Impact of Placental SLC2A3 Deficiency during the First-Half of Gestation
Abstract
:1. Introduction
2. Results
2.1. RNA Interference of SLC2A3 in iOTR Cells
2.2. Fetal and Placental Measurements at Mid-Gestation
2.3. Maternal and Fetal Plasma Measurements at Mid-Gestation
2.4. Placental mRNA Concentration of the Insulin-like Growth Factor Axis
3. Discussion
4. Materials and Methods
4.1. Lentiviral Generation
4.2. Generation of SLC2A3 RNAi Pregnancies
4.3. Tissue Collection
4.4. Biochemical Analysis of Blood Samples
4.5. Cell Lines
4.6. Western Blot Analysis
4.7. RNA Isolation
4.8. cDNA Synthesis and Quantitative Real-Time PCR
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, W.W. Placental-fetal glucose exchange and fetal glucose metabolism. Trans. Am. Clin. Climatol. Assoc. 2006, 117, 321–340. [Google Scholar] [PubMed]
- Anand, R.S.; Ganguli, S.; Sperling, M.A. Effect of insulin-induced maternal hypoglycemia on glucose turnover in maternal and fetal sheep. Am. J. Physiol. Endocrinol. Metab. 1980, 238, E524–E532. [Google Scholar] [CrossRef] [PubMed]
- Marconi, A.M.; Cetin, I.; Davoli, E.; Baggiani, A.M.; Fanelli, R.; Fennessey, P.V.; Battaglia, F.C.; Pardi, G. An evaluation of fetal glucogenesis in intrauterine growth-retarded pregnancies. Metabolism 1993, 42, 860–864. [Google Scholar] [CrossRef]
- Wooding, F.B.P.; Fowden, A.L.; Bell, A.W.; Ehrhardt, R.A.; Limesand, S.W.; Hay, W.W. Localisation of glucose transport in the ruminant placenta: Implications for sequential use of transporter isoforms. Placenta 2005, 26, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, R.A.; Bell, A.W. Developmental increases in glucose transporter concentration in the sheep placenta. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997, 273, R1132–R1141. [Google Scholar] [CrossRef]
- Jansson, T.; Wennergren, M.; Illsley, N.P. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J. Clin. Endocrinol. Metab. 1993, 77, 1554–1562. [Google Scholar]
- Simpson, I.A.; Dwyer, D.; Malide, D.; Moley, K.H.; Travis, A.; Vannucci, S.J. The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E242–E253. [Google Scholar] [CrossRef] [Green Version]
- Marconi, A.M.; Paolini, C.L. Nutrient transport across the intrauterine growth-restricted placenta. Semin. Perinatol. 2008, 32, 178–181. [Google Scholar] [CrossRef]
- Economides, D.L.; Nicolaides, K.H. Blood glucose and oxygen tension levels in small-for-gestational-age fetuses. Am. J. Obstet. Gynecol. 1989, 160, 385–389. [Google Scholar] [CrossRef]
- Jansson, T.; Ylvén, K.; Wennergren, M.; Powell, T.L. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta 2002, 23, 392–399. [Google Scholar] [CrossRef]
- Janzen, C.; Lei, M.Y.Y.; Cho, J.; Sullivan, P.; Shin, B.-C.; Devaskar, S.U. Placental glucose transporter 3 (GLUT3) is up-regulated in human pregnancies complicated by late-onset intrauterine growth restriction. Placenta 2013, 34, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.H.; Cantlon, J.D.; Wright, C.D.; Henkes, L.E.; Seidel, G.E.; Anthony, R.V. The involvement of proline-rich 15 in early conceptus development in sheep. Biol. Reprod. 2009, 81, 1112–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, C.M.; Goetzmann, L.N.; Cantlon, J.D.; Jeckel, K.M.; Winger, Q.A.; Anthony, R.V. Development of ovine chorionic somatomammotropin hormone-deficient pregnancies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R837–R846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, A.R.; Lynch, C.S.; Kennedy, V.C.; Ali, A.; Winger, Q.A.; Rozance, P.J.; Anthony, R.V. CSH RNA interference reduces global nutrient uptake and umbilical blood flow resulting in intrauterine growth restriction. Int. J. Mol. Sci. 2021, 22, 8150. [Google Scholar] [CrossRef] [PubMed]
- Tanner, A.R.; Lynch, C.S.; Ali, A.; Winger, Q.A.; Rozance, P.J.; Anthony, R.V. Impact of chorionic somatomammotropin RNA interference on uterine blood flow and placental glucose uptake in the absence of intrauterine growth restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R138–R148. [Google Scholar] [CrossRef]
- Ali, A.; Stenglein, M.D.; Spencer, T.E.; Bouma, G.J.; Anthony, R.V.; Winger, Q.A. Trophectoderm-specific knockdown of LIN28 decreases expression of genes necessary for cell proliferation and reduces elongation of sheep conceptus. Int. J. Mol. Sci. 2020, 21, 2549. [Google Scholar] [CrossRef] [Green Version]
- Jeckel, K.M.; Boyarko, A.C.; Bouma, G.J.; Winger, Q.A.; Anthony, R.V. Chorionic somatomammotropin impacts early fetal growth and placental gene expression. J. Endocrinol. 2018, 237, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Illsley, N.P. Glucose transporters in the human placenta. Placenta 2000, 21, 14–22. [Google Scholar] [CrossRef]
- Barros, L.F.; Yudilevich, D.L.; Jarvis, S.M.; Beaumont, N.; Baldwin, S.A. Quantitation and immunolocalization of glucose transporters in the human placenta. Placenta 1995, 16, 623–633. [Google Scholar] [CrossRef]
- Brown, K.; Heller, D.S.; Zamudio, S.; Illsley, N.P. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta 2011, 32, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Hay, W.W.; Molina, R.A.; DiGiacomo, J.E.; Meschia, G. Model of placental glucose consumption and glucose transfer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1990, 258, R569–R577. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.W.; Kennaugh, J.M.; Battaglia, F.C.; Makowski, E.L.; Meschia, G. Metabolic and circulatory studies of fetal lamb at midgestation. Am. J. Physiol. Endocrinol. Metab. 1986, 250, E538–E544. [Google Scholar] [CrossRef] [PubMed]
- Meschia, G.; Battaglia, F.C.; Hay, W.W.; Sparks, J.W. Utilization of substrates by the ovine placenta in vivo. Fed. Proc. 1980, 39, 245–249. [Google Scholar] [PubMed]
- Ganguly, A.; McKnight, R.A.; Raychaudhuri, S.; Shin, B.-C.; Ma, Z.; Moley, K.; Devaskar, S.U. Glucose transporter isoform-3 mutations cause early pregnancy loss and fetal growth restriction. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1241–E1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanirowski, P.J.; Szukiewicz, D.; Majewska, A.; Wątroba, M.; Pyzlak, M.; Bomba-Opoń, D.; Wielgoś, M. Differential expression of glucose transporter proteins GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in the placenta of macrosomic, small-for-gestational-age and growth-restricted foetuses. J. Clin. Med. 2021, 10, 5833. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Chao, A.-S.; Chang, S.-D.; Cheng, P.-J. Placental glucose transporter 1 and 3 gene expression in monochorionic twin pregnancies with selective fetal growth restriction. BMC Pregnancy Childbirth 2021, 21, 260. [Google Scholar] [CrossRef]
- Tanner, A.R.; Kennedy, V.C.; Lynch, C.S.; Hord, T.K.; Winger, Q.A.; Rozance, P.J.; Anthony, R.V. In vivo investigation of ruminant placental function and physiology—A review. J. Anim. Sci. 2022, 100, 1–14. [Google Scholar] [CrossRef]
- Hay, W.W.; Brown, L.D.; Rozance, P.J.; Wesolowski, S.R.; Limesand, S.W. Challenges in nourishing the intrauterine growth-restricted foetus—Lessons learned from studies in the intrauterine growth-restricted foetal sheep. Acta Paediatr. 2016, 105, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Pardi, G.; Cetin, I.; Marconi, A.M.; Lanfranchi, A.; Bozzetti, P.; Ferrazzi, E.; Buscaglia, M.; Battaglia, F.C. Diagnostic value of blood sampling in fetuses with growth retardation. N. Engl. J. Med. 1993, 328, 692–696. [Google Scholar] [CrossRef]
- Sparks, J.W.; Hay, W.W.; Bonds, D.; Meschia, G.; Battaglia, F.C. Simultaneous measurements of lactate turnover rate and umbilical lactate uptake in the fetal lamb. J. Clin. Investig. 1982, 70, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Hay, W.W. Regulation of placental metabolism by glucose supply. Reprod. Fertil. Dev. 1995, 7, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M. Factors affecting gas transfer across the placenta and the oxygen supply to the fetus. J. Dev. Physiol. 1989, 12, 305–322. [Google Scholar] [PubMed]
- Limesand, S.W.; Rozance, P.J.; Brown, L.D.; Hay, W.W. Effects of chronic hypoglycemia and euglycemic correction on lysine metabolism in fetal sheep. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E879–E887. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Collis, L.; Devaskar, S.U. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice. Endocrinology 2012, 153, 3995–4007. [Google Scholar] [CrossRef] [PubMed]
- DiGiacomo, J.E.; Hay, W.W. Fetal glucose metabolism and oxygen consumption during sustained hypoglycemia. Metabolism 1990, 39, 193–202. [Google Scholar] [CrossRef]
- Carver, T.D.; Quick, A.A.; Teng, C.C.; Pike, A.W.; Fennessey, P.V.; Hay, W.W. Leucine metabolism in chronically hypoglycemic hypoinsulinemic growth restricted fetal sheep. Am. J. Physiol. Endocrinol. Metab. 1997, 272, E107–E117. [Google Scholar] [CrossRef]
- Aldoretta, P.W.; Carver, T.D.; Hay, W.W. Maturation of glucose-stimulated insulin secretion in fetal sheep. Biol. Neonate 1998, 73, 375–386. [Google Scholar] [CrossRef]
- Anthony, R.V.; Scheaffer, A.N.; Wright, C.D.; Regnault, T.R.H. Ruminant models of prenatal growth restriction. Reprod. Suppl. 2003, 61, 183–194. [Google Scholar] [CrossRef]
- Limesand, S.W.; Rozance, P.J.; Zerbe, G.O.; Hutton, J.C.; Hay, W.W. Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. Endocrinology 2006, 147, 1488–1497. [Google Scholar] [CrossRef] [Green Version]
- Lassarre, C.; Hardouin, S.; Daffos, F.; Forestier, F.; Frankenne, F.; Binoux, M. Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr. Res. 1991, 29, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Thorn, S.R.; Rozance, P.J.; Brown, L.D.; Hay, W.W. The intrauterine growth restriction phenotype: Fetal adaptations and potential implications for later life insulin resistance and diabetes. Semin. Reprod. Med. 2011, 29, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Freemark, M.; Keen, A.; Fowlkes, J.; Mularoni, T.; Comer, M.; Grandis, A.; Kodack, L. The placental lactogen receptor in maternal and fetal sheep liver: Regulation by glucose and role in the pathogenesis of fasting during pregnancy. Endocrinology 1992, 130, 1063–1070. [Google Scholar] [PubMed]
- Constância, M.; Hemberger, M.; Hughes, J.; Dean, W.; Ferguson-Smith, A.; Fundele, R.; Stewart, F.; Kelsey, G.; Fowden, A.; Sibley, C.; et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002, 417, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Coan, P.M.; Fowden, A.L.; Constancia, M.; Ferguson-Smith, A.C.; Burton, G.J.; Sibley, C.P. Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse. J. Physiol. 2008, 586, 5023–5032. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Liu, J.-P.; Robertson, E.J.; Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993, 75, 73–82. [Google Scholar] [CrossRef]
- Ludwig, T.; Eggenschwiler, J.; Fisher, P.; D’Ercole, A.J.; Davenport, M.L.; Efstratiadis, A. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev. Biol. 1996, 177, 517–535. [Google Scholar] [CrossRef] [Green Version]
- Lau, M.M.; Stewart, C.E.; Liu, Z.; Bhatt, H.; Rotwein, P.; Stewart, C.L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994, 8, 2953–2963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Barker, P.; Botting, K.J.; Roberts, C.T.; McMillan, C.M.; McMillen, I.C.; Morrison, J.L. Early restriction of placental growth results in placental structural and gene expression changes in late gestation independent of fetal hypoxemia. Physiol. Rep. 2016, 4, e13049. [Google Scholar] [CrossRef]
- de Vrijer, B.; Davidsen, M.L.; Wilkening, R.B.; Anthony, R.V.; Regnault, T.R.H. Altered placental and fetal expression of IGFs and IGF-binding proteins associated with intrauterine growth restriction in fetal sheep during early and mid-pregnancy. Pediatr. Res. 2006, 60, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Georgiades, P.; Cox, B.; Gertsenstein, M.; Chawengsaksophak, K.; Rossant, J. Trophoblast-specific gene manipulation using lentivirus-based vectors. BioTechniques 2007, 42, 317–324. [Google Scholar] [CrossRef]
- Vaughn, O.R.; Maksym, K.; Silva, E.; Barentsen, K.; Anthony, R.V.; Brown, T.L.; Hillman, S.L.; Spencer, R.; David, A.L.; Rosario, F.J.; et al. Placental-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice. Clin. Sci. 2021, 135, 2049–2066. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Saget, S.; Lu, C.; Zang, T.; Dzyuba, B.; Hay, W.W.; Shao, J. The essential role of pancreatic α-cells in maternal metabolic adaptation to pregnancy. Diabetes 2022, 71, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Cilvik, S.N.; Wesolowski, S.R.; Anthony, R.V.; Brown, L.D.; Rozance, P.J. Late gestation fetal hyperglucagonaemia impairs placental function and results in diminished fetal protein accretion and decreased fetal growth. J. Physiol. 2021, 599, 3403–3427. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W.; Sparks, J.W.; Battaglia, F.C.; Meschia, G. Maternal-fetal glucose exchange: Necessity of a three-pool model. Am. J. Physiol. Endocrinol. Metab. 1984, 246, E528–E534. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007.
NTS RNAi | SLC2A3 RNAi | p-Value | % Change | |
---|---|---|---|---|
Binocular Distance, cm | 3.53 ± 0.10 | 3.29 ± 0.06 | 0.06 | 6.68 |
Crown-rump length, cm | 14.88 ± 1.13 | 14.31 ± 0.40 | 0.58 | 3.83 |
Abdominal circumference, cm | 13.09 ± 0.55 | 12.20 ± 0.46 | 0.24 | 6.82 |
Femur Length, cm | 2.97 ± 0.12 | 2.34 ± 0.18 | 0.01 | 21.19 |
Tibia Length, cm | 2.70 ± 0.20 | 1.99 ± 0.18 | 0.03 | 26.38 |
Pulsatility Index | 2.80 ± 0.27 | 2.97 ± 0.15 | 0.59 | 6.15 |
Resistance Index | 0.86 ± 0.05 | 0.85 ± 0.04 | 0.92 | 0.79 |
Systolic: Diastolic | 16.18 ± 6.60 | 11.04 ± 3.96 | 0.52 | 31.76 |
Fetal heart rate, bpm | 204.72 ± 1.91 | 200.03 ± 8.69 | 0.61 | 2.29 |
Umbilical artery cross-sectional area, cm2 | 0.09 ± 0.007 | 0.104 ± 0.01 | 0.44 | 11.52 |
Umbilical artery cross-sectional diameter, cm | 0.34 ± 0.01 | 0.35 ± 0.02 | 0.74 | 2.37 |
NTS RNAi | SLC2A3 RNAi | p-Value | % Change | |
---|---|---|---|---|
Fetal weight, g | 208.61 ± 9.93 | 179.89 ± 10.84 | 0.08 | 13.77 |
Head circumference, cm | 13.90 ± 0.19 | 12.88 ± 0.43 | 0.05 | 7.37 |
Crown-rump length, cm | 19.33 ± 0.4 | 19.17 ± 0.36 | 0.76 | 0.86 |
Abdominal circumference, cm | 13.62 ± 0.51 | 12.92 ± 0.35 | 0.28 | 5.14 |
Femur length, cm | 4.33 ± 0.20 | 3.67 ± 0.17 | 0.03 | 15.22 |
Tibia length, cm | 3.42 ± 0.20 | 2.78 ± 0.19 | 0.05 | 18.54 |
Liver weight, g | 13.21 ± 0.95 | 12.65 ± 1.06 | 0.71 | 4.20 |
Pancreas weight, mg | 470.00 ± 34.35 | 363.33 ± 15.85 | 0.02 | 22.70 |
Placentome weight, g | 536.10 ± 54.05 | 423.39 ± 34.81 | 0.13 | 21.02 |
Placentome number | 81.83 ± 5.51 | 73.33 ± 7.17 | 0.37 | 10.39 |
NTS RNAi Uterine Artery | SLC2A3 RNAi Uterine Artery | p-Value | % Change | NTS RNAi Uterine Vein | SLC2A3 RNAi Uterine Vein | p-Value | % Change | |
---|---|---|---|---|---|---|---|---|
TAU | 43.50 ± 8.70 | 49.55 ± 8.83 | 0.64 | 13.91 | 78.85 ± 17.57 | 74.16 ± 17.13 | 0.98 | 0.92 |
ASP | 18.53 ± 2.66 | 17.65 ± 2.58 | 0.82 | 4.78 | 27.42 ± 3.50 | 34.10 ± 10.13 | 0.55 | 24.38 |
THR | 108.92 ± 15.67 | 147.58 ± 17.81 | 0.13 | 35.50 | 153.15 ± 45.77 | 151.47 ± 19.38 | 0.97 | 1.10 |
SER | 63.61 ± 6.28 | 75.04 ± 7.41 | 0.27 | 17.97 | 109.98 ± 50.80 | 71.67 ± 8.15 | 0.47 | 34.84 |
ASN | 26.70 ± 3.15 | 42.09 ± 3.93 | 0.01 | 57.67 | 32.27 ± 5.42 | 42.23 ± 5.13 | 0.21 | 30.85 |
GLU | 105.34 ± 11.72 | 106.04 ± 6.40 | 0.96 | 0.66 | 158.64 ± 12.88 | 172.02 ± 34.99 | 0.73 | 8.43 |
GLN | 309.41 ± 17.70 | 317.86 ± 25.19 | 0.79 | 2.73 | 308.16 ± 30.39 | 328.82 ± 28.26 | 0.63 | 6.70 |
PRO | 78.25 ± 9.15 | 81.99 ± 5.96 | 0.74 | 4.78 | 84.70 ± 6.03 | 89.16 ± 6.52 | 0.63 | 5.27 |
GLY | 628.54 ± 53.55 | 578.48 ± 32.09 | 0.44 | 7.96 | 630.56 ± 63.84 | 687.23 ± 66.76 | 0.55 | 8.99 |
ALA | 198.69 ± 14.19 | 219.90 ± 10.41 | 0.26 | 10.68 | 219.66 ± 19.76 | 245.43 ± 13.65 | 0.31 | 11.73 |
CIT | 188.30 ± 23.08 | 256.7 ± 34.01 | 0.13 | 36.32 | 171.15 ± 19.28 | 253.27 ± 35.50 | 0.07 | 47.98 |
VAL | 197.76 ± 13.18 | 231.82 ± 13.41 | 0.10 | 17.22 | 201.25 ± 24.21 | 219.92 ± 12.70 | 0.51 | 9.28 |
CYS | 21.92 ± 2.88 | 17.99 ± 3.70 | 0.42 | 17.93 | 11.94 ± 4.15 | 21.28 ± 4.84 | 0.17 | 78.20 |
MET | 22.15 ± 1.96 | 27.58 ± 2.98 | 0.16 | 24.51 | 33.38 ± 10.20 | 28.49 ± 3.39 | 0.66 | 14.65 |
ILE | 102.26 ± 3.79 | 115.23 ± 6.93 | 0.13 | 12.69 | 94.24 ± 4.77 | 104.06 ± 3.18 | 0.12 | 10.42 |
LEU | 120.45 ± 4.05 | 134.11 ± 9.62 | 0.22 | 11.33 | 114.62 ± 9.81 | 125.2 ± 6.66 | 0.39 | 9.23 |
TYR | 39.20 ± 3.28 | 49.47 ± 5.61 | 0.14 | 26.22 | 52.23 ± 12.11 | 54.75 ± 7.68 | 0.86 | 4.82 |
PHE | 34.06 ± 1.89 | 38.38 ± 3.34 | 0.29 | 12.66 | 44.80 ± 10.34 | 42.56 ± 4.15 | 0.84 | 4.99 |
TRP | 34.27 ± 1.78 | 36.78 ± 2.54 | 0.44 | 7.30 | 35.72 ± 4.65 | 39.95 ± 1.99 | 0.96 | 0.65 |
ORN | 94.49 ± 6.14 | 115.83 ± 8.20 | 0.06 | 22.58 | 97.07 ± 17.58 | 105.10 ± 8.02 | 0.69 | 8.27 |
LYS | 103.41 ± 6.97 | 144.09 ± 17.23 | 0.05 | 39.33 | 117.46 ± 15.91 | 148.69 ± 19.41 | 0.24 | 26.59 |
HIS | 59.89 ± 1.70 | 61.65 ± 3.16 | 0.63 | 2.94 | 57.60 ± 2.77 | 62.99 ± 3.74 | 0.27 | 9.38 |
ARG | 210.83± 9.11 | 233.19 ± 20.86 | 0.35 | 10.61 | 219.04 ± 11.37 | 231.31 ± 23.04 | 0.64 | 5.60 |
NTS RNAi Umbilical Art. | SLC2A3 RNAi Umbilical Art. | p-Value | % Change | NTS RNAi Umbilical Vein | SLC2A3 RNAi Umbilical Vein | p-Value | % Change | |
---|---|---|---|---|---|---|---|---|
TAU | 132.41 ± 16.08 | 141.54 ± 19.40 | 0.73 | 6.89 | 132.14 ± 13.98 | 144.70 ± 23.33 | 0.64 | 9.50 |
ASP | 43.10 ± 4.27 | 41.54 ± 3.05 | 0.80 | 3.63 | 40.87 ± 3.80 | 32.67 ± 2.58 | 0.12 | 20.06 |
THR | 453.57 ± 32.87 | 561.20 ± 66.67 | 0.15 | 23.73 | 497.44 ± 24.57 | 531.22 ± 57.58 | 0.58 | 6.79 |
SER | 375.99 ± 25.84 | 420.26 ± 48.66 | 0.40 | 11.77 | 328.51 ± 15.49 | 338.54 ± 38.41 | 0.80 | 3.05 |
ASN | 52.01 ± 2.62 | 66.88 ± 5.40 | 0.02 | 28.60 | 76.66 ± 2.62 | 86.04 ± 6.95 | 0.21 | 12.24 |
GLU | 182.77 ± 23.49 | 181.57 ± 15.68 | 0.97 | 0.65 | 49.03 ± 3.88 | 40.59 ± 8.67 | 0.37 | 17.22 |
GLN | 453.66 ± 36.48 | 495.05 ± 38.65 | 0.47 | 9.12 | 591.28 ± 28.78 | 589.07 ± 32.74 | 0.96 | 0.37 |
PRO | 114.12 ± 14.32 | 136.71 ± 9.92 | 0.28 | 19.80 | 143.05 ± 12.36 | 163.25 ± 9.12 | 0.24 | 14.12 |
GLY | 465.10 ± 46.10 | 458.02 ± 48.14 | 0.92 | 1.52 | 550.47 ± 30.18 | 477.85 ± 26.96 | 0.11 | 13.19 |
ALA | 319.75 ± 28.75 | 349.43 ± 50.04 | 0.59 | 9.28 | 417.10 ± 18.71 | 384.69 ± 17.40 | 0.24 | 7.77 |
CIT | 151.75 ± 16.05 | 184.56 ± 19.39 | 0.23 | 21.62 | 152.28 ± 16.16 | 168.38 ± 19.32 | 0.54 | 10.57 |
VAL | 263.06 ± 19.26 | 313.77 ± 42.27 | 0.25 | 19.28 | 318.44 ± 26.91 | 332.76 ± 36.17 | 0.75 | 4.50 |
CYS | 16.52 ± 1.99 | 19.53 ± 2.05 | 0.34 | 18.25 | 12.72 ± 2.86 | 12.39 ± 1.50 | 0.93 | 2.59 |
MET | 79.89 ± 6.43 | 89.07 ± 11.02 | 0.46 | 11.48 | 98.43 ± 6.07 | 103.53 ± 4.21 | 0.53 | 5.18 |
ILE | 75.66 ± 4.25 | 91.57 ± 11.79 | 0.18 | 21.03 | 106.30 ± 5.92 | 107.65 ± 10.54 | 0.91 | 1.27 |
LEU | 130.62 ± 7.42 | 150.52 ± 17.26 | 0.26 | 15.24 | 188.21 ± 9.92 | 181.61 ± 14.04 | 0.70 | 3.51 |
TYR | 104.88 ± 3.21 | 116.85 ± 14.31 | 0.35 | 11.42 | 134.05 ± 9.35 | 136.81 ± 14.15 | 0.87 | 2.05 |
PHE | 92.42 ± 2.39 | 108.34 ± 11.15 | 0.13 | 17.22 | 123.35 ± 5.79 | 127.38 ± 7.21 | 0.67 | 3.27 |
TRP | 50.73 ± 1.83 | 45.51 ± 4.21 | 0.23 | 10.28 | 59.73 ± 2.75 | 55.44 ± 2.72 | 0.30 | 7.18 |
ORN | 160.01 ± 15.14 | 196.74 ± 43.89 | 0.38 | 22.95 | 165.92 ± 11.63 | 186.65 ± 39.12 | 0.59 | 12.49 |
LYS | 202.84 ± 16.16 | 210.34 ± 19.88 | 0.78 | 3.70 | 260.43 ± 15.82 | 270.66 ± 30.56 | 0.76 | 3.93 |
HIS | 50.08 ± 3.82 | 52.69 ± 4.12 | 0.66 | 5.20 | 68.09 ± 1.68 | 66.35 ± 7.37 | 0.81 | 2.55 |
ARG | 251.54 ± 15.84 | 193.81 ± 9.20 | 0.03 | 22.95 | 313.01 ± 19.29 | 246.22 ± 15.08 | 0.03 | 21.34 |
mRNA | NTS RNAi | SLC2A3 RNAi | p-Value | % Change |
---|---|---|---|---|
IGF1, pg/pg | 0.0011 ± 0.0002 | 0.0011 ± 0.00013 | 0.88 | 3.18 |
IGFBP1, pg/pg | 0.00018 ± 0.000076 | 0.00013 ± 0.000066 | 0.64 | 26.81 |
IGFBP2, pg/pg | 0.00051 ± 0.000082 | 0.00057 ± 0.000057 | 0.57 | 11.58 |
IGFBP3, pg/pg | 0.025 ± 0.0056 | 0.028 ± 0.0049 | 0.69 | 12.19 |
Oligonucleotide | Sequence (5′–3′) |
---|---|
NTS shRNA sense strand | GAGTTAAAGGTTCGGCACGAATTCAAGAGATTCGTGCCGAACCTTTAACTC |
SLC2A3 shRNA sense strand | GCGCAACTCAATGCTTATTGTTTCAAGAGAACAATAAGCATTGAGTTGCGC |
cDNA | Forward Primer (5′–3′) | Reverse Primer (5′–3′) | Product, bp |
---|---|---|---|
RPS15 | ATCATTCTGCCCGAGATGGTG | TGCTTGACGGGCTTGTAGGTG | 134 |
IGF1 | TCGCATCTCTTCTATCTGGCCCT | ACAGTACATCTCCAGCCTCCTCA | 240 |
IGF2 | GACCGCGGCTTCTACTTCAG | AAGAACTTGCCCACGGGGTAT | 203 |
IGFBP1 | TGATGACCGACTCCAGTGAG | GTCCAGCGAAGTCTCACAC | 248 |
IGFBP2 | CAATGGCGAGGAGCACTCTG | TGGGGATGTGTAGGGAATAG | 330 |
IGFBP3 | CTCAGACGACAGACACCCA | GGCATATTTGAGCTCCAC | 336 |
IGF1R | AACTGTCATCTCCAACCTC | CAAGCCTCCCACTATCAAC | 493 |
IGF2R | GACTTGTGTCCAGACCAGATTC | GCCGTCGTCCTCACTCTCATC | 674 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynch, C.S.; Kennedy, V.C.; Tanner, A.R.; Ali, A.; Winger, Q.A.; Rozance, P.J.; Anthony, R.V. Impact of Placental SLC2A3 Deficiency during the First-Half of Gestation. Int. J. Mol. Sci. 2022, 23, 12530. https://doi.org/10.3390/ijms232012530
Lynch CS, Kennedy VC, Tanner AR, Ali A, Winger QA, Rozance PJ, Anthony RV. Impact of Placental SLC2A3 Deficiency during the First-Half of Gestation. International Journal of Molecular Sciences. 2022; 23(20):12530. https://doi.org/10.3390/ijms232012530
Chicago/Turabian StyleLynch, Cameron S., Victoria C. Kennedy, Amelia R. Tanner, Asghar Ali, Quinton A. Winger, Paul J. Rozance, and Russell V. Anthony. 2022. "Impact of Placental SLC2A3 Deficiency during the First-Half of Gestation" International Journal of Molecular Sciences 23, no. 20: 12530. https://doi.org/10.3390/ijms232012530
APA StyleLynch, C. S., Kennedy, V. C., Tanner, A. R., Ali, A., Winger, Q. A., Rozance, P. J., & Anthony, R. V. (2022). Impact of Placental SLC2A3 Deficiency during the First-Half of Gestation. International Journal of Molecular Sciences, 23(20), 12530. https://doi.org/10.3390/ijms232012530