scholar] [CrossRef]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef]
- Chow, B.W.; Gu, C. The molecular constituents of the blood-brain barrier. Trends Neurosci. 2015, 38, 598–608. [Google Scholar] [CrossRef] [Green Version]
- Banks, W.A. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 2016, 15, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Candia, A.; Rogers, N.K.; Castillo, R.L. Blood-Brain Barrier Dysfunction in the Detrimental Brain Function. In Connectivity and Functional Specialization in the Brain; Heinbockel, T., Zhou, Y., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Zhao, Z.; Nelson, A.R.; Betsholtz, C.; Zlokovic, B.V. Establishment and Dysfunction of the Blood-Brain Barrier. Cell 2015, 163, 1064–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, E.A.; Mallard, C.; Ek, C.J. Circulating tight-junction proteins are potential biomarkers for blood-brain barrier function in a model of neonatal hypoxic/ischemic brain injury. Fluids Barriers CNS 2021, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.D.; Tharakan, B.; Lomas, A.; Wiggins-Dohlvik, K.; Alluri, H.; Shaji, C.A.; Jupiter, D.; Isbell, C.L. Exploring blood-brain barrier hyperpermeability and potential biomarkers in traumatic brain injury. Proc. Bayl. Univ. Med. Cent. 2020, 33, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Shan, R.; Szmydynger-Chodobska, J.; Warren, O.U.; Mohammad, F.; Zink, B.J.; Chodobski, A. A New Panel of Blood Biomarkers for the Diagnosis of Mild Traumatic Brain Injury/Concussion in Adults. J. Neurotrauma 2016, 33, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; He, P.; Li, Y.; Fan, Z.; Si, M.; Xie, Q.; Chang, X.; Huang, D. The role of circulating tight junction proteins in evaluating blood brain barrier disruption following intracranial hemorrhage. Dis. Markers 2015, 2015, 860120. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Liang, D.; Kuang, S.Y.; Dong, Q.; Han, X.; Wang, Z. Neuroprotective mechanism of TMP269, a selective class IIA histone deacetylase inhibitor, after cerebral ischemia/reperfusion injury. Neural Regen. Res. 2020, 15, 277–284. [Google Scholar] [CrossRef]
- Shi, W.; Wei, X.; Wang, Z.; Han, H.; Fu, Y.; Liu, J.; Zhang, Y.; Guo, J.; Dong, C.; Zhou, D.; et al. DAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J. Cell Mol. Med. 2016, 20, 1139–1149. [Google Scholar] [CrossRef] [Green Version]
- Kazmierski, R.; Michalak, S.; Wencel-Warot, A.; Nowinski, W.L. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology 2012, 79, 1677–1685. [Google Scholar] [CrossRef]
- Pan, R.; Yu, K.; Weatherwax, T.; Zheng, H.; Liu, W.; Liu, K.J. Blood Occludin Level as a Potential Biomarker for Early Blood Brain Barrier Damage Following Ischemic Stroke. Sci. Rep. 2017, 7, 40331. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, X.; Yin, K.J. MicroRNAs in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp. Neurol. 2020, 323, 113094. [Google Scholar] [CrossRef] [PubMed]
- Toyama, K.; Spin, J.M.; Tsao, P.S. Role of microRNAs on Blood Brain Barrier Dysfunction in Vascular Cognitive Impairment. Curr. Drug Deliv. 2017, 14, 744–757. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, K.; Li, P.; Zhu, L.; Xu, J.; Yang, B.; Hu, X.; Lu, Z.; Chen, J. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res. Rev. 2017, 34, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anantha, J.; Goulding, S.R.; Wyatt, S.L.; Concannon, R.M.; Collins, L.M.; Sullivan, A.M.; O’Keeffe, G.W. STRAP and NME1 Mediate the Neurite Growth-Promoting Effects of the Neurotrophic Factor GDF5. iScience 2020, 23, 101457. [Google Scholar] [CrossRef] [PubMed]
- Anantha, J.; Goulding, S.R.; Tuboly, E.; O’Mahony, A.G.; Moloney, G.M.; Lomansey, G.; McCarthy, C.M.; Collins, L.M.; Sullivan, A.M.; O’Keeffe, G.W. NME1 Protects Against Neurotoxin-, α-Synuclein- and LRRK2-Induced Neurite Degeneration in Cell Models of Parkinson’s Disease. Mol. Neurobiol. 2022, 59, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, D.; Sacchi, A.; D’Agostino, G.; Tibursi, G. The association of the Nm23-M1 protein and beta-tubulin correlates with cell differentiation. Exp. Cell Res. 1995, 217, 267–271. [Google Scholar] [CrossRef]
- Otero, A.S. NM23/nucleoside diphosphate kinase and signal transduction. J. Bioenerg. Biomembr. 2000, 32, 269–275. [Google Scholar] [CrossRef]
- Roymans, D.; Willems, R.; Vissenberg, K. Nucleoside diphosphate kinase beta (Nm23-R1/NDPKbeta) is associated with intermediate filaments and becomes upregulated upon cAMP-induced differentiation of rat C6 glioma. Exp. Cell Res. 2000, 261, 127–138. [Google Scholar] [CrossRef]
- Romani, P.; Ignesti, M.; Gargiulo, G.; Hsu, T.; Cavaliere, V. Extracellular NME proteins: A player or a bystander? Lab. Investig. 2018, 98, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.T.; Seabright, R.; Logan, A. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity. Biochem. Biophys. Res. Commun. 2010, 398, 79–85. [Google Scholar] [CrossRef]
- Lööv, C.; Shevchenko, G.; Geeyarpuram Nadadhur, A. Identification of injury specific proteins in a cell culture model of traumatic brain injury. PLoS ONE 2013, 8, e55983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescuyer, P.; Allard, L.; Zimmermann-Ivol, C.G. Identification of post-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics 2004, 4, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
- Allard, L.; Burkhard, P.R.; Lescuyer, P. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin. Chem. 2005, 51, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Dobrek, L.; Thor, P. Glutamate NMDA receptors in pathophysiology and pharmacotherapy of selected nervous system diseases. Postepy Hig. Med. Dosw. 2011, 65, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Kemp, J.A.; McKernan, R.M. NMDA receptor pathways as drug targets. Nat. Neurosci. 2002, 5, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Muir, K.W. Glutamate-based therapeutic approaches: Clinical trials with NMDA antagonists. Curr. Opin. Pharmacol. 2006, 6, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Shohami, E.; Biegon, A. Novel approach to the role of NMDA receptors in traumatic brain injury. CNS Neurol. Disord. Drug Targets 2014, 13, 567–573. [Google Scholar] [CrossRef]
- Hoyte, L.; Barber, P.A.; Buchan, A.M.; Hill, M.D. The rise and fall of NMDA antagonists for ischemic stroke. Curr. Mol. Med. 2004, 4, 131–136. [Google Scholar] [CrossRef]
- Lipton, S.A. Pathologically-activated therapeutics for neuroprotection: Mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr. Drug Targets 2007, 8, 621–632. [Google Scholar] [CrossRef]
- Waters, K.A.; Machaalani, R. NMDA receptors in the developing brain and effects of noxious insults. Neurosignals 2004, 13, 162–174. [Google Scholar] [CrossRef]
- Tingley, W.G.; Ehlers, M.D.; Kameyama, K. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 1997, 272, 5157–5166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, O.P.; Delivoria-Papadopoulos, M. Modification of modulatory sites of NMDA receptor in the fetal guinea pig brain during development. Neurochem. Res. 1992, 17, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Schober, M.E.; McKnight, R.A.; Yu, X.; Callaway, C.W.; Ke, X.; Lane, R.H. Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R681–R692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, T.J.; Scott, H.; Menassa, D.A. Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Sci. Rep. 2017, 7, 9079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzolo, D.; Marinoni, E.; Di Iorio, R. High maternal blood S100B concentrations in pregnancies complicated by intrauterine growth restriction and intraventricular hemorrhage. Clin. Chem. 2006, 52, 819–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzolo, D.; Marinoni, E.; di Iorio, R.; Lituania, M.; Bruschettini, P.L.; Michetti, F. Circulating S100beta protein is increased in intrauterine growth-retarded fetuses. Pediatr. Res. 2002, 51, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Marzioni, D.; Banita, M.; Felici, A.; Paradinas, F.J.; Newlands, E.; de Nictolis, M.; Mühlhauser, J.; Castellucci, M. Expression of ZO-1 and occludin in normal human placenta and in hydatidiform moles. Mol. Hum. Reprod. 2001, 7, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Liévano, S.; Alarcón, L.; Chávez-Munguía, B.; González-Mariscal, L. Endothelia of term human placentae display diminished expression of tight junction proteins during preeclampsia. Cell Tissue Res. 2006, 324, 433–448. [Google Scholar] [CrossRef]
- Itoh, M.; Nagafuchi, A.; Moroi, S.; Tsukita, S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J. Cell Biol. 1997, 138, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Pidoux, G.; Gerbaud, P.; Gnidehou, S.; Grynberg, M.; Geneau, G.; Guibourdenche, J.; Carette, D.; Cronier, L.; Evain-Brion, D.; Malassiné, A.; et al. ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am. J. Physiol. Cell Physiol. 2010, 298, C1517–C1526. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.; Chin, I.; Chen, Z.; Dai, H. The Role of VE-cadherin in Blood-brain Barrier Integrity under Central Nervous System Pathological Conditions. Curr. Neuropharmacol. 2018, 16, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, F.P.; Harrist, R.B.; Martinez-Poyer, J. In utero analysis of fetal growth: A sonographic weight standard. Radiology 1991, 181, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, F.P.; Deter, R.L.; Harrist, R.B.; Park, S.K. Estimating fetal age: Computer-assisted analysis of multiple fetal growth parameters. Radiology 1984, 152, 497–5011. [Google Scholar] [CrossRef] [PubMed]
- Magann, E.F.; Sanderson, M.; Martin, J.N.; Chauhan, S. The amniotic fluid index, single deepest poecket and two diameter poeket in normal pregnancy. Am. J. Obstet. Gynecol. 2000, 182, 1581–1588. [Google Scholar] [CrossRef]
- Baschat, A.A.; Gembruch, U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet. Gynecol. 2003, 21, 124–127. [Google Scholar] [CrossRef]
- Sekizuka, N.; Hasegawa, I.; Takakuwa, K.; Tanaka, K. Scoring of uterine artery flow velocity waveform in the assessment of fetal growth restriction and/or pregnancy induced hypertension. J. Matern. Fetal Investig. 1997, 7, 197–200. [Google Scholar]
- Gudmundsson, S.; Korszun, P.; Olofsson, P.; Dubiel, M. New score indicating placental vascular resistance. Acta Obstet. Gynecol. Scand. 2003, 82, 807–812. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacos, E. Stage-based approach to the management of fetal growth restriction. Prenat. Diagn. 2014, 34, 655–659. [Google Scholar] [CrossRef]
- Szczapa, J.; Wojsyk-Banaszak, I. Wcześniactwo. In Pediatria. Podręcznik do Lekarskiego Egzaminu Końcowego i Państwowego Egzaminu Specjalizacyjnego; Dobrzańska, A., Ryżko, J., Eds.; Elsevier Urban & Partner: Amsterdam, The Netherlands, 2014; 163p, ISBN 978-83-7609-855-5. [Google Scholar]
- Korones, S.B. High Risk Newborn Infants. The Basis for Intensive Nursing Care; C.V. Mosby Co.: St. Louis, MO, USA, 1981. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Baker, L.L.; Stevenson, D.K.; Enzmann, D.R. End-stage periventricular leukomalacia: MR evaluation. Radiology 1988, 168, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Barkovich, A.J.; Truwit, C.L. Brain damage from perinatal asphyxia: Correlation of MR findings with gestational age. AJNR Am. J. Neuroradiol. 1990, 11, 1087–1096. [Google Scholar] [PubMed]
Characteristics | FGR Brain Sparing Effect (+) (n = 41) | FGR Brain Sparing Effect (−) (n = 49) | p |
---|---|---|---|
Age [years] (Mean ± SD) | 29 ± 5 | 30 ± 5 | 0.5417 |
BMI at the first prenatal visit [kg/m2] (Median, Min-Max) | 22.3 (16.2–42.0) | 22.2 (15.2–38.1) | 0.3837 |
The time of the FGR diagnosis | |||
(Median, Min-Max) | 31 (22–39) | 35 (27–40) | 0.0006 |
early-onset (%) | 34.2 | 51.0 | 0.1364 |
late-onset (%) | 65.8 | 49.0 | 0.1364 |
Gravidity (Median, Min-Max) | 1 (1–5) | 1 (1–7) | 0.3340 |
Parity (Median, Min-Max) | 0 (0–3) | 0 (0–4) | 0.2661 |
Ultrasound Parameters | FGR Brain Sparing Effect (+) (n = 41) | FGR Brain Sparing Effect (−) (n = 49) | p |
---|---|---|---|
FGR staging | 0.0009 | ||
I stage | 68.3 | 96.0 | |
II stage | 24.4 | 2.0 | |
III stage | 4.9 | 0.0 | |
IV stage | 2.4 | 2.0 | |
Estimated fetal weight [g] (Median, Min-Max) | 1363 (439–2574) | 2143 (671–2920) | 0.0001 |
Percentile of estimated fetal weight (Median, Min-Max) | 0.1 (0.1–9.0) | 2.0 (0.1–9.0) | 0.0001 |
Amniotic fluid index [cm] | |||
(Mean ± SD) | 8.1 ± 3.8 | 9.3 ± 3.6 | 0.1293 |
oligohydramnion (%) | 63.4 | 28.6 | 0.0009 |
polyhydramion (%) | 2.4 | 0.0 | 0.4555 |
UA PI value | |||
(Median, Min-Max) | 1.4 (0.7–3.0) | 0.9 (0.6–1.4) | 0.0001 |
abnormal UA PI (%) | 78.1 | 10.2 | <0.0001 |
UA AEDF (%) | 24.4 | 2.0 | 0.0020 |
UA REDF (%) | 4.9 | 0.0 | 0.2047 |
MCA PI value | |||
(Median, Min-Max) | 1.1 (0.8–1.8) | 1.6 (1.0–2.5) | 0.0001 |
abnormal MCA PI (%) | 73.2 | 18.4 | <0.0001 |
CPR (Median, Min-Max) | 0.9 (0.4–1.2) | 1.7 (1.1–3.2) | 0.0001 |
LUtA PI value | |||
(Median, Min-Max) | 1.3 (0.5–3.2) | 0.8 (0.5–3.0) | 0.0017 |
abnormal LUtA PI (%) | 58.5 | 18.4 | <0.0001 |
RUtA PI value | 0.8 (0.3–2.0) | 0.0001 | |
(Median, Min-Max) | 1.3 (0.4–3.9) | 12.2 | <0.0001 |
abnormal RUtA PI (%) | 58.5 | ||
UAS score [points] (Median, Min-Max) | 1 (0–4) | 0 (0–3) | 0.0001 |
DV PI value | |||
(Median, Min-Max) | 0.5 (0.2–1.4) | 0.6 (0.2–1.6) | 0.7866 |
abnormal DV PI (%) | 17.1 | 14.3 | 0.7163 |
UV pulsations (%) | 2.4 | 0.0 | 0.4555 |
Serum Measurements | FGR Brain Sparing Effect (+) (n = 41) | FGR Brain Sparing Effect (−) (n = 49) | p |
---|---|---|---|
NR1 [pg/mL] (Mean ± SD) | 1121.79 ± 2263.20 | 1443.38 ± 3290.54 | 0.8291 |
NME1 [pg/mL] (Mean ± SD) | 217.05 ± 951.86 | 23.04 ± 63.87 | 0.0261 |
S100B [pg/mL] (Mean ± SD) | 29.07 ± 44.94 | 30.01 ± 37.10 | 0.6135 |
OCLN [pg/mL] (Mean ± SD) | 18.68 ± 66.82 | 44.85 ± 145.66 | 0.8912 |
CLN5 [pg/mL] (Mean ± SD) | 35.10 ± 101.37 | 107.63 ± 203.32 | 0.0529 |
zo-1 [RU/mL] (Mean ± SD) | 1.95 ± 3.48 | 3.13 ± 5.32 | 0.9334 |
OCLN/zo-1 (Mean ± SD) | 15.45 ± 68.28 | 6.98 ± 17.30 | 0.3979 |
CLN5/zo-1 (Mean ± SD) | 190.51 ± 879.26 | 48.26 ± 112.54 | 0.0019 |
Placental Expression | FGR Brain Sparing Effect (+) (n = 41) | FGR Brain Sparing Effect (−) (n = 49) | p |
---|---|---|---|
OCLN [ng/mg total protein] (Mean ± SD) | 0.21 ± 0.16 | 0.15 ± 0.15 | 0.2095 |
CLN5 [ng/mg total protein] (Mean ± SD) | 0.02 ± 0.03 | 0.01 ± 0.02 | 0.9712 |
CLN4 [ng/mg total protein] (Mean ± SD) | 0.16 ± 0.11 | 0.16 ± 0.09 | 0.7916 |
zo-1 [RU/mg total protein] (Mean ± SD) | 0.26 ± 0.16 | 0.23 ± 0.17 | 0.6419 |
Perinatal Outcomes | FGR Brain Sparing Effect (+) (n = 41) | FGR Brain Sparing Effect (−) (n = 49) | p |
---|---|---|---|
Gestational age at delivery [weeks] (Median, Min-Max) | 34 (26–40) | 39 (30–41) | <0.0001 |
Preterm birth (%) | 73.2 | 16.3 | <0.0001 |
Fetal distress (%) | 65.9 | 34.7 | 0.0056 |
Mode of delivery (%) | |||
spontaneous | 12.2 | 32.6 | 0.0396 |
cesarean section | 87.8 | 58.7 | 0.0035 |
vacuum extraction | 0.0 | 8.7 | 0.1188 |
forceps | 0.0 | 0.0 | - |
Birth weight [g] | |||
(Median, Min-Max) | 1560 (420–2740) | 2540 (980–3080) | <0.0001 |
1500–2500 (%) | 51.2 | 38.8 | 0.2890 |
1000–1500 (%) | 14.6 | 2.0 | 0.0440 |
<1000 (%) | 31.7 | 2.0 | 0.0002 |
Apgar score [points] | |||
(Median, Min-Max) | |||
1st min | 9 (0–10) | 10 (4–10) | 0.0038 |
3rd min | 8 (2–9) | 8 (6–10) | 0.3175 |
5th min | 10 (4–10) | 10 (7–10) | 0.0010 |
pH | |||
(Median, Min-Max) | |||
venous | 7.32 (7.19–7.40) | 7.34 (7.01–7.46) | 0.1661 |
arterial | 7.28 (6.99–7.37) | 7.27 (6.95–7.45) | 0.7796 |
BE [mEq/L] | |||
(Median, Min-Max) | |||
Venous | −2.6 (−10.4–1.0) | −2.6 (−11.3–3.2) | 0.8365 |
Arterial | −1.9 (−11.9–1.9) | −2.6 (−13.4–3.4) | 0.1511 |
Metabolic acidosis (%) | |||
7.20–7.29 | 43.9 | 40.8 | 0.8319 |
7.10–7.19 | 9.8 | 14.3 | 0.7481 |
7.00–7.09 | 0.0 | 0.0 | - |
<7.0 | 2.4 | 2.0 | 1.0000 |
The hospitalization length [days] (Median, Min-Max) | 20 (3–84) | 5 (3–61) | <0.0001 |
Intraventricular hemorrhage (%) | 17.0 | 0.0 | 0.0030 |
I grade | 12.2 | 0.0 | |
II grade | 2.4 | 0.0 | |
III grade | 2.4 | 0.0 | |
IV grade | 0.0 | 0.0 | |
Periventricular leucomalacia (%) | 4.9 | 0.0 | 0.2047 |
Respiratory distress syndrome (%) | 31.7 | 4.1 | 0.0005 |
I grade | 17.1 | 2.0 | 0.0213 |
II grade | 7.3 | 0.0 | 0.2427 |
III grade | 4.9 | 2.0 | 0.5896 |
IV grade | 2.4 | 0.0 | 0.4556 |
Respiratory failure (%) | 34.2 | 8.2 | 0.0031 |
Bronchopulmonary dysplasia (%) | 4.9 | 0.0 | 0.2047 |
Necrotizing enterocolitis (%) | 4.9 | 0.0 | 0.2047 |
Intrauterine fetal death (%) | 4.9 | 0.0 | 0.2094 |
Newborn death during hospitalization (%) | 2.4 | 0.0 | 0.4555 |
Retinopathy (%) | 9.8 | 0.0 | 0.0396 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misan, N.; Michalak, S.; Kapska, K.; Osztynowicz, K.; Ropacka-Lesiak, M. Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect. Int. J. Mol. Sci. 2022, 23, 12349. https://doi.org/10.3390/ijms232012349
Misan N, Michalak S, Kapska K, Osztynowicz K, Ropacka-Lesiak M. Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect. International Journal of Molecular Sciences. 2022; 23(20):12349. https://doi.org/10.3390/ijms232012349
Chicago/Turabian StyleMisan, Natalia, Sławomir Michalak, Katarzyna Kapska, Krystyna Osztynowicz, and Mariola Ropacka-Lesiak. 2022. "Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect" International Journal of Molecular Sciences 23, no. 20: 12349. https://doi.org/10.3390/ijms232012349
APA StyleMisan, N., Michalak, S., Kapska, K., Osztynowicz, K., & Ropacka-Lesiak, M. (2022). Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect. International Journal of Molecular Sciences, 23(20), 12349. https://doi.org/10.3390/ijms232012349