IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms
Abstract
:1. Introduction
2. Results
2.1. Tumour-Specific miR- and isomiR-eQTL Identification
2.2. Identification of miR-eQTL Overlapping GWAS Loci
2.3. Some IsomiRs Are Associated with Distinct SNPs Rather Than Their miR Counterparts
2.4. Web Interface
3. Discussion
4. Materials and Methods
4.1. Genotype Data, Preprocessing and Imputation
4.2. Expression Data Processing
4.3. Identification of miR-eQTLs and isomiR-eQTLs
4.4. Identification of GWAS miR- and isomiR-eQTLs
4.5. Fine-Mapping
4.6. Database Construction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Matin, F.; Jeet, V.; Clements, J.A.; Yousef, G.M.; Batra, J. MicroRNA Theranostics in Prostate Cancer Precision Medicine. Clin. Chem. 2016, 62, 1318–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, H.N.; Lin, H.-Y.; Sørensen, K.D.; Ogunwobi, O.; Kumar, N.; Chornokur, G.; Phelan, C.; Jones, D.; Kidd, L.; Batra, J.; et al. miRNAs associated with prostate cancer risk and progression. BMC Urol. 2017, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.A.; Croce, C.M. MicroRNA Signatures in Human Cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Matin, F.; Jeet, V.; Moya, L.; Selth, L.; Chambers, S.K. Australian Prostate Cancer BioResource; Clements, J.A.; Batra, J. A Plasma Biomarker Panel of Four MicroRNAs for the Diagnosis of Prostate Cancer. Sci. Rep. 2018, 8, 6653. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.; Prado, D.E.; Weidhaas, J.B. Cancer microRNAs: From subtype profiling to predictors of response to therapy. Trends Mol. Med. 2011, 17, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, L.; Li, L.; Zhou, P. Identifying Breast Cancer Subtype Related miRNAs from Two Constructed miRNAs Interaction Networks in Silico Method. BioMed Res. Int. 2013, 2013, 798912. [Google Scholar] [CrossRef] [Green Version]
- Yerukala Sathipati, S.; Ho, S.Y. Identifying a miRNA signature for predicting the stage of breast cancer. Sci. Rep. 2018, 8, 16138. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, M.; Nath, J.; Bandyopadhyay, S. MicroRNA signatures highlight new breast cancer subtypes. Gene 2015, 556, 192–198. [Google Scholar] [CrossRef]
- Subramaniam, S.; Jeet, V.; Gunter, J.H.; Clements, J.A.; Batra, J. Allele-Specific MicroRNA-Mediated Regulation of a Glycolysis Gatekeeper PDK1 in Cancer Metabolism. Cancers 2021, 13, 3582. [Google Scholar] [CrossRef]
- Stegeman, S.; Amankwah, E.; Klein, K.; O’Mara, T.A.; Kim, D.; Lin, H.-Y.; Permuth-Wey, J.; Sellers, T.A.; Srinivasan, S.; Eeles, R.; et al. A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discov. 2015, 5, 368–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhichholiya, Y.; Suryan, A.K.; Suman, P.; Munshi, A.; Singh, S. SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes. Front. Genet. 2021, 12, 793523. [Google Scholar] [CrossRef] [PubMed]
- Morin, R.D.; O’Connor, M.D.; Griffith, M.; Kuchenbauer, F.; Delaney, A.; Prabhu, A.-L.; Zhao, Y.; McDonald, H.; Zeng, T.; Hirst, M.; et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008, 18, 610–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejad, C.; Pepin, G.; Behlke, M.A.; Gantier, M.P. Modified Polyadenylation-Based RT-qPCR Increases Selectivity of Amplification of 3’-MicroRNA Isoforms. Front. Genet. 2018, 9, 11. [Google Scholar] [CrossRef]
- Zelli, V.; Compagnoni, C.; Capelli, R.; Corrente, A.; Cornice, J.; Vecchiotti, D.; Di Padova, M.; Zazzeroni, F.; Alesse, E.; Tessitore, A. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes 2021, 12, 1447. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Zhao, Y.; Yang, S.; Chen, F. Selected isomiR expression profiles via arm switching? Gene 2014, 533, 149–155. [Google Scholar] [CrossRef]
- Chan, Y.-T.; Lin, Y.-C.; Lin, R.-J.; Kuo, H.-H.; Thang, W.-C.; Chiu, K.-P.; Yu, A.L. Concordant and Discordant Regulation of Target Genes by miR-31 and Its Isoforms. PLoS ONE 2013, 8, e58169. [Google Scholar] [CrossRef]
- Parafioriti, A.; Cifola, I.; Gissi, C.; Pinatel, E.; Vilardo, L.; Armiraglio, E.; Di Bernardo, A.; Daolio, P.A.; Felsani, A.; D’Agnano, I.; et al. Expression profiling of microRNAs and isomiRs in conventional central chondrosarcoma. Cell Death Discov. 2020, 6, 46. [Google Scholar] [CrossRef]
- Bofill-De Ros, X.; Luke, B.; Guthridge, R.; Mudunuri, U.; Loss, M.; Gu, S. Tumor IsomiR Encyclopedia (TIE): A pancancer database of miRNA isoforms. Bioinformatics 2021, 37, 3023–3025. [Google Scholar] [CrossRef]
- Salem, O.; Erdem, N.; Jung, J.; Münstermann, E.; Wörner, A.; Wilhelm, H.; Wiemann, S.; Körner, C. The highly expressed 5’isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genom. 2016, 17, 566. [Google Scholar] [CrossRef]
- Babapoor, S.; Fleming, E.; Wu, R.; Dadras, S.S. A Novel miR-451a isomiR, Associated with Amelanotypic Phenotype, Acts as a Tumor Suppressor in Melanoma by Retarding Cell Migration and Invasion. PLoS ONE 2014, 9, e107502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.M.; Robles, A.I.; Harris, C.C. Genetic variation in microRNA networks: The implications for cancer research. Nat. Rev. Cancer 2010, 10, 389–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.; Yan, J.; Noltner, K.; Feng, J.; Li, H.; Sarkis, D.A.; Sommer, S.S.; Rossi, J.J. SNPs in human miRNA genes affect biogenesis and function. RNA 2009, 15, 1640–1651. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Chen, J.; Tian, T.; Zhou, X.; Gu, H.; Xu, L.; Zeng, Y.; Miao, R.; Jin, G.; Ma, H.; et al. Genetic variants of miRNA sequences and non–small cell lung cancer survival. J. Clin. Investig. 2008, 118, 2600–2608. [Google Scholar] [CrossRef] [Green Version]
- Fehlmann, T.; Backes, C.; Kahraman, M.; Haas, J.; Ludwig, N.; Posch, A.E.; Würstle, M.L.; Hübenthal, M.; Franke, A.; Meder, B.; et al. Web-based NGS data analysis using miRMaster: A large-scale meta-analysis of human miRNAs. Nucleic Acids Res. 2017, 45, 8731–8744. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Grocock, R.J.; Van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34, D140–D144. [Google Scholar] [CrossRef]
- Malhotra, P.; Read, G.H.; Weidhaas, J.B. Breast Cancer and miR-SNPs: The Importance of miR Germ-Line Genetics. Non-Coding RNA 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xue, Y.; Amin, M.T.; Yang, Y.; Yang, J.; Zhang, W.; Yang, W.; Niu, X.; Zhang, H.Y.; Gong, J. ncRNA-eQTL: A database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types. Nucleic Acids Res. 2020, 48, D956–D963. [Google Scholar] [CrossRef]
- Janaththani, P.; Srinivasan, S.L.; Batra, J. Long Non-Coding RNAs at the Chromosomal Risk Loci Identified by Prostate and Breast Cancer GWAS. Genes 2021, 12, 2028. [Google Scholar] [CrossRef]
- Li, Q.; Stram, A.; Chen, C.; Kar, S.; Gayther, S.; Pharoah, P.; Haiman, C.; Stranger, B.; Kraft, P.; Freedman, M.L. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Hum. Mol. Genet. 2014, 23, 5294–5302. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Deng, B.; Zhu, M.; Wang, Y.; Yan, C.; Wang, T.; Liu, Y.; Li, G.; Ding, Y.; Jin, G. Integration of GWAS and eQTL Analysis to Identify Risk Loci and Susceptibility Genes for Gastric Cancer. Front. Genet. 2020, 11, 679. [Google Scholar] [CrossRef]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Huan, T.; Rong, J.; Liu, C.; Zhang, X.; Tanriverdi, K.; Joehanes, R.; Chen, B.H.; Murabito, J.M.; Yao, C.; Courchesne, P.; et al. Genome-wide identification of microRNA expression quantitative trait loci. Nat. Commun. 2015, 6, 6601. [Google Scholar] [CrossRef] [Green Version]
- Fehlmann, T.; Kern, F.; Laham, O.; Backes, C.; Solomon, J.; Hirsch, P.; Volz, C.; Müller, R.; Keller, A. miRMaster 2.0: Multi-species non-coding RNA sequencing analyses at scale. Nucleic Acids Res. 2021, 49, W397–W408. [Google Scholar] [CrossRef] [PubMed]
- Dika, E.; Broseghini, E.; Porcellini, E.; Lambertini, M.; Riefolo, M.; Durante, G.; Loher, P.; Roncarati, R.; Bassi, C.; Misciali, C.; et al. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis. 2021, 12, 473. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Das, S. Implications of microRNA variant markers in agriculture—Paradigm and perspectives. Plant Gene 2020, 25, 100267. [Google Scholar] [CrossRef]
- Li, W.; Chang, J.; Wang, S.; Liu, X.; Peng, J.; Huang, D.; Sun, M.; Chen, Z.; Zhang, W.; Guo, W.; et al. miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget 2015, 6, 24448–24462. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, Z.; Yang, Y.; Luo, M.; Zhang, M.; Wang, X.; Liu, L.; Hou, N.; Guo, Q.; Song, T.; et al. MiR-99b-5p and miR-203a-3p Function as Tumor Suppressors by Targeting IGF-1R in Gastric Cancer. Sci. Rep. 2018, 8, 10119. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Lee, S.Y.; Lee, S.Y.; Kim, Y.J.; Park, J.Y.; Kwon, S.J.; Na, M.J.; Lee, E.J.; Jeon, H.S.; Son, J.W. microRNA-99b acts as a tumor suppressor in non-small cell lung cancer by directly targeting fibroblast growth factor receptor 3. Exp. Ther. Med. 2011, 3, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, M.; Berti, G.; Russo, F.; Fazio, S.; Evangelista, M.; D’Aurizio, R.; Pellegrini, M.; Rainaldi, G. Discovering the miR-26a-5p Targetome in Prostate Cancer Cells. J. Cancer 2017, 8, 2729–2739. [Google Scholar] [CrossRef] [Green Version]
- Marees, A.T.; De Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef] [Green Version]
- Gay, N.R.; Gloudemans, M.; Antonio, M.L.; Abell, N.S.; Balliu, B.; Park, Y.; Martin, A.R.; Musharoff, S.; Rao, A.S.; Aguet, F.; et al. Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. Genome Biol. 2020, 21, 233. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [Green Version]
- Hormozdiari, F.; Kostem, E.; Kang, E.Y.; Pasaniuc, B.; Eskin, E. Identifying Causal Variants at Loci with Multiple Signals of Association. Genetics 2014, 198, 497–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanoa, J.K.; Verma, R.; Sethi, R.S.; Arora, J.S.; Mukhopadhyay, C.S. Biogenesis and biological implications of isomiRs in mammals—A review. ExRNA 2019, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Sun, S.; Chen, Y.; Xu, C.; Chen, Q.; Li, M.; Pei, Y.; Li, Q. MiR-3130-5p is an intermediate modulator of 2q33 and influences the invasiveness of lung adenocarcinoma by targeting NDUFS1. Cancer Med. 2021, 10, 3700–3714. [Google Scholar] [CrossRef] [PubMed]
ID | Project | Primary Site | Number of Samples |
---|---|---|---|
ACC | Adrenocortical Carcinoma | Adrenal gland | 74 |
PCPG | Pheochromocytoma and Paraganglioma | Adrenal gland | 145 |
BLCA | Bladder Urothelial Carcinoma | Bladder | 386 |
LAML | Acute Myeloid Leukaemia | Haematopoietic and reticuloendothelial systems | 174 |
LGG | Brain Lower Grade Glioma | Brain | 496 |
BRCA | Breast Invasive Carcinoma | Breast | 922 |
CESC | Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma | Cervix uteri | 244 |
COAD | Colon Adenocarcinoma | Colon | 419 |
READ | Rectum Adenocarcinoma | Rectum | 148 |
ESCA | Oesophagal Carcinoma | Oesophagus | 177 |
UVM | Uveal Melanoma | Eye and adnexa | 78 |
HNSC | Head and Neck Squamous Cell Carcinoma | Larynx, Hypopharynx, Floor of mouth, and other unspecified parts | 496 |
KICH | Kidney Chromophobe | Kidney | 66 |
KIRC | Kidney Renal Clear Cell Carcinoma | Kidney | 475 |
KIRP | Kidney Renal Papillary Cell Carcinoma | Kidney | 270 |
CHOL | Cholangiocarcinoma | Liver and intrahepatic bile ducts | 349 |
LUAD | Lung Adenocarcinoma | Bronchus and lung | 488 |
LUSD | Lung Squamous Cell Carcinoma | Bronchus and lung | 459 |
OV | Ovarian Serous Cystadenocarcinoma | Ovary | 380 |
PAAD | Pancreatic Adenocarcinoma | Pancreas | 172 |
MESO | Mesothelioma | Heart, mediastinum, and pleura | 83 |
PRAD | Prostate Adenocarcinoma | Prostate | 448 |
SKCM | Skin Cutaneous Melanoma | Skin | 89 |
SARC | Sarcoma | Connective, subcutaneous and other soft tissues | 98 |
STAD | Stomach Adenocarcinoma | Stomach | 400 |
TGCT | Testicular Germ Cell Tumours | Testis | 150 |
THCA | Thyroid Carcinoma | Thyroid gland | 353 |
THYM | Thymoma | Thymus | 89 |
UCEC | Uterine Corpus Endometrial Carcinoma | Corpus uteri | 444 |
UCS | Uterine Carcinosarcoma | Uterus, NOS | 46 |
ID | Canonical_miRBase | Canonical_miRMaster | isomiR_miRBase | isomiR_miRMaster |
---|---|---|---|---|
ACC | 323 | 194 | 47 | 234 |
PCPG | 894 | 143 | 897 | 47 |
BLCA | 5065 | 1210 | 29,315 | 34 |
LAML | 1785 | 1 | 2072 | 63 |
LGG | 3462 | 206 | 6276 | 69 |
BRCA | 7332 | 3943 | 216,467 | 9004 |
CESC | 1195 | 10 | 3374 | 85 |
COAD | 19,741 | 6002 | 572,227 | 18,393 |
READ | 739 | 3 | 1751 | 108 |
ESCA | 18,651 | 1669 | 367,816 | 139 |
UVM | 1808 | 0 | 1438 | 9 |
HNSC | 4765 | 21 | 11,807 | 7 |
KICH | 241 | 0 | 492 | 23 |
KIRC | 17,522 | 4486 | 688,332 | 15,086 |
KIRP | 2932 | 34 | 8060 | 253 |
CHOL | 8715 | 115 | 253,732 | 656 |
LUAD | 2559 | 20 | 20,246 | 41 |
LUSC | 3768 | 96 | 8894 | 617 |
OV | 5531 | 60 | 42,409 | 1248 |
PAAD | 1160 | 138 | 471 | 90 |
MESO | 56 | 1 | 591 | 18 |
PRAD | 4782 | 130 | 19,732 | 68 |
SKCM | 2144 | 17 | 752 | 12 |
SARC | 331 | 1 | 688 | 79 |
STAD | 7556 | 514 | 43,171 | 225 |
TGCA | 978 | 79 | 1168 | 20 |
THCA | 4612 | 1 | 3640 | 4 |
THYM | 1008 | 1 | 7224 | 2 |
UCEC | 2939 | 517 | 21,251 | 498 |
UCS | 410 | 55 | 9177 | 216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, A.; Whatmore, P.; Farashi, S.; Barrero, R.A.; Batra, J. IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms. Int. J. Mol. Sci. 2022, 23, 12493. https://doi.org/10.3390/ijms232012493
Moradi A, Whatmore P, Farashi S, Barrero RA, Batra J. IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms. International Journal of Molecular Sciences. 2022; 23(20):12493. https://doi.org/10.3390/ijms232012493
Chicago/Turabian StyleMoradi, Afshin, Paul Whatmore, Samaneh Farashi, Roberto A. Barrero, and Jyotsna Batra. 2022. "IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms" International Journal of Molecular Sciences 23, no. 20: 12493. https://doi.org/10.3390/ijms232012493
APA StyleMoradi, A., Whatmore, P., Farashi, S., Barrero, R. A., & Batra, J. (2022). IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms. International Journal of Molecular Sciences, 23(20), 12493. https://doi.org/10.3390/ijms232012493